Properties

Label 160.6.d.a
Level 160160
Weight 66
Character orbit 160.d
Analytic conductor 25.66125.661
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 160.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.661411170125.6614111701
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 29034512 2^{90}\cdot 3^{4}\cdot 5^{12}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+β2q5+(β4+10)q7+(β5β481)q9+(β32β2+β1)q11+(β9+β2+7β1)q13+(β1145)q15++(14β18+14β17+101β1)q99+O(q100) q - \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{4} + 10) q^{7} + (\beta_{5} - \beta_{4} - 81) q^{9} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{9} + \beta_{2} + 7 \beta_1) q^{13} + (\beta_{11} - 45) q^{15}+ \cdots + ( - 14 \beta_{18} + 14 \beta_{17} + \cdots - 101 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+196q71620q9900q15+4676q2312500q257160q31+5672q33+44904q39+11608q4144180q47+18756q49+24200q55+5032q57240620q63++147376q97+O(q100) 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 : Copy content Toggle raw display

β1\beta_{1}== (79348087ν19+164467438ν18+2750967783ν17+2347892670ν16++38 ⁣ ⁣76)/71 ⁣ ⁣80 ( - 79348087 \nu^{19} + 164467438 \nu^{18} + 2750967783 \nu^{17} + 2347892670 \nu^{16} + \cdots + 38\!\cdots\!76 ) / 71\!\cdots\!80 Copy content Toggle raw display
β2\beta_{2}== (6673115ν1930164170ν18+153706635ν17+266710470ν16++15 ⁣ ⁣20)/32 ⁣ ⁣56 ( - 6673115 \nu^{19} - 30164170 \nu^{18} + 153706635 \nu^{17} + 266710470 \nu^{16} + \cdots + 15\!\cdots\!20 ) / 32\!\cdots\!56 Copy content Toggle raw display
β3\beta_{3}== (392347319ν193248676206ν1837138350375ν1756596678206ν16+46 ⁣ ⁣32)/71 ⁣ ⁣80 ( 392347319 \nu^{19} - 3248676206 \nu^{18} - 37138350375 \nu^{17} - 56596678206 \nu^{16} + \cdots - 46\!\cdots\!32 ) / 71\!\cdots\!80 Copy content Toggle raw display
β4\beta_{4}== (13756221ν197338982ν18+200878797ν17336652854ν16++16 ⁣ ⁣56)/13 ⁣ ⁣80 ( - 13756221 \nu^{19} - 7338982 \nu^{18} + 200878797 \nu^{17} - 336652854 \nu^{16} + \cdots + 16\!\cdots\!56 ) / 13\!\cdots\!80 Copy content Toggle raw display
β5\beta_{5}== (16634889ν19+110715086ν18463943001ν171145810466ν16+79 ⁣ ⁣76)/13 ⁣ ⁣80 ( 16634889 \nu^{19} + 110715086 \nu^{18} - 463943001 \nu^{17} - 1145810466 \nu^{16} + \cdots - 79\!\cdots\!76 ) / 13\!\cdots\!80 Copy content Toggle raw display
β6\beta_{6}== (1009053331ν19+5955093094ν18+92664246339ν17+23483121654ν16++17 ⁣ ⁣04)/53 ⁣ ⁣60 ( - 1009053331 \nu^{19} + 5955093094 \nu^{18} + 92664246339 \nu^{17} + 23483121654 \nu^{16} + \cdots + 17\!\cdots\!04 ) / 53\!\cdots\!60 Copy content Toggle raw display
β7\beta_{7}== (836343ν19+4825138ν18+26902617ν1767997406ν16++32 ⁣ ⁣04)/241205363343360 ( 836343 \nu^{19} + 4825138 \nu^{18} + 26902617 \nu^{17} - 67997406 \nu^{16} + \cdots + 32\!\cdots\!04 ) / 241205363343360 Copy content Toggle raw display
β8\beta_{8}== (3296223ν19144154430ν18510836175ν17+2513179506ν16+26 ⁣ ⁣04)/874369442119680 ( 3296223 \nu^{19} - 144154430 \nu^{18} - 510836175 \nu^{17} + 2513179506 \nu^{16} + \cdots - 26\!\cdots\!04 ) / 874369442119680 Copy content Toggle raw display
β9\beta_{9}== (4110998567ν19+2877435278ν18+134445630231ν17++12 ⁣ ⁣36)/10 ⁣ ⁣20 ( - 4110998567 \nu^{19} + 2877435278 \nu^{18} + 134445630231 \nu^{17} + \cdots + 12\!\cdots\!36 ) / 10\!\cdots\!20 Copy content Toggle raw display
β10\beta_{10}== (260801237ν191824079658ν182872664613ν17+20832970854ν16+13 ⁣ ⁣60)/54 ⁣ ⁣60 ( 260801237 \nu^{19} - 1824079658 \nu^{18} - 2872664613 \nu^{17} + 20832970854 \nu^{16} + \cdots - 13\!\cdots\!60 ) / 54\!\cdots\!60 Copy content Toggle raw display
β11\beta_{11}== (5795805ν19+4381350ν1862274925ν17+58776310ν16+62 ⁣ ⁣00)/932660738260992 ( 5795805 \nu^{19} + 4381350 \nu^{18} - 62274925 \nu^{17} + 58776310 \nu^{16} + \cdots - 62\!\cdots\!00 ) / 932660738260992 Copy content Toggle raw display
β12\beta_{12}== (1017903ν19+5922366ν18+40945759ν17+18273230ν16++10 ⁣ ⁣80)/160803575562240 ( - 1017903 \nu^{19} + 5922366 \nu^{18} + 40945759 \nu^{17} + 18273230 \nu^{16} + \cdots + 10\!\cdots\!80 ) / 160803575562240 Copy content Toggle raw display
β13\beta_{13}== (6553647ν19+4110910ν18+234956895ν17334260274ν16++28 ⁣ ⁣96)/777217281884160 ( - 6553647 \nu^{19} + 4110910 \nu^{18} + 234956895 \nu^{17} - 334260274 \nu^{16} + \cdots + 28\!\cdots\!96 ) / 777217281884160 Copy content Toggle raw display
β14\beta_{14}== (11729669627ν197756672522ν18+162936990891ν17++24 ⁣ ⁣40)/10 ⁣ ⁣20 ( - 11729669627 \nu^{19} - 7756672522 \nu^{18} + 162936990891 \nu^{17} + \cdots + 24\!\cdots\!40 ) / 10\!\cdots\!20 Copy content Toggle raw display
β15\beta_{15}== (57066063ν19+274798978ν18936303743ν17+2504816114ν16+51 ⁣ ⁣96)/46 ⁣ ⁣60 ( 57066063 \nu^{19} + 274798978 \nu^{18} - 936303743 \nu^{17} + 2504816114 \nu^{16} + \cdots - 51\!\cdots\!96 ) / 46\!\cdots\!60 Copy content Toggle raw display
β16\beta_{16}== (445476863ν19+755206978ν182379736431ν17+690187890ν16+55 ⁣ ⁣20)/31 ⁣ ⁣80 ( 445476863 \nu^{19} + 755206978 \nu^{18} - 2379736431 \nu^{17} + 690187890 \nu^{16} + \cdots - 55\!\cdots\!20 ) / 31\!\cdots\!80 Copy content Toggle raw display
β17\beta_{17}== (279607999ν19+207980926ν18+4651875759ν175763844146ν16++21 ⁣ ⁣60)/18 ⁣ ⁣20 ( - 279607999 \nu^{19} + 207980926 \nu^{18} + 4651875759 \nu^{17} - 5763844146 \nu^{16} + \cdots + 21\!\cdots\!60 ) / 18\!\cdots\!20 Copy content Toggle raw display
β18\beta_{18}== (34415252287ν19+44118579838ν18+614301056559ν17++46 ⁣ ⁣88)/21 ⁣ ⁣40 ( - 34415252287 \nu^{19} + 44118579838 \nu^{18} + 614301056559 \nu^{17} + \cdots + 46\!\cdots\!88 ) / 21\!\cdots\!40 Copy content Toggle raw display
β19\beta_{19}== (240970995ν19+955006394ν182146959459ν171890330006ν16+22 ⁣ ⁣56)/13 ⁣ ⁣80 ( 240970995 \nu^{19} + 955006394 \nu^{18} - 2146959459 \nu^{17} - 1890330006 \nu^{16} + \cdots - 22\!\cdots\!56 ) / 13\!\cdots\!80 Copy content Toggle raw display
ν\nu== (4β1914β18β176β169β15β1421β13++1269)/12800 ( 4 \beta_{19} - 14 \beta_{18} - \beta_{17} - 6 \beta_{16} - 9 \beta_{15} - \beta_{14} - 21 \beta_{13} + \cdots + 1269 ) / 12800 Copy content Toggle raw display
ν2\nu^{2}== (44β19+14β1839β17+6β16+19β1519β14++24401)/12800 ( - 44 \beta_{19} + 14 \beta_{18} - 39 \beta_{17} + 6 \beta_{16} + 19 \beta_{15} - 19 \beta_{14} + \cdots + 24401 ) / 12800 Copy content Toggle raw display
ν3\nu^{3}== (84β19+18β18108β17+112β16+39β15+192β14+39819)/6400 ( - 84 \beta_{19} + 18 \beta_{18} - 108 \beta_{17} + 112 \beta_{16} + 39 \beta_{15} + 192 \beta_{14} + \cdots - 39819 ) / 6400 Copy content Toggle raw display
ν4\nu^{4}== (36β1910β18β17+10β1617β15+11β14+19739)/512 ( 36 \beta_{19} - 10 \beta_{18} - \beta_{17} + 10 \beta_{16} - 17 \beta_{15} + 11 \beta_{14} + \cdots - 19739 ) / 512 Copy content Toggle raw display
ν5\nu^{5}== (68β19654β18911β17+134β16+347β15+1289β14+1730847)/12800 ( 68 \beta_{19} - 654 \beta_{18} - 911 \beta_{17} + 134 \beta_{16} + 347 \beta_{15} + 1289 \beta_{14} + \cdots - 1730847 ) / 12800 Copy content Toggle raw display
ν6\nu^{6}== (3196β1910606β18+7856β175024β16+1491β15+9927991)/6400 ( - 3196 \beta_{19} - 10606 \beta_{18} + 7856 \beta_{17} - 5024 \beta_{16} + 1491 \beta_{15} + \cdots - 9927991 ) / 6400 Copy content Toggle raw display
ν7\nu^{7}== (16324β19+49938β1814313β17+19162β16+14471β15+78838411)/12800 ( 16324 \beta_{19} + 49938 \beta_{18} - 14313 \beta_{17} + 19162 \beta_{16} + 14471 \beta_{15} + \cdots - 78838411 ) / 12800 Copy content Toggle raw display
ν8\nu^{8}== (2676β19+4086β18+3473β1710β16+1195β151331β14++6757289)/512 ( 2676 \beta_{19} + 4086 \beta_{18} + 3473 \beta_{17} - 10 \beta_{16} + 1195 \beta_{15} - 1331 \beta_{14} + \cdots + 6757289 ) / 512 Copy content Toggle raw display
ν9\nu^{9}== (525340β1991758β18+136748β17210672β16145665β15++480581725)/6400 ( 525340 \beta_{19} - 91758 \beta_{18} + 136748 \beta_{17} - 210672 \beta_{16} - 145665 \beta_{15} + \cdots + 480581725 ) / 6400 Copy content Toggle raw display
ν10\nu^{10}== (325380β19+731134β181210009β173982214β16936425β15+2969570195)/12800 ( 325380 \beta_{19} + 731134 \beta_{18} - 1210009 \beta_{17} - 3982214 \beta_{16} - 936425 \beta_{15} + \cdots - 2969570195 ) / 12800 Copy content Toggle raw display
ν11\nu^{11}== (13704092β19+5590458β184960383β17+5939142β16++13219713793)/12800 ( - 13704092 \beta_{19} + 5590458 \beta_{18} - 4960383 \beta_{17} + 5939142 \beta_{16} + \cdots + 13219713793 ) / 12800 Copy content Toggle raw display
ν12\nu^{12}== (526228β19+377730β18609080β17+191424β16227613β15+1250502055)/256 ( 526228 \beta_{19} + 377730 \beta_{18} - 609080 \beta_{17} + 191424 \beta_{16} - 227613 \beta_{15} + \cdots - 1250502055 ) / 256 Copy content Toggle raw display
ν13\nu^{13}== (14642492β19+103278602β18+45947223β17+146964698β16++272916930693)/12800 ( - 14642492 \beta_{19} + 103278602 \beta_{18} + 45947223 \beta_{17} + 146964698 \beta_{16} + \cdots + 272916930693 ) / 12800 Copy content Toggle raw display
ν14\nu^{14}== (610849420β191191174514β18+436423289β1795003706β16+341144190495)/12800 ( - 610849420 \beta_{19} - 1191174514 \beta_{18} + 436423289 \beta_{17} - 95003706 \beta_{16} + \cdots - 341144190495 ) / 12800 Copy content Toggle raw display
