Properties

Label 40-160e20-1.1-c5e20-0-0
Degree 4040
Conductor 1.209×10441.209\times 10^{44}
Sign 11
Analytic cond. 1.53324×10281.53324\times 10^{28}
Root an. cond. 5.065705.06570
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 196·7-s + 1.62e3·9-s + 4.67e3·23-s − 6.25e3·25-s − 7.16e3·31-s + 1.16e4·41-s − 4.41e4·47-s − 1.39e5·49-s + 3.17e5·63-s + 2.00e5·71-s − 1.05e5·73-s − 2.82e5·79-s + 1.23e6·81-s − 3.16e3·89-s + 1.47e5·97-s + 4.55e5·103-s − 3.02e5·113-s + 1.51e6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 9.16e5·161-s + 163-s + ⋯
L(s)  = 1  + 1.51·7-s + 20/3·9-s + 1.84·23-s − 2·25-s − 1.33·31-s + 1.07·41-s − 2.91·47-s − 8.29·49-s + 10.0·63-s + 4.71·71-s − 2.30·73-s − 5.08·79-s + 20.8·81-s − 0.0422·89-s + 1.59·97-s + 4.23·103-s − 2.22·113-s + 9.37·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.78·161-s + 2.94e−6·163-s + ⋯

Functional equation

Λ(s)=((2100520)s/2ΓC(s)20L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{100} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}
Λ(s)=((2100520)s/2ΓC(s+5/2)20L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{100} \cdot 5^{20}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{20} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 4040
Conductor: 21005202^{100} \cdot 5^{20}
Sign: 11
Analytic conductor: 1.53324×10281.53324\times 10^{28}
Root analytic conductor: 5.065705.06570
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (40, 2100520, ( :[5/2]20), 1)(40,\ 2^{100} \cdot 5^{20} ,\ ( \ : [5/2]^{20} ),\ 1 )

Particular Values

L(3)L(3) \approx 34.4772522034.47725220
L(12)L(\frac12) \approx 34.4772522034.47725220
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 (1+p4T2)10 ( 1 + p^{4} T^{2} )^{10}
good3 120p4T2+464774pT4834927892T6+43647016469p2T851765303184624pT10+53814329151823576T121863599575911640208p2T14+19706806085941150310p5T16 1 - 20 p^{4} T^{2} + 464774 p T^{4} - 834927892 T^{6} + 43647016469 p^{2} T^{8} - 51765303184624 p T^{10} + 53814329151823576 T^{12} - 1863599575911640208 p^{2} T^{14} + 19706806085941150310 p^{5} T^{16} - 17 ⁣ ⁣0017\!\cdots\!00p6T18+ p^{6} T^{18} + 48 ⁣ ⁣0048\!\cdots\!00p8T20 p^{8} T^{20} - 17 ⁣ ⁣0017\!\cdots\!00p16T22+19706806085941150310p25T241863599575911640208p32T26+53814329151823576p40T2851765303184624p51T30+43647016469p62T32834927892p70T34+464774p81T3620p94T38+p100T40 p^{16} T^{22} + 19706806085941150310 p^{25} T^{24} - 1863599575911640208 p^{32} T^{26} + 53814329151823576 p^{40} T^{28} - 51765303184624 p^{51} T^{30} + 43647016469 p^{62} T^{32} - 834927892 p^{70} T^{34} + 464774 p^{81} T^{36} - 20 p^{94} T^{38} + p^{100} T^{40}
