Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [160,4,Mod(81,160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(160, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("160.81");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 160.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 40) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81.1 |
|
0 | − | 9.57890i | 0 | 5.00000i | 0 | −21.5703 | 0 | −64.7554 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
81.2 | 0 | − | 7.99849i | 0 | − | 5.00000i | 0 | −9.93501 | 0 | −36.9759 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
81.3 | 0 | − | 6.25785i | 0 | 5.00000i | 0 | 34.6280 | 0 | −12.1606 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.4 | 0 | − | 4.24443i | 0 | − | 5.00000i | 0 | 14.6308 | 0 | 8.98481 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
81.5 | 0 | − | 1.51777i | 0 | 5.00000i | 0 | −5.13620 | 0 | 24.6964 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.6 | 0 | − | 0.888401i | 0 | 5.00000i | 0 | −26.6173 | 0 | 26.2107 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.7 | 0 | 0.888401i | 0 | − | 5.00000i | 0 | −26.6173 | 0 | 26.2107 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.8 | 0 | 1.51777i | 0 | − | 5.00000i | 0 | −5.13620 | 0 | 24.6964 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.9 | 0 | 4.24443i | 0 | 5.00000i | 0 | 14.6308 | 0 | 8.98481 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.10 | 0 | 6.25785i | 0 | − | 5.00000i | 0 | 34.6280 | 0 | −12.1606 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.11 | 0 | 7.99849i | 0 | 5.00000i | 0 | −9.93501 | 0 | −36.9759 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
81.12 | 0 | 9.57890i | 0 | − | 5.00000i | 0 | −21.5703 | 0 | −64.7554 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 160.4.d.a | 12 | |
3.b | odd | 2 | 1 | 1440.4.k.c | 12 | ||
4.b | odd | 2 | 1 | 40.4.d.a | ✓ | 12 | |
5.b | even | 2 | 1 | 800.4.d.d | 12 | ||
5.c | odd | 4 | 1 | 800.4.f.b | 12 | ||
5.c | odd | 4 | 1 | 800.4.f.c | 12 | ||
8.b | even | 2 | 1 | inner | 160.4.d.a | 12 | |
8.d | odd | 2 | 1 | 40.4.d.a | ✓ | 12 | |
12.b | even | 2 | 1 | 360.4.k.c | 12 | ||
16.e | even | 4 | 1 | 1280.4.a.ba | 6 | ||
16.e | even | 4 | 1 | 1280.4.a.bd | 6 | ||
16.f | odd | 4 | 1 | 1280.4.a.bb | 6 | ||
16.f | odd | 4 | 1 | 1280.4.a.bc | 6 | ||
20.d | odd | 2 | 1 | 200.4.d.b | 12 | ||
20.e | even | 4 | 1 | 200.4.f.b | 12 | ||
20.e | even | 4 | 1 | 200.4.f.c | 12 | ||
24.f | even | 2 | 1 | 360.4.k.c | 12 | ||
24.h | odd | 2 | 1 | 1440.4.k.c | 12 | ||
40.e | odd | 2 | 1 | 200.4.d.b | 12 | ||
40.f | even | 2 | 1 | 800.4.d.d | 12 | ||
40.i | odd | 4 | 1 | 800.4.f.b | 12 | ||
40.i | odd | 4 | 1 | 800.4.f.c | 12 | ||
40.k | even | 4 | 1 | 200.4.f.b | 12 | ||
40.k | even | 4 | 1 | 200.4.f.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.4.d.a | ✓ | 12 | 4.b | odd | 2 | 1 | |
40.4.d.a | ✓ | 12 | 8.d | odd | 2 | 1 | |
160.4.d.a | 12 | 1.a | even | 1 | 1 | trivial | |
160.4.d.a | 12 | 8.b | even | 2 | 1 | inner | |
200.4.d.b | 12 | 20.d | odd | 2 | 1 | ||
200.4.d.b | 12 | 40.e | odd | 2 | 1 | ||
200.4.f.b | 12 | 20.e | even | 4 | 1 | ||
200.4.f.b | 12 | 40.k | even | 4 | 1 | ||
200.4.f.c | 12 | 20.e | even | 4 | 1 | ||
200.4.f.c | 12 | 40.k | even | 4 | 1 | ||
360.4.k.c | 12 | 12.b | even | 2 | 1 | ||
360.4.k.c | 12 | 24.f | even | 2 | 1 | ||
800.4.d.d | 12 | 5.b | even | 2 | 1 | ||
800.4.d.d | 12 | 40.f | even | 2 | 1 | ||
800.4.f.b | 12 | 5.c | odd | 4 | 1 | ||
800.4.f.b | 12 | 40.i | odd | 4 | 1 | ||
800.4.f.c | 12 | 5.c | odd | 4 | 1 | ||
800.4.f.c | 12 | 40.i | odd | 4 | 1 | ||
1280.4.a.ba | 6 | 16.e | even | 4 | 1 | ||
1280.4.a.bb | 6 | 16.f | odd | 4 | 1 | ||
1280.4.a.bc | 6 | 16.f | odd | 4 | 1 | ||
1280.4.a.bd | 6 | 16.e | even | 4 | 1 | ||
1440.4.k.c | 12 | 3.b | odd | 2 | 1 | ||
1440.4.k.c | 12 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace .