Properties

Label 160.4.d.a
Level $160$
Weight $4$
Character orbit 160.d
Analytic conductor $9.440$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{30}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{4} - 2) q^{7} + ( - \beta_{8} - 9) q^{9} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{6} + \beta_1) q^{13} + ( - \beta_{9} + 5) q^{15} + ( - \beta_{9} + \beta_{7} + \beta_{4}) q^{17}+ \cdots + (20 \beta_{11} - 18 \beta_{10} + \cdots - 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 28 q^{7} - 108 q^{9} + 60 q^{15} - 604 q^{23} - 300 q^{25} + 264 q^{31} - 232 q^{33} - 600 q^{39} + 40 q^{41} + 940 q^{47} + 1308 q^{49} - 440 q^{55} - 680 q^{57} + 1300 q^{63} + 1592 q^{71} + 432 q^{73}+ \cdots - 1584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 93 \nu^{11} + 204 \nu^{10} - 379 \nu^{9} + 388 \nu^{8} - 817 \nu^{7} - 1672 \nu^{6} + \cdots + 191488 ) / 15360 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 23 \nu^{11} - 60 \nu^{10} + 81 \nu^{9} - 116 \nu^{8} + 51 \nu^{7} + 480 \nu^{6} - 684 \nu^{5} + \cdots - 30720 ) / 3072 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 177 \nu^{11} + 228 \nu^{10} + 263 \nu^{9} - 2420 \nu^{8} + 3797 \nu^{7} + 2696 \nu^{6} + \cdots - 502784 ) / 15360 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 163 \nu^{11} - 188 \nu^{10} + 5 \nu^{9} - 564 \nu^{8} + 1231 \nu^{7} - 1456 \nu^{6} - 956 \nu^{5} + \cdots - 168960 ) / 15360 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 5 \nu^{11} - 28 \nu^{10} + 109 \nu^{9} - 212 \nu^{8} + 263 \nu^{7} + 208 \nu^{6} - 284 \nu^{5} + \cdots - 36352 ) / 512 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 165 \nu^{11} + 636 \nu^{10} - 307 \nu^{9} + 3028 \nu^{8} - 5209 \nu^{7} - 2488 \nu^{6} + \cdots + 934912 ) / 15360 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 89 \nu^{11} - 244 \nu^{10} - 545 \nu^{9} + 1188 \nu^{8} + 1373 \nu^{7} + 112 \nu^{6} - 3508 \nu^{5} + \cdots - 49920 ) / 3840 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 211 \nu^{11} + 476 \nu^{10} - 725 \nu^{9} + 1428 \nu^{8} - 1087 \nu^{7} - 2288 \nu^{6} + \cdots + 399360 ) / 7680 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 97 \nu^{11} - 212 \nu^{10} + 215 \nu^{9} - 636 \nu^{8} + 709 \nu^{7} + 2096 \nu^{6} - 4244 \nu^{5} + \cdots - 184320 ) / 3072 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 271 \nu^{11} + 852 \nu^{10} - 1401 \nu^{9} + 1948 \nu^{8} - 2475 \nu^{7} - 2376 \nu^{6} + \cdots + 605184 ) / 7680 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 1113 \nu^{11} + 1884 \nu^{10} - 2719 \nu^{9} + 7348 \nu^{8} - 11677 \nu^{7} - 17512 \nu^{6} + \cdots + 2219008 ) / 15360 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{11} - 4 \beta_{10} + 3 \beta_{9} + 5 \beta_{8} - \beta_{7} - 2 \beta_{6} - 2 \beta_{5} + \cdots + 52 ) / 160 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 2 \beta_{11} + 3 \beta_{10} - 3 \beta_{9} + 10 \beta_{8} - 3 \beta_{7} - 6 \beta_{6} - \beta_{5} + \cdots + 31 ) / 160 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 8 \beta_{11} + 2 \beta_{10} - 11 \beta_{9} - 5 \beta_{8} - \beta_{7} - 4 \beta_{6} - 2 \beta_{5} + \cdots + 102 ) / 80 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2 \beta_{11} + \beta_{10} - 11 \beta_{9} - 2 \beta_{8} + \beta_{7} - 6 \beta_{6} - \beta_{5} + \cdots + 35 ) / 32 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 29 \beta_{11} - 24 \beta_{10} - 45 \beta_{9} + 85 \beta_{8} + 3 \beta_{7} + 18 \beta_{6} + \cdots - 1536 ) / 160 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 32 \beta_{11} + 83 \beta_{10} + 2 \beta_{9} + 40 \beta_{8} + 8 \beta_{7} + 4 \beta_{6} + 16 \beta_{5} + \cdots - 66 ) / 80 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 73 \beta_{11} - 8 \beta_{10} - 143 \beta_{9} - 5 \beta_{8} + 141 \beta_{7} + 26 \beta_{6} + \cdots + 11928 ) / 160 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 46 \beta_{11} - 91 \beta_{10} + 39 \beta_{9} + 138 \beta_{8} + 23 \beta_{7} + 46 \beta_{6} + \cdots - 1671 ) / 32 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 108 \beta_{11} + 22 \beta_{10} - 217 \beta_{9} + 285 \beta_{8} - 195 \beta_{7} + 356 \beta_{6} + \cdots + 2310 ) / 80 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 1422 \beta_{11} + 903 \beta_{10} - 1489 \beta_{9} - 1930 \beta_{8} - 685 \beta_{7} + 334 \beta_{6} + \cdots + 22885 ) / 160 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 1217 \beta_{11} + 412 \beta_{10} - 3995 \beta_{9} - 585 \beta_{8} - 203 \beta_{7} - 594 \beta_{6} + \cdots + 68196 ) / 160 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