7 (12p2T+84148T28017214T3+3556570901T4345044190776T5+103920201897616T610159390994080936T7+2363994840482709802T8 ( 1 - 2 p^{2} T + 84148 T^{2} - 8017214 T^{3} + 3556570901 T^{4} - 345044190776 T^{5} + 103920201897616 T^{6} - 10159390994080936 T^{7} + 2363994840482709802 T^{8} - 22 ⁣ ⁣7622\!\cdots\!76T9+ T^{9} + 43 ⁣ ⁣7243\!\cdots\!72T10 T^{10} - 22 ⁣ ⁣7622\!\cdots\!76p5T11+2363994840482709802p10T1210159390994080936p15T13+103920201897616p20T14345044190776p25T15+3556570901p30T168017214p35T17+84148p40T182p47T19+p50T20)2 p^{5} T^{11} + 2363994840482709802 p^{10} T^{12} - 10159390994080936 p^{15} T^{13} + 103920201897616 p^{20} T^{14} - 345044190776 p^{25} T^{15} + 3556570901 p^{30} T^{16} - 8017214 p^{35} T^{17} + 84148 p^{40} T^{18} - 2 p^{47} T^{19} + p^{50} T^{20} )^{2}
11 11510004T2+1155249727726T4592766540112799924T6+ 1 - 1510004 T^{2} + 1155249727726 T^{4} - 592766540112799924 T^{6} + 22 ⁣ ⁣1722\!\cdots\!17T8 T^{8} - 70 ⁣ ⁣0470\!\cdots\!04T10+ T^{10} + 18 ⁣ ⁣3618\!\cdots\!36T12 T^{12} - 40 ⁣ ⁣6440\!\cdots\!64T14+ T^{14} + 79 ⁣ ⁣8279\!\cdots\!82T16 T^{16} - 14 ⁣ ⁣0414\!\cdots\!04T18+ T^{18} + 23 ⁣ ⁣7623\!\cdots\!76T20 T^{20} - 14 ⁣ ⁣0414\!\cdots\!04p10T22+ p^{10} T^{22} + 79 ⁣ ⁣8279\!\cdots\!82p20T24 p^{20} T^{24} - 40 ⁣ ⁣6440\!\cdots\!64p30T26+ p^{30} T^{26} + 18 ⁣ ⁣3618\!\cdots\!36p40T28 p^{40} T^{28} - 70 ⁣ ⁣0470\!\cdots\!04p50T30+ p^{50} T^{30} + 22 ⁣ ⁣1722\!\cdots\!17p60T32592766540112799924p70T34+1155249727726p80T361510004p90T38+p100T40 p^{60} T^{32} - 592766540112799924 p^{70} T^{34} + 1155249727726 p^{80} T^{36} - 1510004 p^{90} T^{38} + p^{100} T^{40}
13 13520332T2+6227853839054T47441447313525468748T6+ 1 - 3520332 T^{2} + 6227853839054 T^{4} - 7441447313525468748 T^{6} + 67 ⁣ ⁣5767\!\cdots\!57T8 T^{8} - 50 ⁣ ⁣1250\!\cdots\!12T10+ T^{10} + 32 ⁣ ⁣6432\!\cdots\!64T12 T^{12} - 17 ⁣ ⁣2817\!\cdots\!28T14+ T^{14} + 87 ⁣ ⁣4287\!\cdots\!42T16 T^{16} - 38 ⁣ ⁣3238\!\cdots\!32T18+ T^{18} + 14 ⁣ ⁣6414\!\cdots\!64T20 T^{20} - 38 ⁣ ⁣3238\!\cdots\!32p10T22+ p^{10} T^{22} + 87 ⁣ ⁣4287\!\cdots\!42p20T24 p^{20} T^{24} - 17 ⁣ ⁣2817\!\cdots\!28p30T26+ p^{30} T^{26} + 32 ⁣ ⁣6432\!\cdots\!64p40T28 p^{40} T^{28} - 50 ⁣ ⁣1250\!\cdots\!12p50T30+ p^{50} T^{30} + 67 ⁣ ⁣5767\!\cdots\!57p60T327441447313525468748p70T34+6227853839054p80T363520332p90T38+p100T40 p^{60} T^{32} - 7441447313525468748 p^{70} T^{34} + 6227853839054 p^{80} T^{36} - 3520332 p^{90} T^{38} + p^{100} T^{40}
17 (1+5447662T2+1859072000T3+15317572824845T4+7413542230528000T5+32518332783929091752T6+ ( 1 + 5447662 T^{2} + 1859072000 T^{3} + 15317572824845 T^{4} + 7413542230528000 T^{5} + 32518332783929091752 T^{6} + 14 ⁣ ⁣0014\!\cdots\!00T7+ T^{7} + 56 ⁣ ⁣1056\!\cdots\!10T8+ T^{8} + 21 ⁣ ⁣0021\!\cdots\!00T9+ T^{9} + 84 ⁣ ⁣7284\!\cdots\!72T10+ T^{10} + 21 ⁣ ⁣0021\!\cdots\!00p5T11+ p^{5} T^{11} + 56 ⁣ ⁣1056\!\cdots\!10p10T12+ p^{10} T^{12} + 14 ⁣ ⁣0014\!\cdots\!00p15T13+32518332783929091752p20T14+7413542230528000p25T15+15317572824845p30T16+1859072000p35T17+5447662p40T18+p50T20)2 p^{15} T^{13} + 32518332783929091752 p^{20} T^{14} + 7413542230528000 p^{25} T^{15} + 15317572824845 p^{30} T^{16} + 1859072000 p^{35} T^{17} + 5447662 p^{40} T^{18} + p^{50} T^{20} )^{2}
