Properties

Label 800.6.d.c
Level 800800
Weight 66
Character orbit 800.d
Analytic conductor 128.307128.307
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 800.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 128.307055850128.307055850
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 29334512 2^{93}\cdot 3^{4}\cdot 5^{12}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+(β410)q7+(β5β481)q9+(β3+β2β1)q11+(β8+7β1)q13+β7q17+(β15+β3+3β1)q19++(14β1914β17++101β1)q99+O(q100) q - \beta_1 q^{3} + ( - \beta_{4} - 10) q^{7} + (\beta_{5} - \beta_{4} - 81) q^{9} + (\beta_{3} + \beta_{2} - \beta_1) q^{11} + ( - \beta_{8} + 7 \beta_1) q^{13} + \beta_{7} q^{17} + ( - \beta_{15} + \beta_{3} + \cdots - 3 \beta_1) q^{19}+ \cdots + ( - 14 \beta_{19} - 14 \beta_{17} + \cdots + 101 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q196q71620q94676q237160q315672q33+44904q39+11608q41+44180q47+18756q495032q57+240620q63+200312q71+105136q73282080q79+147376q97+O(q100) 20 q - 196 q^{7} - 1620 q^{9} - 4676 q^{23} - 7160 q^{31} - 5672 q^{33} + 44904 q^{39} + 11608 q^{41} + 44180 q^{47} + 18756 q^{49} - 5032 q^{57} + 240620 q^{63} + 200312 q^{71} + 105136 q^{73} - 282080 q^{79}+ \cdots - 147376 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 : Copy content Toggle raw display

β1\beta_{1}== (79348087ν19+164467438ν18+2750967783ν17+2347892670ν16++38 ⁣ ⁣76)/71 ⁣ ⁣80 ( - 79348087 \nu^{19} + 164467438 \nu^{18} + 2750967783 \nu^{17} + 2347892670 \nu^{16} + \cdots + 38\!\cdots\!76 ) / 71\!\cdots\!80 Copy content Toggle raw display
β2\beta_{2}== (6673115ν1930164170ν18+153706635ν17+266710470ν16++15 ⁣ ⁣20)/16 ⁣ ⁣28 ( - 6673115 \nu^{19} - 30164170 \nu^{18} + 153706635 \nu^{17} + 266710470 \nu^{16} + \cdots + 15\!\cdots\!20 ) / 16\!\cdots\!28 Copy content Toggle raw display
β3\beta_{3}== (392347319ν19+3248676206ν18+37138350375ν17+56596678206ν16++46 ⁣ ⁣32)/71 ⁣ ⁣80 ( - 392347319 \nu^{19} + 3248676206 \nu^{18} + 37138350375 \nu^{17} + 56596678206 \nu^{16} + \cdots + 46\!\cdots\!32 ) / 71\!\cdots\!80 Copy content Toggle raw display
β4\beta_{4}== (13756221ν197338982ν18+200878797ν17336652854ν16++16 ⁣ ⁣56)/13 ⁣ ⁣80 ( - 13756221 \nu^{19} - 7338982 \nu^{18} + 200878797 \nu^{17} - 336652854 \nu^{16} + \cdots + 16\!\cdots\!56 ) / 13\!\cdots\!80 Copy content Toggle raw display
β5\beta_{5}== (16634889ν19+110715086ν18463943001ν171145810466ν16+79 ⁣ ⁣76)/13 ⁣ ⁣80 ( 16634889 \nu^{19} + 110715086 \nu^{18} - 463943001 \nu^{17} - 1145810466 \nu^{16} + \cdots - 79\!\cdots\!76 ) / 13\!\cdots\!80 Copy content Toggle raw display
