Properties

Label 160.6.d.a
Level $160$
Weight $6$
Character orbit 160.d
Analytic conductor $25.661$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + \beta_{2} q^{5} + (\beta_{4} + 10) q^{7} + (\beta_{5} - \beta_{4} - 81) q^{9} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{11} + ( - \beta_{9} + \beta_{2} + 7 \beta_1) q^{13} + (\beta_{11} - 45) q^{15}+ \cdots + ( - 14 \beta_{18} + 14 \beta_{17} + \cdots - 101 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 79348087 \nu^{19} + 164467438 \nu^{18} + 2750967783 \nu^{17} + 2347892670 \nu^{16} + \cdots + 38\!\cdots\!76 ) / 71\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 6673115 \nu^{19} - 30164170 \nu^{18} + 153706635 \nu^{17} + 266710470 \nu^{16} + \cdots + 15\!\cdots\!20 ) / 32\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 392347319 \nu^{19} - 3248676206 \nu^{18} - 37138350375 \nu^{17} - 56596678206 \nu^{16} + \cdots - 46\!\cdots\!32 ) / 71\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13756221 \nu^{19} - 7338982 \nu^{18} + 200878797 \nu^{17} - 336652854 \nu^{16} + \cdots + 16\!\cdots\!56 ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16634889 \nu^{19} + 110715086 \nu^{18} - 463943001 \nu^{17} - 1145810466 \nu^{16} + \cdots - 79\!\cdots\!76 ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1009053331 \nu^{19} + 5955093094 \nu^{18} + 92664246339 \nu^{17} + 23483121654 \nu^{16} + \cdots + 17\!\cdots\!04 ) / 53\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 836343 \nu^{19} + 4825138 \nu^{18} + 26902617 \nu^{17} - 67997406 \nu^{16} + \cdots + 32\!\cdots\!04 ) / 241205363343360 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3296223 \nu^{19} - 144154430 \nu^{18} - 510836175 \nu^{17} + 2513179506 \nu^{16} + \cdots - 26\!\cdots\!04 ) / 874369442119680 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 4110998567 \nu^{19} + 2877435278 \nu^{18} + 134445630231 \nu^{17} + \cdots + 12\!\cdots\!36 ) / 10\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 260801237 \nu^{19} - 1824079658 \nu^{18} - 2872664613 \nu^{17} + 20832970854 \nu^{16} + \cdots - 13\!\cdots\!60 ) / 54\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 5795805 \nu^{19} + 4381350 \nu^{18} - 62274925 \nu^{17} + 58776310 \nu^{16} + \cdots - 62\!\cdots\!00 ) / 932660738260992 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1017903 \nu^{19} + 5922366 \nu^{18} + 40945759 \nu^{17} + 18273230 \nu^{16} + \cdots + 10\!\cdots\!80 ) / 160803575562240 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 6553647 \nu^{19} + 4110910 \nu^{18} + 234956895 \nu^{17} - 334260274 \nu^{16} + \cdots + 28\!\cdots\!96 ) / 777217281884160 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 11729669627 \nu^{19} - 7756672522 \nu^{18} + 162936990891 \nu^{17} + \cdots + 24\!\cdots\!40 ) / 10\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 57066063 \nu^{19} + 274798978 \nu^{18} - 936303743 \nu^{17} + 2504816114 \nu^{16} + \cdots - 51\!\cdots\!96 ) / 46\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 445476863 \nu^{19} + 755206978 \nu^{18} - 2379736431 \nu^{17} + 690187890 \nu^{16} + \cdots - 55\!\cdots\!20 ) / 31\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 279607999 \nu^{19} + 207980926 \nu^{18} + 4651875759 \nu^{17} - 5763844146 \nu^{16} + \cdots + 21\!\cdots\!60 ) / 18\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 34415252287 \nu^{19} + 44118579838 \nu^{18} + 614301056559 \nu^{17} + \cdots + 46\!\cdots\!88 ) / 21\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 240970995 \nu^{19} + 955006394 \nu^{18} - 2146959459 \nu^{17} - 1890330006 \nu^{16} + \cdots - 22\!