ν15\nu^{15}== (871984500β19160118542β18+880534852β1786269328β16+1625292214715)/6400 ( - 871984500 \beta_{19} - 160118542 \beta_{18} + 880534852 \beta_{17} - 86269328 \beta_{16} + \cdots - 1625292214715 ) / 6400 Copy content Toggle raw display
ν16\nu^{16}== (408459356β19+447320870β18120078593β17+597058826β16++326130296645)/512 ( - 408459356 \beta_{19} + 447320870 \beta_{18} - 120078593 \beta_{17} + 597058826 \beta_{16} + \cdots + 326130296645 ) / 512 Copy content Toggle raw display
ν17\nu^{17}== (42668508804β1914442191358β18+46349039633β17+2523089158β16++54880897505569)/12800 ( 42668508804 \beta_{19} - 14442191358 \beta_{18} + 46349039633 \beta_{17} + 2523089158 \beta_{16} + \cdots + 54880897505569 ) / 12800 Copy content Toggle raw display
ν18\nu^{18}== (79647000164β19+72314538066β1846315267616β1750923610336β16++31192842076569)/6400 ( 79647000164 \beta_{19} + 72314538066 \beta_{18} - 46315267616 \beta_{17} - 50923610336 \beta_{16} + \cdots + 31192842076569 ) / 6400 Copy content Toggle raw display
ν19\nu^{19}== (417829414972β19400451474046β18181387347689β17++255280619285013)/12800 ( - 417829414972 \beta_{19} - 400451474046 \beta_{18} - 181387347689 \beta_{17} + \cdots + 255280619285013 ) / 12800 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
3.46430 + 1.99965i
−3.90102 0.884346i
0.236693 3.99299i
2.93366 + 2.71913i
3.18502 2.41984i
−3.80026 1.24819i
3.72553 1.45618i
−2.80358 + 2.85306i
0.593959 + 3.95566i
−2.63430 + 3.01006i
−2.63430 3.01006i
0.593959 3.95566i
−2.80358 2.85306i
3.72553 + 1.45618i
−3.80026 + 1.24819i
3.18502 + 2.41984i
2.93366 2.71913i
0.236693 + 3.99299i
−3.90102 + 0.884346i
3.46430 1.99965i
0 29.2080i 0 25.0000i 0 168.173 0 −610.110 0
81.2 0 25.4343i 0 25.0000i 0 56.4938 0 −403.904 0
81.3 0 25.0521i 0 25.0000i 0 −103.624 0 −384.607 0
81.4 0 18.7876i 0 25.0000i 0 107.536 0 −109.975 0
81.5 0 17.3148i 0 25.0000i 0 9.19080 0 −56.8021 0
81.6 0 11.5927i 0 25.0000i 0 231.529 0 108.609 0
81.7 0 10.8240i 0 25.0000i 0 −163.706 0 125.841 0
81.8 0 10.7455i 0 25.0000i 0 −198.733 0 127.535 0
81.9 0 6.93089i 0 25.0000i 0 −47.1406 0 194.963 0
81.10 0 6.67450i 0 25.0000i 0 38.2812 0 198.451 0
81.11 0 6.67450i 0 25.0000i 0 38.2812 0 198.451 0
81.12 0 6.93089i 0 25.0000i 0 −47.1406 0 194.963 0
81.13 0 10.7455i 0 25.0000i 0 −198.733 0 127.535 0
81.14 0 10.8240i 0 25.0000i 0 −163.706 0 125.841 0
81.15 0 11.5927i 0 25.0000i 0 231.529 0 108.609 0
81.16 0 17.3148i 0 25.0000i 0 9.19080 0 −56.8021 0
81.17 0 18.7876i 0 25.0000i 0 107.536 0 −109.975 0
81.18 0 25.0521i 0 25.0000i 0 −103.624 0 −384.607 0
81.19 0 25.4343i 0 25.0000i 0 56.4938 0 −403.904 0
81.20 0 29.2080i 0 25.0000i 0 168.173 0 −610.110 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.6.d.a 20
4.b odd 2 1 40.6.d.a 20
5.b even 2 1 800.6.d.c 20
5.c odd 4 1 800.6.f.b 20
5.c odd 4 1 800.6.f.c 20
8.b even 2 1 inner 160.6.d.a 20
8.d odd 2 1 40.6.d.a 20
12.b even 2 1 360.6.k.b 20
20.d odd 2 1 200.6.d.b 20
20.e even 4 1 200.6.f.b 20