β6\beta_{6}== (916605ν19557722ν1872289293ν17+76715958ν16+96 ⁣ ⁣52)/269036751421440 ( 916605 \nu^{19} - 557722 \nu^{18} - 72289293 \nu^{17} + 76715958 \nu^{16} + \cdots - 96\!\cdots\!52 ) / 269036751421440 Copy content Toggle raw display
β7\beta_{7}== (836343ν19+4825138ν18+26902617ν1767997406ν16++32 ⁣ ⁣04)/241205363343360 ( 836343 \nu^{19} + 4825138 \nu^{18} + 26902617 \nu^{17} - 67997406 \nu^{16} + \cdots + 32\!\cdots\!04 ) / 241205363343360 Copy content Toggle raw display
β8\beta_{8}== (2596081553ν19+2571847202ν18+86300109729ν17+14967625938ν16++80 ⁣ ⁣24)/71 ⁣ ⁣80 ( - 2596081553 \nu^{19} + 2571847202 \nu^{18} + 86300109729 \nu^{17} + 14967625938 \nu^{16} + \cdots + 80\!\cdots\!24 ) / 71\!\cdots\!80 Copy content Toggle raw display
β9\beta_{9}== (93629767ν19+702882478ν18+981182583ν177979058114ν16++40 ⁣ ⁣60)/20 ⁣ ⁣60 ( - 93629767 \nu^{19} + 702882478 \nu^{18} + 981182583 \nu^{17} - 7979058114 \nu^{16} + \cdots + 40\!\cdots\!60 ) / 20\!\cdots\!60 Copy content Toggle raw display
β10\beta_{10}== (1017903ν195922366ν1840945759ν1718273230ν16+10 ⁣ ⁣80)/160803575562240 ( 1017903 \nu^{19} - 5922366 \nu^{18} - 40945759 \nu^{17} - 18273230 \nu^{16} + \cdots - 10\!\cdots\!80 ) / 160803575562240 Copy content Toggle raw display
β11\beta_{11}== (139676643ν19+2240750630ν18+9107502675ν1741092516746ν16++52 ⁣ ⁣64)/13 ⁣ ⁣80 ( - 139676643 \nu^{19} + 2240750630 \nu^{18} + 9107502675 \nu^{17} - 41092516746 \nu^{16} + \cdots + 52\!\cdots\!64 ) / 13\!\cdots\!80 Copy content Toggle raw display
β12\beta_{12}== (1494615ν19139442ν18+12535687ν1726796322ν16++93 ⁣ ⁣08)/145728240353280 ( - 1494615 \nu^{19} - 139442 \nu^{18} + 12535687 \nu^{17} - 26796322 \nu^{16} + \cdots + 93\!\cdots\!08 ) / 145728240353280 Copy content Toggle raw display
β13\beta_{13}== (55930047ν19+298875042ν18471238127ν17811773934ν16+48 ⁣ ⁣04)/46 ⁣ ⁣60 ( 55930047 \nu^{19} + 298875042 \nu^{18} - 471238127 \nu^{17} - 811773934 \nu^{16} + \cdots - 48\!\cdots\!04 ) / 46\!\cdots\!60 Copy content Toggle raw display
β14\beta_{14}== (3023485621ν193513130646ν18+23790813957ν1748592005414ν16++26 ⁣ ⁣04)/23 ⁣ ⁣60 ( - 3023485621 \nu^{19} - 3513130646 \nu^{18} + 23790813957 \nu^{17} - 48592005414 \nu^{16} + \cdots + 26\!\cdots\!04 ) / 23\!\cdots\!60 Copy content Toggle raw display
β15\beta_{15}== (13747776289ν194153513666ν18348265483569ν17+147182976654ν16+60 ⁣ ⁣48)/10 ⁣ ⁣20 ( 13747776289 \nu^{19} - 4153513666 \nu^{18} - 348265483569 \nu^{17} + 147182976654 \nu^{16} + \cdots - 60\!\cdots\!48 ) / 10\!\cdots\!20 Copy content Toggle raw display
β16\beta_{16}== (445476863ν19+755206978ν182379736431ν17+690187890ν16+55 ⁣ ⁣20)/31 ⁣ ⁣80 ( 445476863 \nu^{19} + 755206978 \nu^{18} - 2379736431 \nu^{17} + 690187890 \nu^{16} + \cdots - 55\!\cdots\!20 ) / 31\!\cdots\!80 Copy content Toggle raw display