\cdots\!56 ) / 13\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4 \beta_{19} - 14 \beta_{18} - \beta_{17} - 6 \beta_{16} - 9 \beta_{15} - \beta_{14} - 21 \beta_{13} + \cdots + 1269 ) / 12800 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 44 \beta_{19} + 14 \beta_{18} - 39 \beta_{17} + 6 \beta_{16} + 19 \beta_{15} - 19 \beta_{14} + \cdots + 24401 ) / 12800 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 84 \beta_{19} + 18 \beta_{18} - 108 \beta_{17} + 112 \beta_{16} + 39 \beta_{15} + 192 \beta_{14} + \cdots - 39819 ) / 6400 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 36 \beta_{19} - 10 \beta_{18} - \beta_{17} + 10 \beta_{16} - 17 \beta_{15} + 11 \beta_{14} + \cdots - 19739 ) / 512 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 68 \beta_{19} - 654 \beta_{18} - 911 \beta_{17} + 134 \beta_{16} + 347 \beta_{15} + 1289 \beta_{14} + \cdots - 1730847 ) / 12800 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 3196 \beta_{19} - 10606 \beta_{18} + 7856 \beta_{17} - 5024 \beta_{16} + 1491 \beta_{15} + \cdots - 9927991 ) / 6400 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 16324 \beta_{19} + 49938 \beta_{18} - 14313 \beta_{17} + 19162 \beta_{16} + 14471 \beta_{15} + \cdots - 78838411 ) / 12800 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 2676 \beta_{19} + 4086 \beta_{18} + 3473 \beta_{17} - 10 \beta_{16} + 1195 \beta_{15} - 1331 \beta_{14} + \cdots + 6757289 ) / 512 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 525340 \beta_{19} - 91758 \beta_{18} + 136748 \beta_{17} - 210672 \beta_{16} - 145665 \beta_{15} + \cdots + 480581725 ) / 6400 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 325380 \beta_{19} + 731134 \beta_{18} - 1210009 \beta_{17} - 3982214 \beta_{16} - 936425 \beta_{15} + \cdots - 2969570195 ) / 12800 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 13704092 \beta_{19} + 5590458 \beta_{18} - 4960383 \beta_{17} + 5939142 \beta_{16} + \cdots + 13219713793 ) / 12800 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 526228 \beta_{19} + 377730 \beta_{18} - 609080 \beta_{17} + 191424 \beta_{16} - 227613 \beta_{15} + \cdots - 1250502055 ) / 256 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 14642492 \beta_{19} + 103278602 \beta_{18} + 45947223 \beta_{17} + 146964698 \beta_{16} + \cdots + 272916930693 ) / 12800 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 610849420 \beta_{19} - 1191174514 \beta_{18} + 436423289 \beta_{17} - 95003706 \beta_{16} + \cdots - 341144190495 ) / 12800 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 871984500 \beta_{19} - 160118542 \beta_{18} + 880534852 \beta_{17} - 86269328 \beta_{16} + \cdots - 1625292214715 ) / 6400 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 408459356 \beta_{19} + 447320870 \beta_{18} - 120078593 \beta_{17} + 597058826 \beta_{16} + \cdots + 326130296645 ) / 512 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 42668508804 \beta_{19} - 14442191358 \beta_{18} + 46349039633 \beta_{17} + 2523089158 \beta_{16} + \cdots + 54880897505569 ) / 12800 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( 79647000164 \beta_{19} + 72314538066 \beta_{18} - 46315267616 \beta_{17} - 50923610336 \beta_{16} + \cdots + 31192842076569 ) / 6400 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( - 417829414972 \beta_{19} - 400451474046 \beta_{18} - 181387347689 \beta_{17} + \cdots + 255280619285013 ) / 12800 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
3.46430 + 1.99965i
−3.90102 0.884346i
0.236693 3.99299i
2.93366 + 2.71913i
3.18502 2.41984i
−3.80026 1.24819i
3.72553 1.45618i
−2.80358 + 2.85306i
0.593959 + 3.95566i
−2.63430 + 3.01006i
−2.63430 3.01006i
0.593959 3.95566i