20.e even 4 1 200.6.f.c 20
24.f even 2 1 360.6.k.b 20
40.e odd 2 1 200.6.d.b 20
40.f even 2 1 800.6.d.c 20
40.i odd 4 1 800.6.f.b 20
40.i odd 4 1 800.6.f.c 20
40.k even 4 1 200.6.f.b 20
40.k even 4 1 200.6.f.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.d.a 20 4.b odd 2 1
40.6.d.a 20 8.d odd 2 1
160.6.d.a 20 1.a even 1 1 trivial
160.6.d.a 20 8.b even 2 1 inner
200.6.d.b 20 20.d odd 2 1
200.6.d.b 20 40.e odd 2 1
200.6.f.b 20 20.e even 4 1
200.6.f.b 20 40.k even 4 1
200.6.f.c 20 20.e even 4 1
200.6.f.c 20 40.k even 4 1
360.6.k.b 20 12.b even 2 1
360.6.k.b 20 24.f even 2 1
800.6.d.c 20 5.b even 2 1
800.6.d.c 20 40.f even 2 1
800.6.f.b 20 5.c odd 4 1
800.6.f.b 20 40.i odd 4 1
800.6.f.c 20 5.c odd 4 1
800.6.f.c 20 40.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace S6new(160,[χ])S_{6}^{\mathrm{new}}(160, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20++14 ⁣ ⁣84 T^{20} + \cdots + 14\!\cdots\!84 Copy content Toggle raw display
55 (T2+625)10 (T^{2} + 625)^{10} Copy content Toggle raw display
77 (T10++13 ⁣ ⁣08)2 (T^{10} + \cdots + 13\!\cdots\!08)^{2} Copy content Toggle raw display
1111 T20++70 ⁣ ⁣00 T^{20} + \cdots + 70\!\cdots\!00 Copy content Toggle raw display
1313 T20++16 ⁣ ⁣00 T^{20} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
1717 (T10++29 ⁣ ⁣68)2 (T^{10} + \cdots + 29\!\cdots\!68)^{2} Copy content Toggle raw display
1919 T20++23 ⁣ ⁣56 T^{20} + \cdots + 23\!\cdots\!56 Copy content Toggle raw display
2323 (T10+88 ⁣ ⁣16)2 (T^{10} + \cdots - 88\!\cdots\!16)^{2} Copy content Toggle raw display
2929 T20++42 ⁣ ⁣00 T^{20} + \cdots + 42\!\cdots\!00 Copy content Toggle raw display
3131 (T10+42 ⁣ ⁣88)2 (T^{10} + \cdots - 42\!\cdots\!88)^{2} Copy content Toggle raw display
3737 T20++17 ⁣ ⁣36 T^{20} + \cdots + 17\!\cdots\!36 Copy content Toggle raw display
4141 (T10+21 ⁣ ⁣00)2 (T^{10} + \cdots - 21\!\cdots\!00)^{2} Copy content Toggle raw display
4343 T20++24 ⁣ ⁣76 T^{20} + \cdots + 24\!\cdots\!76 Copy content Toggle raw display
4747 (T10++16 ⁣ ⁣92)2 (T^{10} + \cdots + 16\!\cdots\!92)^{2} Copy content Toggle raw display
5353 T20++82 ⁣ ⁣44 T^{20} + \cdots + 82\!\cdots\!44 Copy content Toggle raw display
5959 T20++40 ⁣ ⁣76 T^{20} + \cdots + 40\!\cdots\!76 Copy content Toggle raw display
6161 T20++29 ⁣ ⁣00 T^{20} + \cdots + 29\!\cdots\!00 Copy content Toggle raw display
6767 T20++50 ⁣ ⁣04 T^{20} + \cdots + 50\!\cdots\!04 Copy content Toggle raw display
7171 (T10++19 ⁣ ⁣32)2 (T^{10} + \cdots + 19\!\cdots\!32)^{2} Copy content Toggle raw display
7373 (T10+24 ⁣ ⁣16)2 (T^{10} + \cdots - 24\!\cdots\!16)^{2} Copy content Toggle raw display
7979 (T10++28 ⁣ ⁣00)2 (T^{10} + \cdots + 28\!\cdots\!00)^{2} Copy content Toggle raw display
8383 T20++23 ⁣ ⁣36 T^{20} + \cdots + 23\!\cdots\!36 Copy content Toggle raw display
8989 (T10++21 ⁣ ⁣00)2 (T^{10} + \cdots + 21\!\cdots\!00)^{2} Copy content Toggle raw display
9797 (T10++22 ⁣ ⁣48)2 (T^{10} + \cdots + 22\!\cdots\!48)^{2} Copy content Toggle raw display
show more
show less