Properties

Label 160.4.d.a
Level 160160
Weight 44
Character orbit 160.d
Analytic conductor 9.4409.440
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 160.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.440305600929.44030560092
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x11+7x1012x9+21x868x6+336x4768x3+1792x24096x+4096 x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23054 2^{30}\cdot 5^{4}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+β2q5+(β42)q7+(β89)q9+(β3+2β2+β1)q11+(β6+β1)q13+(β9+5)q15+(β9+β7+β4)q17++(20β1118β10+5β1)q99+O(q100) q + \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{4} - 2) q^{7} + ( - \beta_{8} - 9) q^{9} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{6} + \beta_1) q^{13} + ( - \beta_{9} + 5) q^{15} + ( - \beta_{9} + \beta_{7} + \beta_{4}) q^{17}+ \cdots + (20 \beta_{11} - 18 \beta_{10} + \cdots - 5 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q28q7108q9+60q15604q23300q25+264q31232q33600q39+40q41+940q47+1308q49440q55680q57+1300q63+1592q71+432q73+1584q97+O(q100) 12 q - 28 q^{7} - 108 q^{9} + 60 q^{15} - 604 q^{23} - 300 q^{25} + 264 q^{31} - 232 q^{33} - 600 q^{39} + 40 q^{41} + 940 q^{47} + 1308 q^{49} - 440 q^{55} - 680 q^{57} + 1300 q^{63} + 1592 q^{71} + 432 q^{73}+ \cdots - 1584 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x11+7x1012x9+21x868x6+336x4768x3+1792x24096x+4096 x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 : Copy content Toggle raw display

β1\beta_{1}== (93ν11+204ν10379ν9+388ν8817ν71672ν6++191488)/15360 ( - 93 \nu^{11} + 204 \nu^{10} - 379 \nu^{9} + 388 \nu^{8} - 817 \nu^{7} - 1672 \nu^{6} + \cdots + 191488 ) / 15360 Copy content Toggle raw display
β2\beta_{2}== (23ν1160ν10+81ν9116ν8+51ν7+480ν6684ν5+30720)/3072 ( 23 \nu^{11} - 60 \nu^{10} + 81 \nu^{9} - 116 \nu^{8} + 51 \nu^{7} + 480 \nu^{6} - 684 \nu^{5} + \cdots - 30720 ) / 3072 Copy content Toggle raw display
β3\beta_{3}== (177ν11+228ν10+263ν92420ν8+3797ν7+2696ν6+502784)/15360 ( 177 \nu^{11} + 228 \nu^{10} + 263 \nu^{9} - 2420 \nu^{8} + 3797 \nu^{7} + 2696 \nu^{6} + \cdots - 502784 ) / 15360 Copy content Toggle raw display
β4\beta_{4}== (163ν11188ν10+5ν9564ν8+1231ν71456ν6956ν5+168960)/15360 ( 163 \nu^{11} - 188 \nu^{10} + 5 \nu^{9} - 564 \nu^{8} + 1231 \nu^{7} - 1456 \nu^{6} - 956 \nu^{5} + \cdots - 168960 ) / 15360 Copy content Toggle raw display
β5\beta_{5}== (5ν1128ν10+109ν9212ν8+263ν7+208ν6284ν5+36352)/512 ( - 5 \nu^{11} - 28 \nu^{10} + 109 \nu^{9} - 212 \nu^{8} + 263 \nu^{7} + 208 \nu^{6} - 284 \nu^{5} + \cdots - 36352 ) / 512 Copy content Toggle raw display
