L(s) = 1 | − 7.99i·3-s − 5i·5-s − 9.93·7-s − 36.9·9-s − 60.0i·11-s + 32.3i·13-s − 39.9·15-s + 12.5·17-s + 116. i·19-s + 79.4i·21-s − 204.·23-s − 25·25-s + 79.7i·27-s − 31.8i·29-s + 81.0·31-s + ⋯ |
L(s) = 1 | − 1.53i·3-s − 0.447i·5-s − 0.536·7-s − 1.36·9-s − 1.64i·11-s + 0.689i·13-s − 0.688·15-s + 0.178·17-s + 1.41i·19-s + 0.825i·21-s − 1.85·23-s − 0.200·25-s + 0.568i·27-s − 0.203i·29-s + 0.469·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.119i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.0616549 + 1.02977i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0616549 + 1.02977i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
good | 3 | \( 1 + 7.99iT - 27T^{2} \) |
| 7 | \( 1 + 9.93T + 343T^{2} \) |
| 11 | \( 1 + 60.0iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 32.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 12.5T + 4.91e3T^{2} \) |
| 19 | \( 1 - 116. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 204.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 31.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 81.0T + 2.97e4T^{2} \) |
| 37 | \( 1 + 270. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 330.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 138. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 211.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 437. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 181. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 472. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 71.8iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 767.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 261.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 600.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 612. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 503.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 500.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.15228344858723104359020687665, −11.24626165682380129957650559379, −9.762096704110396084715520414366, −8.438258318689264250290766119901, −7.81291416275451301506837295952, −6.39944443079120526352261173703, −5.81791087773090000612385962247, −3.66808542838909220503787273797, −1.94454857875880512944723481110, −0.47168222771085088827445430975,
2.71975647914977109060262038235, 4.06372968842578384667876361029, 5.01734627506037273392304261305, 6.45341649364693277916527826576, 7.80708473594928678101027971249, 9.320438824229855619334033793642, 9.935301136816605012416301028973, 10.60219312932903634683144087389, 11.78187105085169741917813079270, 12.89013527340027596170327723415