Dirichlet series
L(s) = 1 | + 196·7-s + 1.62e3·9-s + 4.67e3·23-s − 6.25e3·25-s − 7.16e3·31-s + 1.16e4·41-s − 4.41e4·47-s − 1.39e5·49-s + 3.17e5·63-s + 2.00e5·71-s − 1.05e5·73-s − 2.82e5·79-s + 1.23e6·81-s − 3.16e3·89-s + 1.47e5·97-s + 4.55e5·103-s − 3.02e5·113-s + 1.51e6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 9.16e5·161-s + 163-s + ⋯ |
L(s) = 1 | + 1.51·7-s + 20/3·9-s + 1.84·23-s − 2·25-s − 1.33·31-s + 1.07·41-s − 2.91·47-s − 8.29·49-s + 10.0·63-s + 4.71·71-s − 2.30·73-s − 5.08·79-s + 20.8·81-s − 0.0422·89-s + 1.59·97-s + 4.23·103-s − 2.22·113-s + 9.37·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.78·161-s + 2.94e−6·163-s + ⋯ |
Functional equation
Invariants
Degree: | \(40\) |
Conductor: | \(2^{100} \cdot 5^{20}\) |
Sign: | $1$ |
Analytic conductor: | \(1.53324\times 10^{28}\) |
Root analytic conductor: | \(5.06570\) |
Motivic weight: | \(5\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((40,\ 2^{100} \cdot 5^{20} ,\ ( \ : [5/2]^{20} ),\ 1 )\) |
Particular Values
\(L(3)\) | \(\approx\) | \(34.47725220\) |
\(L(\frac12)\) | \(\approx\) | \(34.47725220\) |
\(L(\frac{7}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( 1 \) |
5 | \( ( 1 + p^{4} T^{2} )^{10} \) | |
good | 3 | \( 1 - 20 p^{4} T^{2} + 464774 p T^{4} - 834927892 T^{6} + 43647016469 p^{2} T^{8} - 51765303184624 p T^{10} + 53814329151823576 T^{12} - 1863599575911640208 p^{2} T^{14} + 19706806085941150310 p^{5} T^{16} - \)\(17\!\cdots\!00\)\( p^{6} T^{18} + \)\(48\!\cdots\!00\)\( p^{8} T^{20} - \)\(17\!\cdots\!00\)\( p^{16} T^{22} + 19706806085941150310 p^{25} T^{24} - 1863599575911640208 p^{32} T^{26} + 53814329151823576 p^{40} T^{28} - 51765303184624 p^{51} T^{30} + 43647016469 p^{62} T^{32} - 834927892 p^{70} T^{34} + 464774 p^{81} T^{36} - 20 p^{94} T^{38} + p^{100} T^{40} \) |
7 | \( ( 1 - 2 p^{2} T + 84148 T^{2} - 8017214 T^{3} + 3556570901 T^{4} - 345044190776 T^{5} + 103920201897616 T^{6} - 10159390994080936 T^{7} + 2363994840482709802 T^{8} - \)\(22\!\cdots\!76\)\( T^{9} + \)\(43\!\cdots\!72\)\( T^{10} - \)\(22\!\cdots\!76\)\( p^{5} T^{11} + 2363994840482709802 p^{10} T^{12} - 10159390994080936 p^{15} T^{13} + 103920201897616 p^{20} T^{14} - 345044190776 p^{25} T^{15} + 3556570901 p^{30} T^{16} - 8017214 p^{35} T^{17} + 84148 p^{40} T^{18} - 2 p^{47} T^{19} + p^{50} T^{20} )^{2} \) | |