19 123638692T2+296336418074734T4 1 - 23638692 T^{2} + 296336418074734 T^{4} - 25 ⁣ ⁣3225\!\cdots\!32T6+ T^{6} + 17 ⁣ ⁣9717\!\cdots\!97T8 T^{8} - 49 ⁣ ⁣2049\!\cdots\!20pT10+ p T^{10} + 42 ⁣ ⁣5242\!\cdots\!52T12 T^{12} - 16 ⁣ ⁣4816\!\cdots\!48T14+ T^{14} + 56 ⁣ ⁣6656\!\cdots\!66T16 T^{16} - 16 ⁣ ⁣1216\!\cdots\!12T18+ T^{18} + 44 ⁣ ⁣2844\!\cdots\!28T20 T^{20} - 16 ⁣ ⁣1216\!\cdots\!12p10T22+ p^{10} T^{22} + 56 ⁣ ⁣6656\!\cdots\!66p20T24 p^{20} T^{24} - 16 ⁣ ⁣4816\!\cdots\!48p30T26+ p^{30} T^{26} + 42 ⁣ ⁣5242\!\cdots\!52p40T28 p^{40} T^{28} - 49 ⁣ ⁣2049\!\cdots\!20p51T30+ p^{51} T^{30} + 17 ⁣ ⁣9717\!\cdots\!97p60T32 p^{60} T^{32} - 25 ⁣ ⁣3225\!\cdots\!32p70T34+296336418074734p80T3623638692p90T38+p100T40 p^{70} T^{34} + 296336418074734 p^{80} T^{36} - 23638692 p^{90} T^{38} + p^{100} T^{40}
23 (12338T+35997660T245007042654T3+520972471777845T450426407997609208T5+ ( 1 - 2338 T + 35997660 T^{2} - 45007042654 T^{3} + 520972471777845 T^{4} - 50426407997609208 T^{5} + 39 ⁣ ⁣6039\!\cdots\!60T6+ T^{6} + 66 ⁣ ⁣9666\!\cdots\!96T7+ T^{7} + 17 ⁣ ⁣1017\!\cdots\!10T8+ T^{8} + 91 ⁣ ⁣5291\!\cdots\!52T9+ T^{9} + 76 ⁣ ⁣6076\!\cdots\!60T10+ T^{10} + 91 ⁣ ⁣5291\!\cdots\!52p5T11+ p^{5} T^{11} + 17 ⁣ ⁣1017\!\cdots\!10p10T12+ p^{10} T^{12} + 66 ⁣ ⁣9666\!\cdots\!96p15T13+ p^{15} T^{13} + 39 ⁣ ⁣6039\!\cdots\!60p20T1450426407997609208p25T15+520972471777845p30T1645007042654p35T17+35997660p40T182338p45T19+p50T20)2 p^{20} T^{14} - 50426407997609208 p^{25} T^{15} + 520972471777845 p^{30} T^{16} - 45007042654 p^{35} T^{17} + 35997660 p^{40} T^{18} - 2338 p^{45} T^{19} + p^{50} T^{20} )^{2}
29 1215092900T2+23243889276296494T4 1 - 215092900 T^{2} + 23243889276296494 T^{4} - 16 ⁣ ⁣0016\!\cdots\!00T6+ T^{6} + 90 ⁣ ⁣1390\!\cdots\!13T8 T^{8} - 38 ⁣ ⁣0038\!\cdots\!00T10+ T^{10} + 13 ⁣ ⁣9213\!\cdots\!92T12 T^{12} - 42 ⁣ ⁣0042\!\cdots\!00T14+ T^{14} + 11 ⁣ ⁣8611\!\cdots\!86T16 T^{16} - 27 ⁣ ⁣0027\!\cdots\!00T18+ T^{18} + 58 ⁣ ⁣2858\!\cdots\!28T20 T^{20} - 27 ⁣ ⁣0027\!\cdots\!00p10T22+ p^{10} T^{22} + 11 ⁣ ⁣8611\!\cdots\!86p20T24 p^{20} T^{24} - 42 ⁣ ⁣0042\!\cdots\!00p30T26+ p^{30} T^{26} + 13 ⁣ ⁣9213\!\cdots\!92p40T28 p^{40} T^{28} - 38 ⁣ ⁣0038\!\cdots\!00p50T30+ p^{50} T^{30} + 90 ⁣ ⁣1390\!\cdots\!13p60T32 p^{60} T^{32} - 16 ⁣ ⁣0016\!\cdots\!00p70T34+23243889276296494p80T36215092900p90T38+p100T40 p^{70} T^{34} + 23243889276296494 p^{80} T^{36} - 215092900 p^{90} T^{38} + p^{100} T^{40}
