L(s) = 1 | − 18.7i·3-s + 25i·5-s + 107.·7-s − 109.·9-s − 272. i·11-s − 198. i·13-s + 469.·15-s + 2.06e3·17-s + 1.89e3i·19-s − 2.02e3i·21-s + 987.·23-s − 625·25-s − 2.49e3i·27-s − 8.01e3i·29-s − 827.·31-s + ⋯ |
L(s) = 1 | − 1.20i·3-s + 0.447i·5-s + 0.829·7-s − 0.452·9-s − 0.678i·11-s − 0.325i·13-s + 0.538·15-s + 1.73·17-s + 1.20i·19-s − 0.999i·21-s + 0.389·23-s − 0.200·25-s − 0.659i·27-s − 1.76i·29-s − 0.154·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0379 + 0.999i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0379 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.168548789\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.168548789\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 25iT \) |
good | 3 | \( 1 + 18.7iT - 243T^{2} \) |
| 7 | \( 1 - 107.T + 1.68e4T^{2} \) |
| 11 | \( 1 + 272. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 198. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 2.06e3T + 1.41e6T^{2} \) |
| 19 | \( 1 - 1.89e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 987.T + 6.43e6T^{2} \) |
| 29 | \( 1 + 8.01e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 827.T + 2.86e7T^{2} \) |
| 37 | \( 1 + 9.42e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 8.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.30e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.38e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 2.77e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 2.51e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 2.64e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 3.85e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 7.10e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 1.86e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 7.55e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.25e5iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 3.03e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.56e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90994968198313637948918134300, −10.89421894015479374536041833194, −9.770646272679073228854407939107, −8.008172441713448161038963641878, −7.81814537580731995966336514959, −6.42280467502948310775648461789, −5.43359722920422425353354023690, −3.55815803645921964863397319429, −2.00184520601613364558815717172, −0.812333429012405914020304403537,
1.38772710423946496734483801737, 3.33409452741340317732084688745, 4.71841184765186675352112704200, 5.18180160510757385868484675776, 7.04544023614676914730362864852, 8.308278003008287067442571447065, 9.345076426365460052177829730855, 10.12873203381046433562453432118, 11.12812282800311555164704427073, 12.08422184116632829463425231928