11 | \( 1 - 1510004 T^{2} + 1155249727726 T^{4} - 592766540112799924 T^{6} + \)\(22\!\cdots\!17\)\( T^{8} - \)\(70\!\cdots\!04\)\( T^{10} + \)\(18\!\cdots\!36\)\( T^{12} - \)\(40\!\cdots\!64\)\( T^{14} + \)\(79\!\cdots\!82\)\( T^{16} - \)\(14\!\cdots\!04\)\( T^{18} + \)\(23\!\cdots\!76\)\( T^{20} - \)\(14\!\cdots\!04\)\( p^{10} T^{22} + \)\(79\!\cdots\!82\)\( p^{20} T^{24} - \)\(40\!\cdots\!64\)\( p^{30} T^{26} + \)\(18\!\cdots\!36\)\( p^{40} T^{28} - \)\(70\!\cdots\!04\)\( p^{50} T^{30} + \)\(22\!\cdots\!17\)\( p^{60} T^{32} - 592766540112799924 p^{70} T^{34} + 1155249727726 p^{80} T^{36} - 1510004 p^{90} T^{38} + p^{100} T^{40} \) | |
13 | \( 1 - 3520332 T^{2} + 6227853839054 T^{4} - 7441447313525468748 T^{6} + \)\(67\!\cdots\!57\)\( T^{8} - \)\(50\!\cdots\!12\)\( T^{10} + \)\(32\!\cdots\!64\)\( T^{12} - \)\(17\!\cdots\!28\)\( T^{14} + \)\(87\!\cdots\!42\)\( T^{16} - \)\(38\!\cdots\!32\)\( T^{18} + \)\(14\!\cdots\!64\)\( T^{20} - \)\(38\!\cdots\!32\)\( p^{10} T^{22} + \)\(87\!\cdots\!42\)\( p^{20} T^{24} - \)\(17\!\cdots\!28\)\( p^{30} T^{26} + \)\(32\!\cdots\!64\)\( p^{40} T^{28} - \)\(50\!\cdots\!12\)\( p^{50} T^{30} + \)\(67\!\cdots\!57\)\( p^{60} T^{32} - 7441447313525468748 p^{70} T^{34} + 6227853839054 p^{80} T^{36} - 3520332 p^{90} T^{38} + p^{100} T^{40} \) | |
17 | \( ( 1 + 5447662 T^{2} + 1859072000 T^{3} + 15317572824845 T^{4} + 7413542230528000 T^{5} + 32518332783929091752 T^{6} + \)\(14\!\cdots\!00\)\( T^{7} + \)\(56\!\cdots\!10\)\( T^{8} + \)\(21\!\cdots\!00\)\( T^{9} + \)\(84\!\cdots\!72\)\( T^{10} + \)\(21\!\cdots\!00\)\( p^{5} T^{11} + \)\(56\!\cdots\!10\)\( p^{10} T^{12} + \)\(14\!\cdots\!00\)\( p^{15} T^{13} + 32518332783929091752 p^{20} T^{14} + 7413542230528000 p^{25} T^{15} + 15317572824845 p^{30} T^{16} + 1859072000 p^{35} T^{17} + 5447662 p^{40} T^{18} + p^{50} T^{20} )^{2} \) | |
19 | \( 1 - 23638692 T^{2} + 296336418074734 T^{4} - \)\(25\!\cdots\!32\)\( T^{6} + \)\(17\!\cdots\!97\)\( T^{8} - \)\(49\!\cdots\!20\)\( p T^{10} + \)\(42\!\cdots\!52\)\( T^{12} - \)\(16\!\cdots\!48\)\( T^{14} + \)\(56\!\cdots\!66\)\( T^{16} - \)\(16\!\cdots\!12\)\( T^{18} + \)\(44\!\cdots\!28\)\( T^{20} - \)\(16\!\cdots\!12\)\( p^{10} T^{22} + \)\(56\!\cdots\!66\)\( p^{20} T^{24} - \)\(16\!\cdots\!48\)\( p^{30} T^{26} + \)\(42\!\cdots\!52\)\( p^{40} T^{28} - \)\(49\!\cdots\!20\)\( p^{51} T^{30} + \)\(17\!\cdots\!97\)\( p^{60} T^{32} - \)\(25\!\cdots\!32\)\( p^{70} T^{34} + 296336418074734 p^{80} T^{36} - 23638692 p^{90} T^{38} + p^{100} T^{40} \) | |