31 (1+3580T+132421614T2+484936307876T3+8983138546835629T4+33755686429634218608T5+ ( 1 + 3580 T + 132421614 T^{2} + 484936307876 T^{3} + 8983138546835629 T^{4} + 33755686429634218608 T^{5} + 43 ⁣ ⁣8843\!\cdots\!88T6+ T^{6} + 16 ⁣ ⁣9616\!\cdots\!96T7+ T^{7} + 17 ⁣ ⁣3817\!\cdots\!38T8+ T^{8} + 60 ⁣ ⁣3260\!\cdots\!32T9+ T^{9} + 54 ⁣ ⁣4454\!\cdots\!44T10+ T^{10} + 60 ⁣ ⁣3260\!\cdots\!32p5T11+ p^{5} T^{11} + 17 ⁣ ⁣3817\!\cdots\!38p10T12+ p^{10} T^{12} + 16 ⁣ ⁣9616\!\cdots\!96p15T13+ p^{15} T^{13} + 43 ⁣ ⁣8843\!\cdots\!88p20T14+33755686429634218608p25T15+8983138546835629p30T16+484936307876p35T17+132421614p40T18+3580p45T19+p50T20)2 p^{20} T^{14} + 33755686429634218608 p^{25} T^{15} + 8983138546835629 p^{30} T^{16} + 484936307876 p^{35} T^{17} + 132421614 p^{40} T^{18} + 3580 p^{45} T^{19} + p^{50} T^{20} )^{2}
37 1565372668T2+171401952644913934T4 1 - 565372668 T^{2} + 171401952644913934 T^{4} - 36 ⁣ ⁣0036\!\cdots\!00T6+ T^{6} + 59 ⁣ ⁣0959\!\cdots\!09T8 T^{8} - 80 ⁣ ⁣4480\!\cdots\!44T10+ T^{10} + 93 ⁣ ⁣1693\!\cdots\!16T12 T^{12} - 93 ⁣ ⁣4093\!\cdots\!40T14+ T^{14} + 83 ⁣ ⁣8683\!\cdots\!86T16 T^{16} - 67 ⁣ ⁣4867\!\cdots\!48T18+ T^{18} + 48 ⁣ ⁣0848\!\cdots\!08T20 T^{20} - 67 ⁣ ⁣4867\!\cdots\!48p10T22+ p^{10} T^{22} + 83 ⁣ ⁣8683\!\cdots\!86p20T24 p^{20} T^{24} - 93 ⁣ ⁣4093\!\cdots\!40p30T26+ p^{30} T^{26} + 93 ⁣ ⁣1693\!\cdots\!16p40T28 p^{40} T^{28} - 80 ⁣ ⁣4480\!\cdots\!44p50T30+ p^{50} T^{30} + 59 ⁣ ⁣0959\!\cdots\!09p60T32 p^{60} T^{32} - 36 ⁣ ⁣0036\!\cdots\!00p70T34+171401952644913934p80T36565372668p90T38+p100T40 p^{70} T^{34} + 171401952644913934 p^{80} T^{36} - 565372668 p^{90} T^{38} + p^{100} T^{40}
41 (15804T+580737234T24176614475628T3+181136735899530493T4 ( 1 - 5804 T + 580737234 T^{2} - 4176614475628 T^{3} + 181136735899530493 T^{4} - 13 ⁣ ⁣4813\!\cdots\!48T5+ T^{5} + 39 ⁣ ⁣4039\!\cdots\!40T6 T^{6} - 28 ⁣ ⁣6828\!\cdots\!68T7+ T^{7} + 63 ⁣ ⁣4263\!\cdots\!42T8 T^{8} - 43 ⁣ ⁣2443\!\cdots\!24T9+ T^{9} + 82 ⁣ ⁣2482\!\cdots\!24T10 T^{10} - 43 ⁣ ⁣2443\!\cdots\!24p5T11+ p^{5} T^{11} + 63 ⁣ ⁣4263\!\cdots\!42p10T12 p^{10} T^{12} - 28 ⁣ ⁣6828\!\cdots\!68p15T13+ p^{15} T^{13} + 39 ⁣ ⁣4039\!\cdots\!40p20T14 p^{20} T^{14} - 13 ⁣ ⁣4813\!\cdots\!48p25T15+181136735899530493p30T164176614475628p35T17+580737234p40T185804p45T19+p50T20)2 p^{25} T^{15} + 181136735899530493 p^{30} T^{16} - 4176614475628 p^{35} T^{17} + 580737234 p^{40} T^{18} - 5804 p^{45} T^{19} + p^{50} T^{20} )^{2}
43 11208126740T2+787740581508660018T4 1 - 1208126740 T^{2} + 787740581508660018 T^{4} - 36 ⁣ ⁣9636\!\cdots\!96T6+ T^{6} + 12 ⁣ ⁣7312\!\cdots\!73T8 T^{8} - 37 ⁣ ⁣8037\!\cdots\!80T10+ T^{10} + 95 ⁣ ⁣4095\!\cdots\!40T12 T^{12} - 20 ⁣ ⁣5620\!\cdots\!56T14+ T^{14} + 40 ⁣ ⁣7040\!\cdots\!70T16 T^{16} - 70 ⁣ ⁣0070\!\cdots\!00T18+ T^{18} + 10 ⁣ ⁣9610\!\cdots\!96T20 T^{20} - 70 ⁣ ⁣0070\!\cdots\!00p10T22+ p^{10} T^{22} + 40 ⁣ ⁣7040\!\cdots\!70p20T24 p^{20} T^{24} - 20 ⁣ ⁣5620\!\cdots\!56p30T26+ p^{30} T^{26} + 95 ⁣ ⁣4095\!\cdots\!40p40T28 p^{40} T^{28} - 37 ⁣ ⁣8037\!\cdots\!80p50T30+ p^{50} T^{30} + 12 ⁣ ⁣7312\!\cdots\!73p60T32 p^{60} T^{32} - 36 ⁣ ⁣9636\!\cdots\!96p70T34+787740581508660018p80T361208126740p90T38+p100T40 p^{70} T^{34} + 787740581508660018 p^{80} T^{36} - 1208126740 p^{90} T^{38} + p^{100} T^{40}