β6\beta_{6}== (165ν11+636ν10307ν9+3028ν85209ν72488ν6++934912)/15360 ( - 165 \nu^{11} + 636 \nu^{10} - 307 \nu^{9} + 3028 \nu^{8} - 5209 \nu^{7} - 2488 \nu^{6} + \cdots + 934912 ) / 15360 Copy content Toggle raw display
β7\beta_{7}== (89ν11244ν10545ν9+1188ν8+1373ν7+112ν63508ν5+49920)/3840 ( 89 \nu^{11} - 244 \nu^{10} - 545 \nu^{9} + 1188 \nu^{8} + 1373 \nu^{7} + 112 \nu^{6} - 3508 \nu^{5} + \cdots - 49920 ) / 3840 Copy content Toggle raw display
β8\beta_{8}== (211ν11+476ν10725ν9+1428ν81087ν72288ν6++399360)/7680 ( - 211 \nu^{11} + 476 \nu^{10} - 725 \nu^{9} + 1428 \nu^{8} - 1087 \nu^{7} - 2288 \nu^{6} + \cdots + 399360 ) / 7680 Copy content Toggle raw display
β9\beta_{9}== (97ν11212ν10+215ν9636ν8+709ν7+2096ν64244ν5+184320)/3072 ( 97 \nu^{11} - 212 \nu^{10} + 215 \nu^{9} - 636 \nu^{8} + 709 \nu^{7} + 2096 \nu^{6} - 4244 \nu^{5} + \cdots - 184320 ) / 3072 Copy content Toggle raw display
β10\beta_{10}== (271ν11+852ν101401ν9+1948ν82475ν72376ν6++605184)/7680 ( - 271 \nu^{11} + 852 \nu^{10} - 1401 \nu^{9} + 1948 \nu^{8} - 2475 \nu^{7} - 2376 \nu^{6} + \cdots + 605184 ) / 7680 Copy content Toggle raw display
β11\beta_{11}== (1113ν11+1884ν102719ν9+7348ν811677ν717512ν6++2219008)/15360 ( - 1113 \nu^{11} + 1884 \nu^{10} - 2719 \nu^{9} + 7348 \nu^{8} - 11677 \nu^{7} - 17512 \nu^{6} + \cdots + 2219008 ) / 15360 Copy content Toggle raw display
ν\nu== (β114β10+3β9+5β8β72β62β5++52)/160 ( \beta_{11} - 4 \beta_{10} + 3 \beta_{9} + 5 \beta_{8} - \beta_{7} - 2 \beta_{6} - 2 \beta_{5} + \cdots + 52 ) / 160 Copy content Toggle raw display
ν2\nu^{2}== (2β11+3β103β9+10β83β76β6β5++31)/160 ( - 2 \beta_{11} + 3 \beta_{10} - 3 \beta_{9} + 10 \beta_{8} - 3 \beta_{7} - 6 \beta_{6} - \beta_{5} + \cdots + 31 ) / 160 Copy content Toggle raw display
ν3\nu^{3}== (8β11+2β1011β95β8β74β62β5++102)/80 ( - 8 \beta_{11} + 2 \beta_{10} - 11 \beta_{9} - 5 \beta_{8} - \beta_{7} - 4 \beta_{6} - 2 \beta_{5} + \cdots + 102 ) / 80 Copy content Toggle raw display
ν4\nu^{4}== (2β11+β1011β92β8+β76β6β5++35)/32 ( 2 \beta_{11} + \beta_{10} - 11 \beta_{9} - 2 \beta_{8} + \beta_{7} - 6 \beta_{6} - \beta_{5} + \cdots + 35 ) / 32 Copy content Toggle raw display
ν5\nu^{5}== (29β1124β1045β9+85β8+3β7+18β6+1536)/160 ( - 29 \beta_{11} - 24 \beta_{10} - 45 \beta_{9} + 85 \beta_{8} + 3 \beta_{7} + 18 \beta_{6} + \cdots - 1536 ) / 160 Copy content Toggle raw display
ν6\nu^{6}== (32β11+83β10+2β9+40β8+8β7+4β6+16β5+66)/80 ( - 32 \beta_{11} + 83 \beta_{10} + 2 \beta_{9} + 40 \beta_{8} + 8 \beta_{7} + 4 \beta_{6} + 16 \beta_{5} + \cdots - 66 ) / 80 Copy content Toggle raw display
ν7\nu^{7}== (73β118β10143β95β8+141β7+26β6++11928)/160 ( - 73 \beta_{11} - 8 \beta_{10} - 143 \beta_{9} - 5 \beta_{8} + 141 \beta_{7} + 26 \beta_{6} + \cdots + 11928 ) / 160 Copy content Toggle raw display