23 | \( ( 1 - 2338 T + 35997660 T^{2} - 45007042654 T^{3} + 520972471777845 T^{4} - 50426407997609208 T^{5} + \)\(39\!\cdots\!60\)\( T^{6} + \)\(66\!\cdots\!96\)\( T^{7} + \)\(17\!\cdots\!10\)\( T^{8} + \)\(91\!\cdots\!52\)\( T^{9} + \)\(76\!\cdots\!60\)\( T^{10} + \)\(91\!\cdots\!52\)\( p^{5} T^{11} + \)\(17\!\cdots\!10\)\( p^{10} T^{12} + \)\(66\!\cdots\!96\)\( p^{15} T^{13} + \)\(39\!\cdots\!60\)\( p^{20} T^{14} - 50426407997609208 p^{25} T^{15} + 520972471777845 p^{30} T^{16} - 45007042654 p^{35} T^{17} + 35997660 p^{40} T^{18} - 2338 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
29 | \( 1 - 215092900 T^{2} + 23243889276296494 T^{4} - \)\(16\!\cdots\!00\)\( T^{6} + \)\(90\!\cdots\!13\)\( T^{8} - \)\(38\!\cdots\!00\)\( T^{10} + \)\(13\!\cdots\!92\)\( T^{12} - \)\(42\!\cdots\!00\)\( T^{14} + \)\(11\!\cdots\!86\)\( T^{16} - \)\(27\!\cdots\!00\)\( T^{18} + \)\(58\!\cdots\!28\)\( T^{20} - \)\(27\!\cdots\!00\)\( p^{10} T^{22} + \)\(11\!\cdots\!86\)\( p^{20} T^{24} - \)\(42\!\cdots\!00\)\( p^{30} T^{26} + \)\(13\!\cdots\!92\)\( p^{40} T^{28} - \)\(38\!\cdots\!00\)\( p^{50} T^{30} + \)\(90\!\cdots\!13\)\( p^{60} T^{32} - \)\(16\!\cdots\!00\)\( p^{70} T^{34} + 23243889276296494 p^{80} T^{36} - 215092900 p^{90} T^{38} + p^{100} T^{40} \) | |
31 | \( ( 1 + 3580 T + 132421614 T^{2} + 484936307876 T^{3} + 8983138546835629 T^{4} + 33755686429634218608 T^{5} + \)\(43\!\cdots\!88\)\( T^{6} + \)\(16\!\cdots\!96\)\( T^{7} + \)\(17\!\cdots\!38\)\( T^{8} + \)\(60\!\cdots\!32\)\( T^{9} + \)\(54\!\cdots\!44\)\( T^{10} + \)\(60\!\cdots\!32\)\( p^{5} T^{11} + \)\(17\!\cdots\!38\)\( p^{10} T^{12} + \)\(16\!\cdots\!96\)\( p^{15} T^{13} + \)\(43\!\cdots\!88\)\( p^{20} T^{14} + 33755686429634218608 p^{25} T^{15} + 8983138546835629 p^{30} T^{16} + 484936307876 p^{35} T^{17} + 132421614 p^{40} T^{18} + 3580 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
37 | \( 1 - 565372668 T^{2} + 171401952644913934 T^{4} - \)\(36\!\cdots\!00\)\( T^{6} + \)\(59\!\cdots\!09\)\( T^{8} - \)\(80\!\cdots\!44\)\( T^{10} + \)\(93\!\cdots\!16\)\( T^{12} - \)\(93\!\cdots\!40\)\( T^{14} + \)\(83\!\cdots\!86\)\( T^{16} - \)\(67\!\cdots\!48\)\( T^{18} + \)\(48\!\cdots\!08\)\( T^{20} - \)\(67\!\cdots\!48\)\( p^{10} T^{22} + \)\(83\!\cdots\!86\)\( p^{20} T^{24} - \)\(93\!\cdots\!40\)\( p^{30} T^{26} + \)\(93\!\cdots\!16\)\( p^{40} T^{28} - \)\(80\!\cdots\!44\)\( p^{50} T^{30} + \)\(59\!\cdots\!09\)\( p^{60} T^{32} - \)\(36\!\cdots\!00\)\( p^{70} T^{34} + 171401952644913934 p^{80} T^{36} - 565372668 p^{90} T^{38} + p^{100} T^{40} \) | |