47 (1+10p2T+1548510076T2+25779450599270T3+1065218725316011845T4+ ( 1 + 10 p^{2} T + 1548510076 T^{2} + 25779450599270 T^{3} + 1065218725316011845 T^{4} + 14 ⁣ ⁣2014\!\cdots\!20T5+ T^{5} + 45 ⁣ ⁣9645\!\cdots\!96T6+ T^{6} + 51 ⁣ ⁣6051\!\cdots\!60T7+ T^{7} + 14 ⁣ ⁣1014\!\cdots\!10T8+ T^{8} + 30 ⁣ ⁣0030\!\cdots\!00pT9+ p T^{9} + 36 ⁣ ⁣5636\!\cdots\!56T10+ T^{10} + 30 ⁣ ⁣0030\!\cdots\!00p6T11+ p^{6} T^{11} + 14 ⁣ ⁣1014\!\cdots\!10p10T12+ p^{10} T^{12} + 51 ⁣ ⁣6051\!\cdots\!60p15T13+ p^{15} T^{13} + 45 ⁣ ⁣9645\!\cdots\!96p20T14+ p^{20} T^{14} + 14 ⁣ ⁣2014\!\cdots\!20p25T15+1065218725316011845p30T16+25779450599270p35T17+1548510076p40T18+10p47T19+p50T20)2 p^{25} T^{15} + 1065218725316011845 p^{30} T^{16} + 25779450599270 p^{35} T^{17} + 1548510076 p^{40} T^{18} + 10 p^{47} T^{19} + p^{50} T^{20} )^{2}
53 14003669356T2+7954725909905649454T4 1 - 4003669356 T^{2} + 7954725909905649454 T^{4} - 10 ⁣ ⁣6010\!\cdots\!60T6+ T^{6} + 10 ⁣ ⁣7710\!\cdots\!77T8 T^{8} - 91 ⁣ ⁣7691\!\cdots\!76T10+ T^{10} + 65 ⁣ ⁣1665\!\cdots\!16T12 T^{12} - 40 ⁣ ⁣8040\!\cdots\!80T14+ T^{14} + 22 ⁣ ⁣5422\!\cdots\!54T16 T^{16} - 11 ⁣ ⁣5611\!\cdots\!56T18+ T^{18} + 48 ⁣ ⁣9648\!\cdots\!96T20 T^{20} - 11 ⁣ ⁣5611\!\cdots\!56p10T22+ p^{10} T^{22} + 22 ⁣ ⁣5422\!\cdots\!54p20T24 p^{20} T^{24} - 40 ⁣ ⁣8040\!\cdots\!80p30T26+ p^{30} T^{26} + 65 ⁣ ⁣1665\!\cdots\!16p40T28 p^{40} T^{28} - 91 ⁣ ⁣7691\!\cdots\!76p50T30+ p^{50} T^{30} + 10 ⁣ ⁣7710\!\cdots\!77p60T32 p^{60} T^{32} - 10 ⁣ ⁣6010\!\cdots\!60p70T34+7954725909905649454p80T364003669356p90T38+p100T40 p^{70} T^{34} + 7954725909905649454 p^{80} T^{36} - 4003669356 p^{90} T^{38} + p^{100} T^{40}
59 19996949828T2+49650800837889885966T4 1 - 9996949828 T^{2} + 49650800837889885966 T^{4} - 16 ⁣ ⁣2016\!\cdots\!20T6+ T^{6} + 39 ⁣ ⁣1739\!\cdots\!17T8 T^{8} - 73 ⁣ ⁣2873\!\cdots\!28T10+ T^{10} + 11 ⁣ ⁣4411\!\cdots\!44T12 T^{12} - 14 ⁣ ⁣8014\!\cdots\!80T14+ T^{14} + 15 ⁣ ⁣5415\!\cdots\!54T16 T^{16} - 13 ⁣ ⁣8813\!\cdots\!88T18+ T^{18} + 10 ⁣ ⁣2410\!\cdots\!24T20 T^{20} - 13 ⁣ ⁣8813\!\cdots\!88p10T22+ p^{10} T^{22} + 15 ⁣ ⁣5415\!\cdots\!54p20T24 p^{20} T^{24} - 14 ⁣ ⁣8014\!\cdots\!80p30T26+ p^{30} T^{26} + 11 ⁣ ⁣4411\!\cdots\!44p40T28 p^{40} T^{28} - 73 ⁣ ⁣2873\!\cdots\!28p50T30+ p^{50} T^{30} + 39 ⁣ ⁣1739\!\cdots\!17p60T32 p^{60} T^{32} - 16 ⁣ ⁣2016\!\cdots\!20p70T34+49650800837889885966p80T369996949828p90T38+p100T40 p^{70} T^{34} + 49650800837889885966 p^{80} T^{36} - 9996949828 p^{90} T^{38} + p^{100} T^{40}
