L(s) = 1 | + 10.7i·3-s + 198.·7-s + 127.·9-s − 85.9i·11-s − 407. i·13-s − 1.20e3·17-s + 206. i·19-s + 2.13e3i·21-s − 2.59e3·23-s + 3.98e3i·27-s + 6.19e3i·29-s + 1.86e3·31-s + 923.·33-s + 1.47e4i·37-s + 4.37e3·39-s + ⋯ |
L(s) = 1 | + 0.689i·3-s + 1.53·7-s + 0.524·9-s − 0.214i·11-s − 0.668i·13-s − 1.01·17-s + 0.130i·19-s + 1.05i·21-s − 1.02·23-s + 1.05i·27-s + 1.36i·29-s + 0.348·31-s + 0.147·33-s + 1.76i·37-s + 0.460·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.00874−0.999i)Λ(6−s)
Λ(s)=(=(800s/2ΓC(s+5/2)L(s)(0.00874−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.00874−0.999i
|
Analytic conductor: |
128.307 |
Root analytic conductor: |
11.3272 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :5/2), 0.00874−0.999i)
|
Particular Values
L(3) |
≈ |
2.589610622 |
L(21) |
≈ |
2.589610622 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−10.7iT−243T2 |
| 7 | 1−198.T+1.68e4T2 |
| 11 | 1+85.9iT−1.61e5T2 |
| 13 | 1+407.iT−3.71e5T2 |
| 17 | 1+1.20e3T+1.41e6T2 |
| 19 | 1−206.iT−2.47e6T2 |
| 23 | 1+2.59e3T+6.43e6T2 |
| 29 | 1−6.19e3iT−2.05e7T2 |
| 31 | 1−1.86e3T+2.86e7T2 |
| 37 | 1−1.47e4iT−6.93e7T2 |
| 41 | 1−1.80e4T+1.15e8T2 |
| 43 | 1+9.26e3iT−1.47e8T2 |
| 47 | 1+2.43e4T+2.29e8T2 |
| 53 | 1−1.27e4iT−4.18e8T2 |
| 59 | 1−2.07e4iT−7.14e8T2 |
| 61 | 1−1.13e4iT−8.44e8T2 |
| 67 | 1+6.26e4iT−1.35e9T2 |
| 71 | 1−6.12e4T+1.80e9T2 |
| 73 | 1+2.32e4T+2.07e9T2 |
| 79 | 1+2.91e4T+3.07e9T2 |
| 83 | 1−4.80e4iT−3.93e9T2 |
| 89 | 1−3.01e4T+5.58e9T2 |
| 97 | 1−1.13e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.829055760924839840032225536085, −8.805998878001819002726515998249, −8.126612767766780811784137957575, −7.30192435106135733962752127582, −6.12846804399562366202695169181, −4.96777627182504535229515008111, −4.55062728153249575166220465507, −3.45505196578484690002281938467, −2.07626578319971181913713868359, −1.07930580398720528151792794064,
0.55134763466201568421025734177, 1.77897242583659381088160207347, 2.22312843097492048754441166216, 4.15293269760839087867100600976, 4.61901109420325951015323905405, 5.89794878421527816848210334329, 6.80634066049668857049592518242, 7.68988533834901448899621329340, 8.194924577800514045424429423428, 9.237843633260651198688089136736