41 | \( ( 1 - 5804 T + 580737234 T^{2} - 4176614475628 T^{3} + 181136735899530493 T^{4} - \)\(13\!\cdots\!48\)\( T^{5} + \)\(39\!\cdots\!40\)\( T^{6} - \)\(28\!\cdots\!68\)\( T^{7} + \)\(63\!\cdots\!42\)\( T^{8} - \)\(43\!\cdots\!24\)\( T^{9} + \)\(82\!\cdots\!24\)\( T^{10} - \)\(43\!\cdots\!24\)\( p^{5} T^{11} + \)\(63\!\cdots\!42\)\( p^{10} T^{12} - \)\(28\!\cdots\!68\)\( p^{15} T^{13} + \)\(39\!\cdots\!40\)\( p^{20} T^{14} - \)\(13\!\cdots\!48\)\( p^{25} T^{15} + 181136735899530493 p^{30} T^{16} - 4176614475628 p^{35} T^{17} + 580737234 p^{40} T^{18} - 5804 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
43 | \( 1 - 1208126740 T^{2} + 787740581508660018 T^{4} - \)\(36\!\cdots\!96\)\( T^{6} + \)\(12\!\cdots\!73\)\( T^{8} - \)\(37\!\cdots\!80\)\( T^{10} + \)\(95\!\cdots\!40\)\( T^{12} - \)\(20\!\cdots\!56\)\( T^{14} + \)\(40\!\cdots\!70\)\( T^{16} - \)\(70\!\cdots\!00\)\( T^{18} + \)\(10\!\cdots\!96\)\( T^{20} - \)\(70\!\cdots\!00\)\( p^{10} T^{22} + \)\(40\!\cdots\!70\)\( p^{20} T^{24} - \)\(20\!\cdots\!56\)\( p^{30} T^{26} + \)\(95\!\cdots\!40\)\( p^{40} T^{28} - \)\(37\!\cdots\!80\)\( p^{50} T^{30} + \)\(12\!\cdots\!73\)\( p^{60} T^{32} - \)\(36\!\cdots\!96\)\( p^{70} T^{34} + 787740581508660018 p^{80} T^{36} - 1208126740 p^{90} T^{38} + p^{100} T^{40} \) | |
47 | \( ( 1 + 10 p^{2} T + 1548510076 T^{2} + 25779450599270 T^{3} + 1065218725316011845 T^{4} + \)\(14\!\cdots\!20\)\( T^{5} + \)\(45\!\cdots\!96\)\( T^{6} + \)\(51\!\cdots\!60\)\( T^{7} + \)\(14\!\cdots\!10\)\( T^{8} + \)\(30\!\cdots\!00\)\( p T^{9} + \)\(36\!\cdots\!56\)\( T^{10} + \)\(30\!\cdots\!00\)\( p^{6} T^{11} + \)\(14\!\cdots\!10\)\( p^{10} T^{12} + \)\(51\!\cdots\!60\)\( p^{15} T^{13} + \)\(45\!\cdots\!96\)\( p^{20} T^{14} + \)\(14\!\cdots\!20\)\( p^{25} T^{15} + 1065218725316011845 p^{30} T^{16} + 25779450599270 p^{35} T^{17} + 1548510076 p^{40} T^{18} + 10 p^{47} T^{19} + p^{50} T^{20} )^{2} \) | |
53 | \( 1 - 4003669356 T^{2} + 7954725909905649454 T^{4} - \)\(10\!\cdots\!60\)\( T^{6} + \)\(10\!\cdots\!77\)\( T^{8} - \)\(91\!\cdots\!76\)\( T^{10} + \)\(65\!\cdots\!16\)\( T^{12} - \)\(40\!\cdots\!80\)\( T^{14} + \)\(22\!\cdots\!54\)\( T^{16} - \)\(11\!\cdots\!56\)\( T^{18} + \)\(48\!\cdots\!96\)\( T^{20} - \)\(11\!\cdots\!56\)\( p^{10} T^{22} + \)\(22\!\cdots\!54\)\( p^{20} T^{24} - \)\(40\!\cdots\!80\)\( p^{30} T^{26} + \)\(65\!\cdots\!16\)\( p^{40} T^{28} - \)\(91\!\cdots\!76\)\( p^{50} T^{30} + \)\(10\!\cdots\!77\)\( p^{60} T^{32} - \)\(10\!\cdots\!60\)\( p^{70} T^{34} + 7954725909905649454 p^{80} T^{36} - 4003669356 p^{90} T^{38} + p^{100} T^{40} \) | |