61 17152852348T2+26523669582205677166T4 1 - 7152852348 T^{2} + 26523669582205677166 T^{4} - 67 ⁣ ⁣0067\!\cdots\!00T6+ T^{6} + 13 ⁣ ⁣1713\!\cdots\!17T8 T^{8} - 22 ⁣ ⁣4822\!\cdots\!48T10+ T^{10} + 31 ⁣ ⁣8431\!\cdots\!84T12 T^{12} - 38 ⁣ ⁣6038\!\cdots\!60T14+ T^{14} + 42 ⁣ ⁣1442\!\cdots\!14T16 T^{16} - 41 ⁣ ⁣0841\!\cdots\!08T18+ T^{18} + 36 ⁣ ⁣6436\!\cdots\!64T20 T^{20} - 41 ⁣ ⁣0841\!\cdots\!08p10T22+ p^{10} T^{22} + 42 ⁣ ⁣1442\!\cdots\!14p20T24 p^{20} T^{24} - 38 ⁣ ⁣6038\!\cdots\!60p30T26+ p^{30} T^{26} + 31 ⁣ ⁣8431\!\cdots\!84p40T28 p^{40} T^{28} - 22 ⁣ ⁣4822\!\cdots\!48p50T30+ p^{50} T^{30} + 13 ⁣ ⁣1713\!\cdots\!17p60T32 p^{60} T^{32} - 67 ⁣ ⁣0067\!\cdots\!00p70T34+26523669582205677166p80T367152852348p90T38+p100T40 p^{70} T^{34} + 26523669582205677166 p^{80} T^{36} - 7152852348 p^{90} T^{38} + p^{100} T^{40}
67 111828518964T2+68669252417166303634T4 1 - 11828518964 T^{2} + 68669252417166303634 T^{4} - 26 ⁣ ⁣6026\!\cdots\!60T6+ T^{6} + 76 ⁣ ⁣5776\!\cdots\!57T8 T^{8} - 18 ⁣ ⁣0418\!\cdots\!04T10+ T^{10} + 38 ⁣ ⁣1638\!\cdots\!16T12 T^{12} - 70 ⁣ ⁣4070\!\cdots\!40T14+ T^{14} + 11 ⁣ ⁣5411\!\cdots\!54T16 T^{16} - 18 ⁣ ⁣6418\!\cdots\!64T18+ T^{18} + 25 ⁣ ⁣7625\!\cdots\!76T20 T^{20} - 18 ⁣ ⁣6418\!\cdots\!64p10T22+ p^{10} T^{22} + 11 ⁣ ⁣5411\!\cdots\!54p20T24 p^{20} T^{24} - 70 ⁣ ⁣4070\!\cdots\!40p30T26+ p^{30} T^{26} + 38 ⁣ ⁣1638\!\cdots\!16p40T28 p^{40} T^{28} - 18 ⁣ ⁣0418\!\cdots\!04p50T30+ p^{50} T^{30} + 76 ⁣ ⁣5776\!\cdots\!57p60T32 p^{60} T^{32} - 26 ⁣ ⁣6026\!\cdots\!60p70T34+68669252417166303634p80T3611828518964p90T38+p100T40 p^{70} T^{34} + 68669252417166303634 p^{80} T^{36} - 11828518964 p^{90} T^{38} + p^{100} T^{40}
71 (1100156T+13448448446T2957445823975748T3+76873855601451932317T4 ( 1 - 100156 T + 13448448446 T^{2} - 957445823975748 T^{3} + 76873855601451932317 T^{4} - 43 ⁣ ⁣2043\!\cdots\!20T5+ T^{5} + 26 ⁣ ⁣2826\!\cdots\!28T6 T^{6} - 12 ⁣ ⁣9212\!\cdots\!92T7+ T^{7} + 67 ⁣ ⁣7467\!\cdots\!74T8 T^{8} - 28 ⁣ ⁣8428\!\cdots\!84T9+ T^{9} + 13 ⁣ ⁣6813\!\cdots\!68T10 T^{10} - 28 ⁣ ⁣8428\!\cdots\!84p5T11+ p^{5} T^{11} + 67 ⁣ ⁣7467\!\cdots\!74p10T12 p^{10} T^{12} - 12 ⁣ ⁣9212\!\cdots\!92p15T13+ p^{15} T^{13} + 26 ⁣ ⁣2826\!\cdots\!28p20T14 p^{20} T^{14} - 43 ⁣ ⁣2043\!\cdots\!20p25T15+76873855601451932317p30T16957445823975748p35T17+13448448446p40T18100156p45T19+p50T20)2 p^{25} T^{15} + 76873855601451932317 p^{30} T^{16} - 957445823975748 p^{35} T^{17} + 13448448446 p^{40} T^{18} - 100156 p^{45} T^{19} + p^{50} T^{20} )^{2}
