Properties

Label 2-160-8.5-c3-0-10
Degree $2$
Conductor $160$
Sign $-0.992 - 0.119i$
Analytic cond. $9.44030$
Root an. cond. $3.07250$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.99i·3-s − 5i·5-s − 9.93·7-s − 36.9·9-s − 60.0i·11-s + 32.3i·13-s − 39.9·15-s + 12.5·17-s + 116. i·19-s + 79.4i·21-s − 204.·23-s − 25·25-s + 79.7i·27-s − 31.8i·29-s + 81.0·31-s + ⋯
L(s)  = 1  − 1.53i·3-s − 0.447i·5-s − 0.536·7-s − 1.36·9-s − 1.64i·11-s + 0.689i·13-s − 0.688·15-s + 0.178·17-s + 1.41i·19-s + 0.825i·21-s − 1.85·23-s − 0.200·25-s + 0.568i·27-s − 0.203i·29-s + 0.469·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $-0.992 - 0.119i$
Analytic conductor: \(9.44030\)
Root analytic conductor: \(3.07250\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{160} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :3/2),\ -0.992 - 0.119i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0616549 + 1.02977i\)
\(L(\frac12)\) \(\approx\) \(0.0616549 + 1.02977i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5iT \)
good3 \( 1 + 7.99iT - 27T^{2} \)
7 \( 1 + 9.93T + 343T^{2} \)
11 \( 1 + 60.0iT - 1.33e3T^{2} \)
13 \( 1 - 32.3iT - 2.19e3T^{2} \)
17 \( 1 - 12.5T + 4.91e3T^{2} \)
19 \( 1 - 116. iT - 6.85e3T^{2} \)
23 \( 1 + 204.T + 1.21e4T^{2} \)
29 \( 1 + 31.8iT - 2.43e4T^{2} \)
31 \( 1 - 81.0T + 2.97e4T^{2} \)
37 \( 1 + 270. iT - 5.06e4T^{2} \)
41 \( 1 - 330.T + 6.89e4T^{2} \)
43 \( 1 + 138. iT - 7.95e4T^{2} \)
47 \( 1 + 211.T + 1.03e5T^{2} \)
53 \( 1 + 437. iT - 1.48e5T^{2} \)
59 \( 1 + 181. iT - 2.05e5T^{2} \)
61 \( 1 + 472. iT - 2.26e5T^{2} \)
67 \( 1 - 71.8iT - 3.00e5T^{2} \)
71 \( 1 - 767.T + 3.57e5T^{2} \)
73 \( 1 - 261.T + 3.89e5T^{2} \)
79 \( 1 - 600.T + 4.93e5T^{2} \)
83 \( 1 + 612. iT - 5.71e5T^{2} \)
89 \( 1 - 503.T + 7.04e5T^{2} \)
97 \( 1 + 500.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.15228344858723104359020687665, −11.24626165682380129957650559379, −9.762096704110396084715520414366, −8.438258318689264250290766119901, −7.81291416275451301506837295952, −6.39944443079120526352261173703, −5.81791087773090000612385962247, −3.66808542838909220503787273797, −1.94454857875880512944723481110, −0.47168222771085088827445430975, 2.71975647914977109060262038235, 4.06372968842578384667876361029, 5.01734627506037273392304261305, 6.45341649364693277916527826576, 7.80708473594928678101027971249, 9.320438824229855619334033793642, 9.935301136816605012416301028973, 10.60219312932903634683144087389, 11.78187105085169741917813079270, 12.89013527340027596170327723415

Graph of the $Z$-function along the critical line