59 | \( 1 - 9996949828 T^{2} + 49650800837889885966 T^{4} - \)\(16\!\cdots\!20\)\( T^{6} + \)\(39\!\cdots\!17\)\( T^{8} - \)\(73\!\cdots\!28\)\( T^{10} + \)\(11\!\cdots\!44\)\( T^{12} - \)\(14\!\cdots\!80\)\( T^{14} + \)\(15\!\cdots\!54\)\( T^{16} - \)\(13\!\cdots\!88\)\( T^{18} + \)\(10\!\cdots\!24\)\( T^{20} - \)\(13\!\cdots\!88\)\( p^{10} T^{22} + \)\(15\!\cdots\!54\)\( p^{20} T^{24} - \)\(14\!\cdots\!80\)\( p^{30} T^{26} + \)\(11\!\cdots\!44\)\( p^{40} T^{28} - \)\(73\!\cdots\!28\)\( p^{50} T^{30} + \)\(39\!\cdots\!17\)\( p^{60} T^{32} - \)\(16\!\cdots\!20\)\( p^{70} T^{34} + 49650800837889885966 p^{80} T^{36} - 9996949828 p^{90} T^{38} + p^{100} T^{40} \) | |
61 | \( 1 - 7152852348 T^{2} + 26523669582205677166 T^{4} - \)\(67\!\cdots\!00\)\( T^{6} + \)\(13\!\cdots\!17\)\( T^{8} - \)\(22\!\cdots\!48\)\( T^{10} + \)\(31\!\cdots\!84\)\( T^{12} - \)\(38\!\cdots\!60\)\( T^{14} + \)\(42\!\cdots\!14\)\( T^{16} - \)\(41\!\cdots\!08\)\( T^{18} + \)\(36\!\cdots\!64\)\( T^{20} - \)\(41\!\cdots\!08\)\( p^{10} T^{22} + \)\(42\!\cdots\!14\)\( p^{20} T^{24} - \)\(38\!\cdots\!60\)\( p^{30} T^{26} + \)\(31\!\cdots\!84\)\( p^{40} T^{28} - \)\(22\!\cdots\!48\)\( p^{50} T^{30} + \)\(13\!\cdots\!17\)\( p^{60} T^{32} - \)\(67\!\cdots\!00\)\( p^{70} T^{34} + 26523669582205677166 p^{80} T^{36} - 7152852348 p^{90} T^{38} + p^{100} T^{40} \) | |
67 | \( 1 - 11828518964 T^{2} + 68669252417166303634 T^{4} - \)\(26\!\cdots\!60\)\( T^{6} + \)\(76\!\cdots\!57\)\( T^{8} - \)\(18\!\cdots\!04\)\( T^{10} + \)\(38\!\cdots\!16\)\( T^{12} - \)\(70\!\cdots\!40\)\( T^{14} + \)\(11\!\cdots\!54\)\( T^{16} - \)\(18\!\cdots\!64\)\( T^{18} + \)\(25\!\cdots\!76\)\( T^{20} - \)\(18\!\cdots\!64\)\( p^{10} T^{22} + \)\(11\!\cdots\!54\)\( p^{20} T^{24} - \)\(70\!\cdots\!40\)\( p^{30} T^{26} + \)\(38\!\cdots\!16\)\( p^{40} T^{28} - \)\(18\!\cdots\!04\)\( p^{50} T^{30} + \)\(76\!\cdots\!57\)\( p^{60} T^{32} - \)\(26\!\cdots\!60\)\( p^{70} T^{34} + 68669252417166303634 p^{80} T^{36} - 11828518964 p^{90} T^{38} + p^{100} T^{40} \) | |
71 | \( ( 1 - 100156 T + 13448448446 T^{2} - 957445823975748 T^{3} + 76873855601451932317 T^{4} - \)\(43\!\cdots\!20\)\( T^{5} + \)\(26\!\cdots\!28\)\( T^{6} - \)\(12\!\cdots\!92\)\( T^{7} + \)\(67\!\cdots\!74\)\( T^{8} - \)\(28\!\cdots\!84\)\( T^{9} + \)\(13\!\cdots\!68\)\( T^{10} - \)\(28\!\cdots\!84\)\( p^{5} T^{11} + \)\(67\!\cdots\!74\)\( p^{10} T^{12} - \)\(12\!\cdots\!92\)\( p^{15} T^{13} + \)\(26\!\cdots\!28\)\( p^{20} T^{14} - \)\(43\!\cdots\!20\)\( p^{25} T^{15} + 76873855601451932317 p^{30} T^{16} - 957445823975748 p^{35} T^{17} + 13448448446 p^{40} T^{18} - 100156 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