73 (1+52568T+9379342894T2+374528688123736T3+37721970904921608509T4+ ( 1 + 52568 T + 9379342894 T^{2} + 374528688123736 T^{3} + 37721970904921608509 T^{4} + 11 ⁣ ⁣5611\!\cdots\!56T5+ T^{5} + 82 ⁣ ⁣0482\!\cdots\!04T6+ T^{6} + 19 ⁣ ⁣0419\!\cdots\!04T7+ T^{7} + 11 ⁣ ⁣5811\!\cdots\!58T8+ T^{8} + 24 ⁣ ⁣9624\!\cdots\!96T9+ T^{9} + 16 ⁣ ⁣0416\!\cdots\!04T10+ T^{10} + 24 ⁣ ⁣9624\!\cdots\!96p5T11+ p^{5} T^{11} + 11 ⁣ ⁣5811\!\cdots\!58p10T12+ p^{10} T^{12} + 19 ⁣ ⁣0419\!\cdots\!04p15T13+ p^{15} T^{13} + 82 ⁣ ⁣0482\!\cdots\!04p20T14+ p^{20} T^{14} + 11 ⁣ ⁣5611\!\cdots\!56p25T15+37721970904921608509p30T16+374528688123736p35T17+9379342894p40T18+52568p45T19+p50T20)2 p^{25} T^{15} + 37721970904921608509 p^{30} T^{16} + 374528688123736 p^{35} T^{17} + 9379342894 p^{40} T^{18} + 52568 p^{45} T^{19} + p^{50} T^{20} )^{2}
79 (1+141040T+30508439526T2+3027236690742416T3+ ( 1 + 141040 T + 30508439526 T^{2} + 3027236690742416 T^{3} + 38 ⁣ ⁣9338\!\cdots\!93T4+ T^{4} + 29 ⁣ ⁣8829\!\cdots\!88T5+ T^{5} + 27 ⁣ ⁣4827\!\cdots\!48T6+ T^{6} + 17 ⁣ ⁣1617\!\cdots\!16T7+ T^{7} + 13 ⁣ ⁣3013\!\cdots\!30T8+ T^{8} + 92 ⁣ ⁣6092\!\cdots\!60pT9+ p T^{9} + 47 ⁣ ⁣0447\!\cdots\!04T10+ T^{10} + 92 ⁣ ⁣6092\!\cdots\!60p6T11+ p^{6} T^{11} + 13 ⁣ ⁣3013\!\cdots\!30p10T12+ p^{10} T^{12} + 17 ⁣ ⁣1617\!\cdots\!16p15T13+ p^{15} T^{13} + 27 ⁣ ⁣4827\!\cdots\!48p20T14+ p^{20} T^{14} + 29 ⁣ ⁣8829\!\cdots\!88p25T15+ p^{25} T^{15} + 38 ⁣ ⁣9338\!\cdots\!93p30T16+3027236690742416p35T17+30508439526p40T18+141040p45T19+p50T20)2 p^{30} T^{16} + 3027236690742416 p^{35} T^{17} + 30508439526 p^{40} T^{18} + 141040 p^{45} T^{19} + p^{50} T^{20} )^{2}
83 134768653380T2+ 1 - 34768653380 T^{2} + 55 ⁣ ⁣5855\!\cdots\!58T4 T^{4} - 53 ⁣ ⁣5653\!\cdots\!56T6+ T^{6} + 34 ⁣ ⁣3334\!\cdots\!33T8 T^{8} - 15 ⁣ ⁣2015\!\cdots\!20T10+ T^{10} + 44 ⁣ ⁣4044\!\cdots\!40T12 T^{12} - 24 ⁣ ⁣3624\!\cdots\!36T14 T^{14} - 64 ⁣ ⁣1064\!\cdots\!10T16+ T^{16} + 49 ⁣ ⁣2049\!\cdots\!20T18 T^{18} - 23 ⁣ ⁣4423\!\cdots\!44T20+ T^{20} + 49 ⁣ ⁣2049\!\cdots\!20p10T22 p^{10} T^{22} - 64 ⁣ ⁣1064\!\cdots\!10p20T24 p^{20} T^{24} - 24 ⁣ ⁣3624\!\cdots\!36p30T26+ p^{30} T^{26} + 44 ⁣ ⁣4044\!\cdots\!40p40T28 p^{40} T^{28} - 15 ⁣ ⁣2015\!\cdots\!20p50T30+ p^{50} T^{30} + 34 ⁣ ⁣3334\!\cdots\!33p60T32 p^{60} T^{32} - 53 ⁣ ⁣5653\!\cdots\!56p70T34+ p^{70} T^{34} + 55 ⁣ ⁣5855\!\cdots\!58p80T3634768653380p90T38+p100T40 p^{80} T^{36} - 34768653380 p^{90} T^{38} + p^{100} T^{40}
89 (1+1580T+27398194046T2+460040940498284T3+ ( 1 + 1580 T + 27398194046 T^{2} + 460040940498284 T^{3} + 38 ⁣ ⁣9338\!\cdots\!93T4+ T^{4} + 90 ⁣ ⁣7290\!\cdots\!72T5+ T^{5} + 38 ⁣ ⁣0838\!\cdots\!08T6+ T^{6} + 95 ⁣ ⁣2495\!\cdots\!24T7+ T^{7} + 29 ⁣ ⁣7029\!\cdots\!70T8+ T^{8} + 73 ⁣ ⁣6073\!\cdots\!60T9+ T^{9} + 18 ⁣ ⁣6418\!\cdots\!64T10+ T^{10} + 73 ⁣ ⁣6073\!\cdots\!60p5T11+ p^{5} T^{11} + 29 ⁣ ⁣7029\!\cdots\!70p10T12+ p^{10} T^{12} + 95 ⁣ ⁣2495\!\cdots\!24p15T13+ p^{15} T^{13} + 38 ⁣ ⁣0838\!\cdots\!08p20T14+ p^{20} T^{14} + 90 ⁣ ⁣7290\!\cdots\!72p25T15+ p^{25} T^{15} + 38 ⁣ ⁣9338\!\cdots\!93p30T16+460040940498284p35T17+27398194046p40T18+1580p45T19+p50T20)2 p^{30} T^{16} + 460040940498284 p^{35} T^{17} + 27398194046 p^{40} T^{18} + 1580 p^{45} T^{19} + p^{50} T^{20} )^{2}