ν8\nu^{8}== (46β1191β10+39β9+138β8+23β7+46β6+1671)/32 ( 46 \beta_{11} - 91 \beta_{10} + 39 \beta_{9} + 138 \beta_{8} + 23 \beta_{7} + 46 \beta_{6} + \cdots - 1671 ) / 32 Copy content Toggle raw display
ν9\nu^{9}== (108β11+22β10217β9+285β8195β7+356β6++2310)/80 ( - 108 \beta_{11} + 22 \beta_{10} - 217 \beta_{9} + 285 \beta_{8} - 195 \beta_{7} + 356 \beta_{6} + \cdots + 2310 ) / 80 Copy content Toggle raw display
ν10\nu^{10}== (1422β11+903β101489β91930β8685β7+334β6++22885)/160 ( - 1422 \beta_{11} + 903 \beta_{10} - 1489 \beta_{9} - 1930 \beta_{8} - 685 \beta_{7} + 334 \beta_{6} + \cdots + 22885 ) / 160 Copy content Toggle raw display
ν11\nu^{11}== (1217β11+412β103995β9585β8203β7594β6++68196)/160 ( 1217 \beta_{11} + 412 \beta_{10} - 3995 \beta_{9} - 585 \beta_{8} - 203 \beta_{7} - 594 \beta_{6} + \cdots + 68196 ) / 160 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
1.98839 + 0.215211i
1.23537 + 1.57285i
−1.86176 0.730647i
1.71681 1.02595i
−0.428316 + 1.95360i
−0.650488 1.89126i
−0.650488 + 1.89126i
−0.428316 1.95360i
1.71681 + 1.02595i
−1.86176 + 0.730647i
1.23537 1.57285i
1.98839 0.215211i
0 9.57890i 0 5.00000i 0 −21.5703 0 −64.7554 0
81.2 0 7.99849i 0 5.00000i 0 −9.93501 0 −36.9759 0
81.3 0 6.25785i 0 5.00000i 0 34.6280 0 −12.1606 0
81.4 0 4.24443i 0 5.00000i 0 14.6308 0 8.98481 0
81.5 0 1.51777i 0 5.00000i 0 −5.13620 0 24.6964 0
81.6 0 0.888401i 0 5.00000i 0 −26.6173 0 26.2107 0
81.7 0 0.888401i 0 5.00000i 0 −26.6173 0 26.2107 0
81.8 0 1.51777i 0 5.00000i 0 −5.13620 0 24.6964 0
81.9 0 4.24443i 0 5.00000i 0 14.6308 0 8.98481 0
81.10 0 6.25785i 0 5.00000i 0 34.6280 0 −12.1606 0
81.11 0 7.99849i 0 5.00000i 0 −9.93501 0 −36.9759 0
81.12 0 9.57890i 0 5.00000i 0 −21.5703 0 −64.7554 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.4.d.a 12
3.b odd 2 1 1440.4.k.c 12
4.b odd 2 1 40.4.d.a 12
5.b even 2 1 800.4.d.d 12
5.c odd 4 1 800.4.f.b 12
5.c odd 4 1 800.4.f.c 12
8.b even 2 1 inner 160.4.d.a 12
8.d odd 2 1 40.4.d.a 12
12.b even 2 1 360.4.k.c 12
16.e even 4 1 1280.4.a.ba 6
16.e even 4 1 1280.4.a.bd 6
16.f odd 4 1 1280.4.a.bb 6
16.f odd 4 1 1280.4.a.bc 6
20.d odd 2 1 200.4.d.b 12
20.e even 4 1 200.4.f.b 12
20.e even 4 1 200.4.f.c 12
24.f even 2 1 360.4.k.c 12
24.h odd 2 1 1440.4.k.c 12
40.e odd 2 1 200.4.d.b 12
40.f even 2 1 800.4.d.d 12
40.i odd 4 1 800.4.f.b 12
40.i odd 4 1 800.4.f.c 12
40.k even 4 1 200.4.f.b 12
40.k even 4 1 200.4.f.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.d.a 12 4.b odd 2 1
40.4.d.a 12 8.d odd 2 1
160.4.d.a 12 1.a even 1 1 trivial
160.4.d.a 12 8.b even 2 1 inner
200.4.d.b 12 20.d odd 2 1
200.4.d.b 12 40.e odd 2 1
200.4.f.b 12 20.e even 4 1
200.4.f.b 12 40.k even 4 1
200.4.f.c 12 20.e even 4 1