73 | \( ( 1 + 52568 T + 9379342894 T^{2} + 374528688123736 T^{3} + 37721970904921608509 T^{4} + \)\(11\!\cdots\!56\)\( T^{5} + \)\(82\!\cdots\!04\)\( T^{6} + \)\(19\!\cdots\!04\)\( T^{7} + \)\(11\!\cdots\!58\)\( T^{8} + \)\(24\!\cdots\!96\)\( T^{9} + \)\(16\!\cdots\!04\)\( T^{10} + \)\(24\!\cdots\!96\)\( p^{5} T^{11} + \)\(11\!\cdots\!58\)\( p^{10} T^{12} + \)\(19\!\cdots\!04\)\( p^{15} T^{13} + \)\(82\!\cdots\!04\)\( p^{20} T^{14} + \)\(11\!\cdots\!56\)\( p^{25} T^{15} + 37721970904921608509 p^{30} T^{16} + 374528688123736 p^{35} T^{17} + 9379342894 p^{40} T^{18} + 52568 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
79 | \( ( 1 + 141040 T + 30508439526 T^{2} + 3027236690742416 T^{3} + \)\(38\!\cdots\!93\)\( T^{4} + \)\(29\!\cdots\!88\)\( T^{5} + \)\(27\!\cdots\!48\)\( T^{6} + \)\(17\!\cdots\!16\)\( T^{7} + \)\(13\!\cdots\!30\)\( T^{8} + \)\(92\!\cdots\!60\)\( p T^{9} + \)\(47\!\cdots\!04\)\( T^{10} + \)\(92\!\cdots\!60\)\( p^{6} T^{11} + \)\(13\!\cdots\!30\)\( p^{10} T^{12} + \)\(17\!\cdots\!16\)\( p^{15} T^{13} + \)\(27\!\cdots\!48\)\( p^{20} T^{14} + \)\(29\!\cdots\!88\)\( p^{25} T^{15} + \)\(38\!\cdots\!93\)\( p^{30} T^{16} + 3027236690742416 p^{35} T^{17} + 30508439526 p^{40} T^{18} + 141040 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
83 | \( 1 - 34768653380 T^{2} + \)\(55\!\cdots\!58\)\( T^{4} - \)\(53\!\cdots\!56\)\( T^{6} + \)\(34\!\cdots\!33\)\( T^{8} - \)\(15\!\cdots\!20\)\( T^{10} + \)\(44\!\cdots\!40\)\( T^{12} - \)\(24\!\cdots\!36\)\( T^{14} - \)\(64\!\cdots\!10\)\( T^{16} + \)\(49\!\cdots\!20\)\( T^{18} - \)\(23\!\cdots\!44\)\( T^{20} + \)\(49\!\cdots\!20\)\( p^{10} T^{22} - \)\(64\!\cdots\!10\)\( p^{20} T^{24} - \)\(24\!\cdots\!36\)\( p^{30} T^{26} + \)\(44\!\cdots\!40\)\( p^{40} T^{28} - \)\(15\!\cdots\!20\)\( p^{50} T^{30} + \)\(34\!\cdots\!33\)\( p^{60} T^{32} - \)\(53\!\cdots\!56\)\( p^{70} T^{34} + \)\(55\!\cdots\!58\)\( p^{80} T^{36} - 34768653380 p^{90} T^{38} + p^{100} T^{40} \) | |
89 | \( ( 1 + 1580 T + 27398194046 T^{2} + 460040940498284 T^{3} + \)\(38\!\cdots\!93\)\( T^{4} + \)\(90\!\cdots\!72\)\( T^{5} + \)\(38\!\cdots\!08\)\( T^{6} + \)\(95\!\cdots\!24\)\( T^{7} + \)\(29\!\cdots\!70\)\( T^{8} + \)\(73\!\cdots\!60\)\( T^{9} + \)\(18\!\cdots\!64\)\( T^{10} + \)\(73\!\cdots\!60\)\( p^{5} T^{11} + \)\(29\!\cdots\!70\)\( p^{10} T^{12} + \)\(95\!\cdots\!24\)\( p^{15} T^{13} + \)\(38\!\cdots\!08\)\( p^{20} T^{14} + \)\(90\!\cdots\!72\)\( p^{25} T^{15} + \)\(38\!\cdots\!93\)\( p^{30} T^{16} + 460040940498284 p^{35} T^{17} + 27398194046 p^{40} T^{18} + 1580 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