β17\beta_{17}== (279607999ν19+207980926ν18+4651875759ν175763844146ν16++21 ⁣ ⁣60)/18 ⁣ ⁣20 ( - 279607999 \nu^{19} + 207980926 \nu^{18} + 4651875759 \nu^{17} - 5763844146 \nu^{16} + \cdots + 21\!\cdots\!60 ) / 18\!\cdots\!20 Copy content Toggle raw display
β18\beta_{18}== (244379043ν19882778202ν18+3542156307ν178059440138ν16++22 ⁣ ⁣32)/13 ⁣ ⁣80 ( - 244379043 \nu^{19} - 882778202 \nu^{18} + 3542156307 \nu^{17} - 8059440138 \nu^{16} + \cdots + 22\!\cdots\!32 ) / 13\!\cdots\!80 Copy content Toggle raw display
β19\beta_{19}== (57874591541ν1928605234794ν18940175038341ν17+1158073375782ν16+96 ⁣ ⁣68)/21 ⁣ ⁣40 ( 57874591541 \nu^{19} - 28605234794 \nu^{18} - 940175038341 \nu^{17} + 1158073375782 \nu^{16} + \cdots - 96\!\cdots\!68 ) / 21\!\cdots\!40 Copy content Toggle raw display
ν\nu== (28β19+18β182β1712β163β15+23β14++2538)/25600 ( 28 \beta_{19} + 18 \beta_{18} - 2 \beta_{17} - 12 \beta_{16} - 3 \beta_{15} + 23 \beta_{14} + \cdots + 2538 ) / 25600 Copy content Toggle raw display
ν2\nu^{2}== (28β1938β1878β17+12β16+83β15+17β14++48802)/25600 ( - 28 \beta_{19} - 38 \beta_{18} - 78 \beta_{17} + 12 \beta_{16} + 83 \beta_{15} + 17 \beta_{14} + \cdots + 48802 ) / 25600 Copy content Toggle raw display
ν3\nu^{3}== (18β1939β18108β17+112β1632β15+142β14+39819)/6400 ( - 18 \beta_{19} - 39 \beta_{18} - 108 \beta_{17} + 112 \beta_{16} - 32 \beta_{15} + 142 \beta_{14} + \cdots - 39819 ) / 6400 Copy content Toggle raw display
ν4\nu^{4}== (20β19+34β182β17+20β1619β15+23β14+39478)/1024 ( 20 \beta_{19} + 34 \beta_{18} - 2 \beta_{17} + 20 \beta_{16} - 19 \beta_{15} + 23 \beta_{14} + \cdots - 39478 ) / 1024 Copy content Toggle raw display
ν5\nu^{5}== (1308β19694β181822β17+268β165733β15+3461694)/25600 ( 1308 \beta_{19} - 694 \beta_{18} - 1822 \beta_{17} + 268 \beta_{16} - 5733 \beta_{15} + \cdots - 3461694 ) / 25600 Copy content Toggle raw display
ν6\nu^{6}== (10606β191491β18+7856β175024β169566β15+9927991)/6400 ( 10606 \beta_{19} - 1491 \beta_{18} + 7856 \beta_{17} - 5024 \beta_{16} - 9566 \beta_{15} + \cdots - 9927991 ) / 6400 Copy content Toggle raw display
ν7\nu^{7}== (99876β1928942β1828626β17+38324β16106699β15+157676822)/25600 ( - 99876 \beta_{19} - 28942 \beta_{18} - 28626 \beta_{17} + 38324 \beta_{16} - 106699 \beta_{15} + \cdots - 157676822 ) / 25600 Copy content Toggle raw display
ν8\nu^{8}== (8172β192390β18+6946β1720β16677β15++13514578)/1024 ( - 8172 \beta_{19} - 2390 \beta_{18} + 6946 \beta_{17} - 20 \beta_{16} - 677 \beta_{15} + \cdots + 13514578 ) / 1024 Copy content Toggle raw display