200.4.f.c 12 40.k even 4 1
360.4.k.c 12 12.b even 2 1
360.4.k.c 12 24.f even 2 1
800.4.d.d 12 5.b even 2 1
800.4.d.d 12 40.f even 2 1
800.4.f.b 12 5.c odd 4 1
800.4.f.b 12 40.i odd 4 1
800.4.f.c 12 5.c odd 4 1
800.4.f.c 12 40.i odd 4 1
1280.4.a.ba 6 16.e even 4 1
1280.4.a.bb 6 16.f odd 4 1
1280.4.a.bc 6 16.f odd 4 1
1280.4.a.bd 6 16.e even 4 1
1440.4.k.c 12 3.b odd 2 1
1440.4.k.c 12 24.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace S4new(160,[χ])S_{4}^{\mathrm{new}}(160, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+216T10++7529536 T^{12} + 216 T^{10} + \cdots + 7529536 Copy content Toggle raw display
55 (T2+25)6 (T^{2} + 25)^{6} Copy content Toggle raw display
77 (T6+14T5++14843128)2 (T^{6} + 14 T^{5} + \cdots + 14843128)^{2} Copy content Toggle raw display
1111 T12++26 ⁣ ⁣00 T^{12} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
1313 T12++24 ⁣ ⁣00 T^{12} + \cdots + 24\!\cdots\!00 Copy content Toggle raw display
1717 (T614500T4+7473839808)2 (T^{6} - 14500 T^{4} + \cdots - 7473839808)^{2} Copy content Toggle raw display
1919 T12++17 ⁣ ⁣24 T^{12} + \cdots + 17\!\cdots\!24 Copy content Toggle raw display
2323 (T6+302T5++881168216)2 (T^{6} + 302 T^{5} + \cdots + 881168216)^{2} Copy content Toggle raw display
2929 T12++11 ⁣ ⁣00 T^{12} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
3131 (T6+1437816300032)2 (T^{6} + \cdots - 1437816300032)^{2} Copy content Toggle raw display
3737 T12++21 ⁣ ⁣04 T^{12} + \cdots + 21\!\cdots\!04 Copy content Toggle raw display
4141 (T6+71667547865600)2 (T^{6} + \cdots - 71667547865600)^{2} Copy content Toggle raw display
4343 T12++25 ⁣ ⁣04 T^{12} + \cdots + 25\!\cdots\!04 Copy content Toggle raw display
4747 (T6+72048375466472)2 (T^{6} + \cdots - 72048375466472)^{2} Copy content Toggle raw display
5353 T12++86 ⁣ ⁣76 T^{12} + \cdots + 86\!\cdots\!76 Copy content Toggle raw display
5959 T12++10 ⁣ ⁣24 T^{12} + \cdots + 10\!\cdots\!24 Copy content Toggle raw display
6161 T12++61 ⁣ ⁣00 T^{12} + \cdots + 61\!\cdots\!00 Copy content Toggle raw display
6767 T12++87 ⁣ ⁣36 T^{12} + \cdots + 87\!\cdots\!36 Copy content Toggle raw display
7171 (T6+36 ⁣ ⁣48)2 (T^{6} + \cdots - 36\!\cdots\!48)^{2} Copy content Toggle raw display
7373 (T6+378730163491776)2 (T^{6} + \cdots - 378730163491776)^{2} Copy content Toggle raw display
7979 (T6+44 ⁣ ⁣00)2 (T^{6} + \cdots - 44\!\cdots\!00)^{2} Copy content Toggle raw display
8383 T12++78 ⁣ ⁣24 T^{12} + \cdots + 78\!\cdots\!24 Copy content Toggle raw display
8989 (T6+62 ⁣ ⁣00)2 (T^{6} + \cdots - 62\!\cdots\!00)^{2} Copy content Toggle raw display
9797 (T6+33 ⁣ ⁣28)2 (T^{6} + \cdots - 33\!\cdots\!28)^{2} Copy content Toggle raw display
show more
show less