1.98839 + 0.215211i
1.23537 + 1.57285i
−1.86176 0.730647i
1.71681 1.02595i
−0.428316 + 1.95360i
−0.650488 1.89126i
−0.650488 + 1.89126i
−0.428316 1.95360i
1.71681 + 1.02595i
−1.86176 + 0.730647i
1.23537 1.57285i
1.98839 0.215211i
0 9.57890i 0 5.00000i 0 −21.5703 0 −64.7554 0
81.2 0 7.99849i 0 5.00000i 0 −9.93501 0 −36.9759 0
81.3 0 6.25785i 0 5.00000i 0 34.6280 0 −12.1606 0
81.4 0 4.24443i 0 5.00000i 0 14.6308 0 8.98481 0
81.5 0 1.51777i 0 5.00000i 0 −5.13620 0 24.6964 0
81.6 0 0.888401i 0 5.00000i 0 −26.6173 0 26.2107 0
81.7 0 0.888401i 0 5.00000i 0 −26.6173 0 26.2107 0
81.8 0 1.51777i 0 5.00000i 0 −5.13620 0 24.6964 0
81.9 0 4.24443i 0 5.00000i 0 14.6308 0 8.98481 0
81.10 0 6.25785i 0 5.00000i 0 34.6280 0 −12.1606 0
81.11 0 7.99849i 0 5.00000i 0 −9.93501 0 −36.9759 0
81.12 0 9.57890i 0 5.00000i 0 −21.5703 0 −64.7554 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.4.d.a 12
3.b odd 2 1 1440.4.k.c 12
4.b odd 2 1 40.4.d.a 12
5.b even 2 1 800.4.d.d 12
5.c odd 4 1 800.4.f.b 12
5.c odd 4 1 800.4.f.c 12
8.b even 2 1 inner 160.4.d.a 12
8.d odd 2 1 40.4.d.a 12
12.b even 2 1 360.4.k.c 12
16.e even 4 1 1280.4.a.ba 6
16.e even 4 1 1280.4.a.bd 6
16.f odd 4 1 1280.4.a.bb 6
16.f odd 4 1 1280.4.a.bc 6
20.d odd 2 1 200.4.d.b 12
20.e even 4 1 200.4.f.b 12
20.e even 4 1 200.4.f.c 12
24.f even 2 1 360.4.k.c 12
24.h odd 2 1 1440.4.k.c 12
40.e odd 2 1 200.4.d.b 12
40.f even 2 1 800.4.d.d 12
40.i odd 4 1 800.4.f.b 12
40.i odd 4 1 800.4.f.c 12
40.k even 4 1 200.4.f.b 12
40.k even 4 1 200.4.f.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.d.a 12 4.b odd 2 1
40.4.d.a 12 8.d odd 2 1
160.4.d.a 12 1.a even 1 1 trivial
160.4.d.a 12 8.b even 2 1 inner
200.4.d.b 12 20.d odd 2 1
200.4.d.b 12 40.e odd 2 1
200.4.f.b 12 20.e even 4 1
200.4.f.b 12 40.k even 4 1
200.4.f.c 12 20.e even 4 1
200.4.f.c 12 40.k even 4 1
360.4.k.c 12 12.b even 2 1
360.4.k.c 12 24.f even 2 1
800.4.d.d 12 5.b even 2 1
800.4.d.d 12 40.f even 2 1
800.4.f.b 12 5.c odd 4 1
800.4.f.b 12 40.i odd 4 1
800.4.f.c 12 5.c odd 4 1
800.4.f.c 12 40.i odd 4 1
1280.4.a.ba 6 16.e even 4 1
1280.4.a.bb 6 16.f odd 4 1
1280.4.a.bc 6 16.f odd 4 1
1280.4.a.bd 6 16.e even 4 1
1440.4.k.c 12 3.b odd 2 1
1440.4.k.c 12 24.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(160, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 216 T^{10} + \cdots + 7529536 \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{6} \) Copy content Toggle raw display
$7$ \( (T^{6} + 14 T^{5} + \cdots + 14843128)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( (T^{6} - 14500 T^{4} + \cdots - 7473839808)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots + 17\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( (T^{6} + 302 T^{5} + \cdots + 881168216)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{6} + \cdots - 1437816300032)^{2} \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 21\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( (T^{6} + \cdots - 71667547865600)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 25\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( (T^{6} + \cdots - 72048375466472)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 86\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 61\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 87\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T^{6} + \cdots - 36\!\cdots\!48)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + \cdots - 378730163491776)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} + \cdots - 44\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 78\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots - 62\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + \cdots - 33\!\cdots\!28)^{2} \) Copy content Toggle raw display
show more
show less