ν9\nu^{9}== (91758β19+145665β18+136748β17210672β16+11092β15++480581725)/6400 ( 91758 \beta_{19} + 145665 \beta_{18} + 136748 \beta_{17} - 210672 \beta_{16} + 11092 \beta_{15} + \cdots + 480581725 ) / 6400 Copy content Toggle raw display
ν10\nu^{10}== (1462268β19+1872850β182420018β177964428β16+5939140390)/25600 ( - 1462268 \beta_{19} + 1872850 \beta_{18} - 2420018 \beta_{17} - 7964428 \beta_{16} + \cdots - 5939140390 ) / 25600 Copy content Toggle raw display
ν11\nu^{11}== (11180916β1927219414β189920766β17+11878284β16++26439427586)/25600 ( - 11180916 \beta_{19} - 27219414 \beta_{18} - 9920766 \beta_{17} + 11878284 \beta_{16} + \cdots + 26439427586 ) / 25600 Copy content Toggle raw display
ν12\nu^{12}== (377730β19+227613β18609080β17+191424β16+976198β15+1250502055)/256 ( - 377730 \beta_{19} + 227613 \beta_{18} - 609080 \beta_{17} + 191424 \beta_{16} + 976198 \beta_{15} + \cdots - 1250502055 ) / 256 Copy content Toggle raw display
ν13\nu^{13}== (206557204β19+27478386β18+91894446β17+293929396β16++545833861386)/25600 ( - 206557204 \beta_{19} + 27478386 \beta_{18} + 91894446 \beta_{17} + 293929396 \beta_{16} + \cdots + 545833861386 ) / 25600 Copy content Toggle raw display
ν14\nu^{14}== (2382349028β19+536563450β18+872846578β17190007412β16+682288380990)/25600 ( 2382349028 \beta_{19} + 536563450 \beta_{18} + 872846578 \beta_{17} - 190007412 \beta_{16} + \cdots - 682288380990 ) / 25600 Copy content Toggle raw display
ν15\nu^{15}== (160118542β19+506109225β18+880534852β1786269328β16+1625292214715)/6400 ( 160118542 \beta_{19} + 506109225 \beta_{18} + 880534852 \beta_{17} - 86269328 \beta_{16} + \cdots - 1625292214715 ) / 6400 Copy content Toggle raw display
ν16\nu^{16}== (894641740β19747940190β18240157186β17+1194117652β16++652260593290)/1024 ( - 894641740 \beta_{19} - 747940190 \beta_{18} - 240157186 \beta_{17} + 1194117652 \beta_{16} + \cdots + 652260593290 ) / 1024 Copy content Toggle raw display
ν17\nu^{17}== (28884382716β19+79191908618β18+92698079266β17+5046178316β16++109761795011138)/25600 ( 28884382716 \beta_{19} + 79191908618 \beta_{18} + 92698079266 \beta_{17} + 5046178316 \beta_{16} + \cdots + 109761795011138 ) / 25600 Copy content Toggle raw display
ν18\nu^{18}== (72314538066β19+46613619069β1846315267616β1750923610336β16++31192842076569)/6400 ( - 72314538066 \beta_{19} + 46613619069 \beta_{18} - 46315267616 \beta_{17} - 50923610336 \beta_{16} + \cdots + 31192842076569 ) / 6400 Copy content Toggle raw display