97 | \( ( 1 - 73688 T + 43672916862 T^{2} - 2817316775448856 T^{3} + \)\(98\!\cdots\!25\)\( T^{4} - \)\(59\!\cdots\!28\)\( T^{5} + \)\(15\!\cdots\!52\)\( T^{6} - \)\(87\!\cdots\!16\)\( T^{7} + \)\(18\!\cdots\!70\)\( T^{8} - \)\(96\!\cdots\!88\)\( T^{9} + \)\(17\!\cdots\!72\)\( T^{10} - \)\(96\!\cdots\!88\)\( p^{5} T^{11} + \)\(18\!\cdots\!70\)\( p^{10} T^{12} - \)\(87\!\cdots\!16\)\( p^{15} T^{13} + \)\(15\!\cdots\!52\)\( p^{20} T^{14} - \)\(59\!\cdots\!28\)\( p^{25} T^{15} + \)\(98\!\cdots\!25\)\( p^{30} T^{16} - 2817316775448856 p^{35} T^{17} + 43672916862 p^{40} T^{18} - 73688 p^{45} T^{19} + p^{50} T^{20} )^{2} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−2.01181974853210694069051397527, −2.00184520601613364558815717172, −1.99137701497580300320493208889, −1.86067294221119554808503147766, −1.83528829292558556196671846376, −1.82916402577391776993472198911, −1.71856443665869784807341483005, −1.52327179962858625597132094154, −1.48833237632334566247811975479, −1.47073112052452662358187631910, −1.41388260377538315760294413664, −1.38772710423946496734483801737, −1.35836837350507643172736036392, −1.25858451898299969435584111929, −1.10797962504319227587912313179, −0.949451348844032444099508165619, −0.812333429012405914020304403537, −0.76310990282658015833754615043, −0.68586934983607961592992328049, −0.61052444913038110205597296122, −0.39726206232649474017212139552, −0.33693893195854983889903516442, −0.31206853238131934064917383789, −0.26830791471723154911605044202, −0.05832455248489167330481723962, 0.05832455248489167330481723962, 0.26830791471723154911605044202, 0.31206853238131934064917383789, 0.33693893195854983889903516442, 0.39726206232649474017212139552, 0.61052444913038110205597296122, 0.68586934983607961592992328049, 0.76310990282658015833754615043, 0.812333429012405914020304403537, 0.949451348844032444099508165619, 1.10797962504319227587912313179, 1.25858451898299969435584111929, 1.35836837350507643172736036392, 1.38772710423946496734483801737, 1.41388260377538315760294413664, 1.47073112052452662358187631910, 1.48833237632334566247811975479, 1.52327179962858625597132094154, 1.71856443665869784807341483005, 1.82916402577391776993472198911, 1.83528829292558556196671846376, 1.86067294221119554808503147766, 1.99137701497580300320493208889, 2.00184520601613364558815717172, 2.01181974853210694069051397527