97 (173688T+43672916862T22817316775448856T3+ ( 1 - 73688 T + 43672916862 T^{2} - 2817316775448856 T^{3} + 98 ⁣ ⁣2598\!\cdots\!25T4 T^{4} - 59 ⁣ ⁣2859\!\cdots\!28T5+ T^{5} + 15 ⁣ ⁣5215\!\cdots\!52T6 T^{6} - 87 ⁣ ⁣1687\!\cdots\!16T7+ T^{7} + 18 ⁣ ⁣7018\!\cdots\!70T8 T^{8} - 96 ⁣ ⁣8896\!\cdots\!88T9+ T^{9} + 17 ⁣ ⁣7217\!\cdots\!72T10 T^{10} - 96 ⁣ ⁣8896\!\cdots\!88p5T11+ p^{5} T^{11} + 18 ⁣ ⁣7018\!\cdots\!70p10T12 p^{10} T^{12} - 87 ⁣ ⁣1687\!\cdots\!16p15T13+ p^{15} T^{13} + 15 ⁣ ⁣5215\!\cdots\!52p20T14 p^{20} T^{14} - 59 ⁣ ⁣2859\!\cdots\!28p25T15+ p^{25} T^{15} + 98 ⁣ ⁣2598\!\cdots\!25p30T162817316775448856p35T17+43672916862p40T1873688p45T19+p50T20)2 p^{30} T^{16} - 2817316775448856 p^{35} T^{17} + 43672916862 p^{40} T^{18} - 73688 p^{45} T^{19} + p^{50} T^{20} )^{2}
show more
show less
   L(s)=p j=140(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{40} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−2.01181974853210694069051397527, −2.00184520601613364558815717172, −1.99137701497580300320493208889, −1.86067294221119554808503147766, −1.83528829292558556196671846376, −1.82916402577391776993472198911, −1.71856443665869784807341483005, −1.52327179962858625597132094154, −1.48833237632334566247811975479, −1.47073112052452662358187631910, −1.41388260377538315760294413664, −1.38772710423946496734483801737, −1.35836837350507643172736036392, −1.25858451898299969435584111929, −1.10797962504319227587912313179, −0.949451348844032444099508165619, −0.812333429012405914020304403537, −0.76310990282658015833754615043, −0.68586934983607961592992328049, −0.61052444913038110205597296122, −0.39726206232649474017212139552, −0.33693893195854983889903516442, −0.31206853238131934064917383789, −0.26830791471723154911605044202, −0.05832455248489167330481723962, 0.05832455248489167330481723962, 0.26830791471723154911605044202, 0.31206853238131934064917383789, 0.33693893195854983889903516442, 0.39726206232649474017212139552, 0.61052444913038110205597296122, 0.68586934983607961592992328049, 0.76310990282658015833754615043, 0.812333429012405914020304403537, 0.949451348844032444099508165619, 1.10797962504319227587912313179, 1.25858451898299969435584111929, 1.35836837350507643172736036392, 1.38772710423946496734483801737, 1.41388260377538315760294413664, 1.47073112052452662358187631910, 1.48833237632334566247811975479, 1.52327179962858625597132094154, 1.71856443665869784807341483005, 1.82916402577391776993472198911, 1.83528829292558556196671846376, 1.86067294221119554808503147766, 1.99137701497580300320493208889, 2.00184520601613364558815717172, 2.01181974853210694069051397527

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.