ν19\nu^{19}== (800902948092β19238043720974β18362774695378β171025926382668β16++510561238570026)/25600 ( 800902948092 \beta_{19} - 238043720974 \beta_{18} - 362774695378 \beta_{17} - 1025926382668 \beta_{16} + \cdots + 510561238570026 ) / 25600 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
401.1
3.46430 + 1.99965i
−3.90102 0.884346i
0.236693 3.99299i
2.93366 + 2.71913i
3.18502 2.41984i
−3.80026 1.24819i
3.72553 1.45618i
−2.80358 + 2.85306i
0.593959 + 3.95566i
−2.63430 + 3.01006i
−2.63430 3.01006i
0.593959 3.95566i
−2.80358 2.85306i
3.72553 + 1.45618i
−3.80026 + 1.24819i
3.18502 + 2.41984i
2.93366 2.71913i
0.236693 + 3.99299i
−3.90102 + 0.884346i
3.46430 1.99965i
0 29.2080i 0 0 0 −168.173 0 −610.110 0
401.2 0 25.4343i 0 0 0 −56.4938 0 −403.904 0
401.3 0 25.0521i 0 0 0 103.624 0 −384.607 0
401.4 0 18.7876i 0 0 0 −107.536 0 −109.975 0
401.5 0 17.3148i 0 0 0 −9.19080 0 −56.8021 0
401.6 0 11.5927i 0 0 0 −231.529 0 108.609 0
401.7 0 10.8240i 0 0 0 163.706 0 125.841 0
401.8 0 10.7455i 0 0 0 198.733 0 127.535 0
401.9 0 6.93089i 0 0 0 47.1406 0 194.963 0
401.10 0 6.67450i 0 0 0 −38.2812 0 198.451 0
401.11 0 6.67450i 0 0 0 −38.2812 0 198.451 0
401.12 0 6.93089i 0 0 0 47.1406 0 194.963 0
401.13 0 10.7455i 0 0 0 198.733 0 127.535 0
401.14 0 10.8240i 0 0 0 163.706 0 125.841 0
401.15 0 11.5927i 0 0 0 −231.529 0 108.609 0
401.16 0 17.3148i 0 0 0 −9.19080 0 −56.8021 0
401.17 0 18.7876i 0 0 0 −107.536 0 −109.975 0
401.18 0 25.0521i 0 0 0 103.624 0 −384.607 0
401.19 0 25.4343i 0 0 0 −56.4938 0 −403.904 0
401.20 0 29.2080i 0 0 0 −168.173 0 −610.110 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 401.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.6.d.c 20
4.b odd 2 1 200.6.d.b 20
5.b even 2 1 160.6.d.a 20
5.c odd 4 1 800.6.f.b 20
5.c odd 4 1 800.6.f.c 20
8.b even 2 1 inner 800.6.d.c 20
8.d odd 2 1 200.6.d.b 20
20.d odd 2 1 40.6.d.a 20
20.e even 4 1 200.6.f.b 20
20.e even 4 1 200.6.f.c 20
40.e odd 2 1 40.6.d.a 20
40.f even 2 1 160.6.d.a 20
40.i odd 4 1 800.6.f.b 20
40.i odd 4 1 800.6.f.c 20
40.k even 4 1 200.6.f.b 20
40.k even 4 1 200.6.f.c 20
60.h even 2 1 360.6.k.b 20
120.m even 2 1 360.6.k.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.d.a 20 20.d odd 2 1
40.6.d.a 20 40.e odd 2 1
160.6.d.a 20 5.b even 2 1
160.6.d.a 20 40.f even 2 1
200.6.d.b 20 4.b odd 2 1
200.6.d.b 20 8.d odd 2 1
200.6.f.b 20 20.e even 4 1
200.6.f.b 20 40.k even 4 1
200.6.f.c 20 20.e even 4 1
200.6.f.c 20 40.k even 4 1
360.6.k.b 20 60.h even 2 1
360.6.k.b 20 120.m even 2 1
800.6.d.c 20 1.a even 1 1 trivial
800.6.d.c 20 8.b even 2 1 inner
800.6.f.b 20 5.c odd 4 1
800.6.f.b 20 40.i odd 4 1
800.6.f.c 20 5.c odd 4 1
