Properties

Label 2-800-8.5-c5-0-61
Degree $2$
Conductor $800$
Sign $0.916 - 0.401i$
Analytic cond. $128.307$
Root an. cond. $11.3272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.8i·3-s + 163.·7-s + 125.·9-s − 321. i·11-s − 128. i·13-s + 2.11e3·17-s + 1.45e3i·19-s + 1.77e3i·21-s − 1.23e3·23-s + 3.99e3i·27-s + 4.07e3i·29-s + 3.95e3·31-s + 3.48e3·33-s − 1.06e4i·37-s + 1.38e3·39-s + ⋯
L(s)  = 1  + 0.694i·3-s + 1.26·7-s + 0.517·9-s − 0.801i·11-s − 0.210i·13-s + 1.77·17-s + 0.924i·19-s + 0.876i·21-s − 0.485·23-s + 1.05i·27-s + 0.899i·29-s + 0.739·31-s + 0.556·33-s − 1.27i·37-s + 0.146·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.401i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.916 - 0.401i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $0.916 - 0.401i$
Analytic conductor: \(128.307\)
Root analytic conductor: \(11.3272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :5/2),\ 0.916 - 0.401i)\)

Particular Values

\(L(3)\) \(\approx\) \(3.276070554\)
\(L(\frac12)\) \(\approx\) \(3.276070554\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 10.8iT - 243T^{2} \)
7 \( 1 - 163.T + 1.68e4T^{2} \)
11 \( 1 + 321. iT - 1.61e5T^{2} \)
13 \( 1 + 128. iT - 3.71e5T^{2} \)
17 \( 1 - 2.11e3T + 1.41e6T^{2} \)
19 \( 1 - 1.45e3iT - 2.47e6T^{2} \)
23 \( 1 + 1.23e3T + 6.43e6T^{2} \)
29 \( 1 - 4.07e3iT - 2.05e7T^{2} \)
31 \( 1 - 3.95e3T + 2.86e7T^{2} \)
37 \( 1 + 1.06e4iT - 6.93e7T^{2} \)
41 \( 1 + 5.90e3T + 1.15e8T^{2} \)
43 \( 1 + 1.64e4iT - 1.47e8T^{2} \)
47 \( 1 - 2.32e4T + 2.29e8T^{2} \)
53 \( 1 + 3.06e4iT - 4.18e8T^{2} \)
59 \( 1 - 2.52e4iT - 7.14e8T^{2} \)
61 \( 1 + 3.91e4iT - 8.44e8T^{2} \)
67 \( 1 - 2.08e4iT - 1.35e9T^{2} \)
71 \( 1 + 1.38e4T + 1.80e9T^{2} \)
73 \( 1 - 4.34e4T + 2.07e9T^{2} \)
79 \( 1 - 1.25e4T + 3.07e9T^{2} \)
83 \( 1 + 6.68e3iT - 3.93e9T^{2} \)
89 \( 1 + 9.04e4T + 5.58e9T^{2} \)
97 \( 1 + 1.49e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.739353086142610263781823420249, −8.624613288568801105449537514887, −7.986923941088818240954468357385, −7.16456454288364769138357897848, −5.70530996476060679249241708415, −5.21485844081377832800335016336, −4.08633142180622286205486359532, −3.35732709908559186018502231512, −1.82297973055510487792006201151, −0.861632574432560896443446796816, 0.943379521777699350879158837354, 1.62023291241129660448397992529, 2.69114412503748785940609290897, 4.22823348695818886718371934709, 4.90412359069932237208142370711, 6.01981283687711223955347470201, 7.06732554340907879891989474873, 7.74533402276687495466015300161, 8.287628451166840968394585625928, 9.585189552469009235325227743378

Graph of the $Z$-function along the critical line