−2.80358 2.85306i
3.72553 + 1.45618i
−3.80026 + 1.24819i
3.18502 + 2.41984i
2.93366 2.71913i
0.236693 + 3.99299i
−3.90102 + 0.884346i
3.46430 1.99965i
0 29.2080i 0 25.0000i 0 168.173 0 −610.110 0
81.2 0 25.4343i 0 25.0000i 0 56.4938 0 −403.904 0
81.3 0 25.0521i 0 25.0000i 0 −103.624 0 −384.607 0
81.4 0 18.7876i 0 25.0000i 0 107.536 0 −109.975 0
81.5 0 17.3148i 0 25.0000i 0 9.19080 0 −56.8021 0
81.6 0 11.5927i 0 25.0000i 0 231.529 0 108.609 0
81.7 0 10.8240i 0 25.0000i 0 −163.706 0 125.841 0
81.8 0 10.7455i 0 25.0000i 0 −198.733 0 127.535 0
81.9 0 6.93089i 0 25.0000i 0 −47.1406 0 194.963 0
81.10 0 6.67450i 0 25.0000i 0 38.2812 0 198.451 0
81.11 0 6.67450i 0 25.0000i 0 38.2812 0 198.451 0
81.12 0 6.93089i 0 25.0000i 0 −47.1406 0 194.963 0
81.13 0 10.7455i 0 25.0000i 0 −198.733 0 127.535 0
81.14 0 10.8240i 0 25.0000i 0 −163.706 0 125.841 0
81.15 0 11.5927i 0 25.0000i 0 231.529 0 108.609 0
81.16 0 17.3148i 0 25.0000i 0 9.19080 0 −56.8021 0
81.17 0 18.7876i 0 25.0000i 0 107.536 0 −109.975 0
81.18 0 25.0521i 0 25.0000i 0 −103.624 0 −384.607 0
81.19 0 25.4343i 0 25.0000i 0 56.4938 0 −403.904 0
81.20 0 29.2080i 0 25.0000i 0 168.173 0 −610.110 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 81.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.6.d.a 20
4.b odd 2 1 40.6.d.a 20
5.b even 2 1 800.6.d.c 20
5.c odd 4 1 800.6.f.b 20
5.c odd 4 1 800.6.f.c 20
8.b even 2 1 inner 160.6.d.a 20
8.d odd 2 1 40.6.d.a 20
12.b even 2 1 360.6.k.b 20
20.d odd 2 1 200.6.d.b 20
20.e even 4 1 200.6.f.b 20
20.e even 4 1 200.6.f.c 20
24.f even 2 1 360.6.k.b 20
40.e odd 2 1 200.6.d.b 20
40.f even 2 1 800.6.d.c 20
40.i odd 4 1 800.6.f.b 20
40.i odd 4 1 800.6.f.c 20
40.k even 4 1 200.6.f.b 20
40.k even 4 1 200.6.f.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.d.a 20 4.b odd 2 1
40.6.d.a 20 8.d odd 2 1
160.6.d.a 20 1.a even 1 1 trivial
160.6.d.a 20 8.b even 2 1 inner
200.6.d.b 20 20.d odd 2 1
200.6.d.b 20 40.e odd 2 1
200.6.f.b 20 20.e even 4 1
200.6.f.b 20 40.k even 4 1
200.6.f.c 20 20.e even 4 1
200.6.f.c 20 40.k even 4 1
360.6.k.b 20 12.b even 2 1
360.6.k.b 20 24.f even 2 1
800.6.d.c 20 5.b even 2 1
800.6.d.c 20 40.f even 2 1
800.6.f.b 20 5.c odd 4 1
800.6.f.b 20 40.i odd 4 1
800.6.f.c 20 5.c odd 4 1
800.6.f.c 20 40.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(160, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + \cdots + 14\!\cdots\!84 \) Copy content Toggle raw display
$5$ \( (T^{2} + 625)^{10} \) Copy content Toggle raw display
$7$ \( (T^{10} + \cdots + 13\!\cdots\!08)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots + 29\!\cdots\!68)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( (T^{10} + \cdots - 88\!\cdots\!16)^{2} \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{10} + \cdots - 42\!\cdots\!88)^{2} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 17\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( (T^{10} + \cdots - 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( (T^{10} + \cdots + 16\!\cdots\!92)^{2} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 82\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 40\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 50\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots + 19\!\cdots\!32)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots - 24\!\cdots\!16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots + 28\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 23\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( (T^{10} + \cdots + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + \cdots + 22\!\cdots\!48)^{2} \) Copy content Toggle raw display
show more
show less