L(s) = 1 | − 18.7i·3-s + 25i·5-s + 107.·7-s − 109.·9-s − 272. i·11-s − 198. i·13-s + 469.·15-s + 2.06e3·17-s + 1.89e3i·19-s − 2.02e3i·21-s + 987.·23-s − 625·25-s − 2.49e3i·27-s − 8.01e3i·29-s − 827.·31-s + ⋯ |
L(s) = 1 | − 1.20i·3-s + 0.447i·5-s + 0.829·7-s − 0.452·9-s − 0.678i·11-s − 0.325i·13-s + 0.538·15-s + 1.73·17-s + 1.20i·19-s − 0.999i·21-s + 0.389·23-s − 0.200·25-s − 0.659i·27-s − 1.76i·29-s − 0.154·31-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(−0.0379+0.999i)Λ(6−s)
Λ(s)=(=(160s/2ΓC(s+5/2)L(s)(−0.0379+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
−0.0379+0.999i
|
Analytic conductor: |
25.6614 |
Root analytic conductor: |
5.06570 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :5/2), −0.0379+0.999i)
|
Particular Values
L(3) |
≈ |
2.168548789 |
L(21) |
≈ |
2.168548789 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−25iT |
good | 3 | 1+18.7iT−243T2 |
| 7 | 1−107.T+1.68e4T2 |
| 11 | 1+272.iT−1.61e5T2 |
| 13 | 1+198.iT−3.71e5T2 |
| 17 | 1−2.06e3T+1.41e6T2 |
| 19 | 1−1.89e3iT−2.47e6T2 |
| 23 | 1−987.T+6.43e6T2 |
| 29 | 1+8.01e3iT−2.05e7T2 |
| 31 | 1+827.T+2.86e7T2 |
| 37 | 1+9.42e3iT−6.93e7T2 |
| 41 | 1+8.22e3T+1.15e8T2 |
| 43 | 1+9.30e3iT−1.47e8T2 |
| 47 | 1+1.38e4T+2.29e8T2 |
| 53 | 1−2.77e4iT−4.18e8T2 |
| 59 | 1+2.51e4iT−7.14e8T2 |
| 61 | 1+2.64e4iT−8.44e8T2 |
| 67 | 1+3.85e4iT−1.35e9T2 |
| 71 | 1−7.10e4T+1.80e9T2 |
| 73 | 1−1.86e4T+2.07e9T2 |
| 79 | 1−7.55e4T+3.07e9T2 |
| 83 | 1−1.25e5iT−3.93e9T2 |
| 89 | 1−3.03e4T+5.58e9T2 |
| 97 | 1−1.56e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.90994968198313637948918134300, −10.89421894015479374536041833194, −9.770646272679073228854407939107, −8.008172441713448161038963641878, −7.81814537580731995966336514959, −6.42280467502948310775648461789, −5.43359722920422425353354023690, −3.55815803645921964863397319429, −2.00184520601613364558815717172, −0.812333429012405914020304403537,
1.38772710423946496734483801737, 3.33409452741340317732084688745, 4.71841184765186675352112704200, 5.18180160510757385868484675776, 7.04544023614676914730362864852, 8.308278003008287067442571447065, 9.345076426365460052177829730855, 10.12873203381046433562453432118, 11.12812282800311555164704427073, 12.08422184116632829463425231928