800.6.f.c 20 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(800,[χ])S_{6}^{\mathrm{new}}(800, [\chi]):

T320+3240T318+4346772T316+3151305344T314+1355603009184T312++14 ⁣ ⁣84 T_{3}^{20} + 3240 T_{3}^{18} + 4346772 T_{3}^{16} + 3151305344 T_{3}^{14} + 1355603009184 T_{3}^{12} + \cdots + 14\!\cdots\!84 Copy content Toggle raw display
T710+98T7983922T786806560T77+2129001128T76++13 ⁣ ⁣08 T_{7}^{10} + 98 T_{7}^{9} - 83922 T_{7}^{8} - 6806560 T_{7}^{7} + 2129001128 T_{7}^{6} + \cdots + 13\!\cdots\!08 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20++14 ⁣ ⁣84 T^{20} + \cdots + 14\!\cdots\!84 Copy content Toggle raw display
55 T20 T^{20} Copy content Toggle raw display
77 (T10++13 ⁣ ⁣08)2 (T^{10} + \cdots + 13\!\cdots\!08)^{2} Copy content Toggle raw display
1111 T20++70 ⁣ ⁣00 T^{20} + \cdots + 70\!\cdots\!00 Copy content Toggle raw display
1313 T20++16 ⁣ ⁣00 T^{20} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
1717 (T10++29 ⁣ ⁣68)2 (T^{10} + \cdots + 29\!\cdots\!68)^{2} Copy content Toggle raw display
1919 T20++23 ⁣ ⁣56 T^{20} + \cdots + 23\!\cdots\!56 Copy content Toggle raw display
2323 (T10+88 ⁣ ⁣16)2 (T^{10} + \cdots - 88\!\cdots\!16)^{2} Copy content Toggle raw display
2929 T20++42 ⁣ ⁣00 T^{20} + \cdots + 42\!\cdots\!00 Copy content Toggle raw display
3131 (T10+42 ⁣ ⁣88)2 (T^{10} + \cdots - 42\!\cdots\!88)^{2} Copy content Toggle raw display
3737 T20++17 ⁣ ⁣36 T^{20} + \cdots + 17\!\cdots\!36 Copy content Toggle raw display
4141 (T10+21 ⁣ ⁣00)2 (T^{10} + \cdots - 21\!\cdots\!00)^{2} Copy content Toggle raw display
4343 T20++24 ⁣ ⁣76 T^{20} + \cdots + 24\!\cdots\!76 Copy content Toggle raw display
4747 (T10++16 ⁣ ⁣92)2 (T^{10} + \cdots + 16\!\cdots\!92)^{2} Copy content Toggle raw display
5353 T20++82 ⁣ ⁣44 T^{20} + \cdots + 82\!\cdots\!44 Copy content Toggle raw display
5959 T20++40 ⁣ ⁣76 T^{20} + \cdots + 40\!\cdots\!76 Copy content Toggle raw display
6161 T20++29 ⁣ ⁣00 T^{20} + \cdots + 29\!\cdots\!00 Copy content Toggle raw display
6767 T20++50 ⁣ ⁣04 T^{20} + \cdots + 50\!\cdots\!04 Copy content Toggle raw display
7171 (T10++19 ⁣ ⁣32)2 (T^{10} + \cdots + 19\!\cdots\!32)^{2} Copy content Toggle raw display
7373 (T10+24 ⁣ ⁣16)2 (T^{10} + \cdots - 24\!\cdots\!16)^{2} Copy content Toggle raw display
7979 (T10++28 ⁣ ⁣00)2 (T^{10} + \cdots + 28\!\cdots\!00)^{2} Copy content Toggle raw display
8383 T20++23 ⁣ ⁣36 T^{20} + \cdots + 23\!\cdots\!36 Copy content Toggle raw display
8989 (T10++21 ⁣ ⁣00)2 (T^{10} + \cdots + 21\!\cdots\!00)^{2} Copy content Toggle raw display
9797 (T10++22 ⁣ ⁣48)2 (T^{10} + \cdots + 22\!\cdots\!48)^{2} Copy content Toggle raw display
show more
show less