L(s) = 1 | + 10.8i·3-s + 163.·7-s + 125.·9-s − 321. i·11-s − 128. i·13-s + 2.11e3·17-s + 1.45e3i·19-s + 1.77e3i·21-s − 1.23e3·23-s + 3.99e3i·27-s + 4.07e3i·29-s + 3.95e3·31-s + 3.48e3·33-s − 1.06e4i·37-s + 1.38e3·39-s + ⋯ |
L(s) = 1 | + 0.694i·3-s + 1.26·7-s + 0.517·9-s − 0.801i·11-s − 0.210i·13-s + 1.77·17-s + 0.924i·19-s + 0.876i·21-s − 0.485·23-s + 1.05i·27-s + 0.899i·29-s + 0.739·31-s + 0.556·33-s − 1.27i·37-s + 0.146·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.916−0.401i)Λ(6−s)
Λ(s)=(=(800s/2ΓC(s+5/2)L(s)(0.916−0.401i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.916−0.401i
|
Analytic conductor: |
128.307 |
Root analytic conductor: |
11.3272 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :5/2), 0.916−0.401i)
|
Particular Values
L(3) |
≈ |
3.276070554 |
L(21) |
≈ |
3.276070554 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−10.8iT−243T2 |
| 7 | 1−163.T+1.68e4T2 |
| 11 | 1+321.iT−1.61e5T2 |
| 13 | 1+128.iT−3.71e5T2 |
| 17 | 1−2.11e3T+1.41e6T2 |
| 19 | 1−1.45e3iT−2.47e6T2 |
| 23 | 1+1.23e3T+6.43e6T2 |
| 29 | 1−4.07e3iT−2.05e7T2 |
| 31 | 1−3.95e3T+2.86e7T2 |
| 37 | 1+1.06e4iT−6.93e7T2 |
| 41 | 1+5.90e3T+1.15e8T2 |
| 43 | 1+1.64e4iT−1.47e8T2 |
| 47 | 1−2.32e4T+2.29e8T2 |
| 53 | 1+3.06e4iT−4.18e8T2 |
| 59 | 1−2.52e4iT−7.14e8T2 |
| 61 | 1+3.91e4iT−8.44e8T2 |
| 67 | 1−2.08e4iT−1.35e9T2 |
| 71 | 1+1.38e4T+1.80e9T2 |
| 73 | 1−4.34e4T+2.07e9T2 |
| 79 | 1−1.25e4T+3.07e9T2 |
| 83 | 1+6.68e3iT−3.93e9T2 |
| 89 | 1+9.04e4T+5.58e9T2 |
| 97 | 1+1.49e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.739353086142610263781823420249, −8.624613288568801105449537514887, −7.986923941088818240954468357385, −7.16456454288364769138357897848, −5.70530996476060679249241708415, −5.21485844081377832800335016336, −4.08633142180622286205486359532, −3.35732709908559186018502231512, −1.82297973055510487792006201151, −0.861632574432560896443446796816,
0.943379521777699350879158837354, 1.62023291241129660448397992529, 2.69114412503748785940609290897, 4.22823348695818886718371934709, 4.90412359069932237208142370711, 6.01981283687711223955347470201, 7.06732554340907879891989474873, 7.74533402276687495466015300161, 8.287628451166840968394585625928, 9.585189552469009235325227743378