Properties

Label 160.6.d.a.81.18
Level $160$
Weight $6$
Character 160.81
Analytic conductor $25.661$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.18
Root \(0.236693 + 3.99299i\) of defining polynomial
Character \(\chi\) \(=\) 160.81
Dual form 160.6.d.a.81.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+25.0521i q^{3} +25.0000i q^{5} -103.624 q^{7} -384.607 q^{9} -740.776i q^{11} -892.067i q^{13} -626.302 q^{15} +1138.81 q^{17} +1155.46i q^{19} -2596.00i q^{21} -1602.57 q^{23} -625.000 q^{25} -3547.55i q^{27} +2158.47i q^{29} -4955.24 q^{31} +18558.0 q^{33} -2590.60i q^{35} +4403.89i q^{37} +22348.1 q^{39} +3780.62 q^{41} -13068.3i q^{43} -9615.17i q^{45} +8000.58 q^{47} -6069.06 q^{49} +28529.6i q^{51} -34313.6i q^{53} +18519.4 q^{55} -28946.6 q^{57} -22065.0i q^{59} +2822.53i q^{61} +39854.5 q^{63} +22301.7 q^{65} -54981.5i q^{67} -40147.8i q^{69} -42879.2 q^{71} -20893.2 q^{73} -15657.6i q^{75} +76762.2i q^{77} -30227.6 q^{79} -4586.03 q^{81} -93949.9i q^{83} +28470.3i q^{85} -54074.1 q^{87} +1178.06 q^{89} +92439.5i q^{91} -124139. i q^{93} -28886.4 q^{95} +74100.8 q^{97} +284908. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 25.0521i 1.60709i 0.595243 + 0.803546i \(0.297056\pi\)
−0.595243 + 0.803546i \(0.702944\pi\)
\(4\) 0 0
\(5\) 25.0000i 0.447214i
\(6\) 0 0
\(7\) −103.624 −0.799310 −0.399655 0.916666i \(-0.630870\pi\)
−0.399655 + 0.916666i \(0.630870\pi\)
\(8\) 0 0
\(9\) −384.607 −1.58274
\(10\) 0 0
\(11\) − 740.776i − 1.84589i −0.384935 0.922944i \(-0.625776\pi\)
0.384935 0.922944i \(-0.374224\pi\)
\(12\) 0 0
\(13\) − 892.067i − 1.46399i −0.681309 0.731996i \(-0.738589\pi\)
0.681309 0.731996i \(-0.261411\pi\)
\(14\) 0 0
\(15\) −626.302 −0.718713
\(16\) 0 0
\(17\) 1138.81 0.955717 0.477859 0.878437i \(-0.341413\pi\)
0.477859 + 0.878437i \(0.341413\pi\)
\(18\) 0 0
\(19\) 1155.46i 0.734294i 0.930163 + 0.367147i \(0.119665\pi\)
−0.930163 + 0.367147i \(0.880335\pi\)
\(20\) 0 0
\(21\) − 2596.00i − 1.28457i
\(22\) 0 0
\(23\) −1602.57 −0.631682 −0.315841 0.948812i \(-0.602287\pi\)
−0.315841 + 0.948812i \(0.602287\pi\)
\(24\) 0 0
\(25\) −625.000 −0.200000
\(26\) 0 0
\(27\) − 3547.55i − 0.936524i
\(28\) 0 0
\(29\) 2158.47i 0.476596i 0.971192 + 0.238298i \(0.0765896\pi\)
−0.971192 + 0.238298i \(0.923410\pi\)
\(30\) 0 0
\(31\) −4955.24 −0.926106 −0.463053 0.886331i \(-0.653246\pi\)
−0.463053 + 0.886331i \(0.653246\pi\)
\(32\) 0 0
\(33\) 18558.0 2.96651
\(34\) 0 0
\(35\) − 2590.60i − 0.357462i
\(36\) 0 0
\(37\) 4403.89i 0.528850i 0.964406 + 0.264425i \(0.0851821\pi\)
−0.964406 + 0.264425i \(0.914818\pi\)
\(38\) 0 0
\(39\) 22348.1 2.35277
\(40\) 0 0
\(41\) 3780.62 0.351240 0.175620 0.984458i \(-0.443807\pi\)
0.175620 + 0.984458i \(0.443807\pi\)
\(42\) 0 0
\(43\) − 13068.3i − 1.07783i −0.842361 0.538913i \(-0.818835\pi\)
0.842361 0.538913i \(-0.181165\pi\)
\(44\) 0 0
\(45\) − 9615.17i − 0.707825i
\(46\) 0 0
\(47\) 8000.58 0.528296 0.264148 0.964482i \(-0.414909\pi\)
0.264148 + 0.964482i \(0.414909\pi\)
\(48\) 0 0
\(49\) −6069.06 −0.361103
\(50\) 0 0
\(51\) 28529.6i 1.53593i
\(52\) 0 0
\(53\) − 34313.6i − 1.67794i −0.544175 0.838971i \(-0.683157\pi\)
0.544175 0.838971i \(-0.316843\pi\)
\(54\) 0 0
\(55\) 18519.4 0.825506
\(56\) 0 0
\(57\) −28946.6 −1.18008
\(58\) 0 0
\(59\) − 22065.0i − 0.825227i −0.910906 0.412613i \(-0.864616\pi\)
0.910906 0.412613i \(-0.135384\pi\)
\(60\) 0 0
\(61\) 2822.53i 0.0971212i 0.998820 + 0.0485606i \(0.0154634\pi\)
−0.998820 + 0.0485606i \(0.984537\pi\)
\(62\) 0 0
\(63\) 39854.5 1.26510
\(64\) 0 0
\(65\) 22301.7 0.654717
\(66\) 0 0
\(67\) − 54981.5i − 1.49634i −0.663509 0.748168i \(-0.730934\pi\)
0.663509 0.748168i \(-0.269066\pi\)
\(68\) 0 0
\(69\) − 40147.8i − 1.01517i
\(70\) 0 0
\(71\) −42879.2 −1.00949 −0.504744 0.863269i \(-0.668413\pi\)
−0.504744 + 0.863269i \(0.668413\pi\)
\(72\) 0 0
\(73\) −20893.2 −0.458879 −0.229440 0.973323i \(-0.573689\pi\)
−0.229440 + 0.973323i \(0.573689\pi\)
\(74\) 0 0
\(75\) − 15657.6i − 0.321418i
\(76\) 0 0
\(77\) 76762.2i 1.47544i
\(78\) 0 0
\(79\) −30227.6 −0.544925 −0.272462 0.962166i \(-0.587838\pi\)
−0.272462 + 0.962166i \(0.587838\pi\)
\(80\) 0 0
\(81\) −4586.03 −0.0776648
\(82\) 0 0
\(83\) − 93949.9i − 1.49693i −0.663175 0.748465i \(-0.730791\pi\)
0.663175 0.748465i \(-0.269209\pi\)
\(84\) 0 0
\(85\) 28470.3i 0.427410i
\(86\) 0 0
\(87\) −54074.1 −0.765934
\(88\) 0 0
\(89\) 1178.06 0.0157650 0.00788248 0.999969i \(-0.497491\pi\)
0.00788248 + 0.999969i \(0.497491\pi\)
\(90\) 0 0
\(91\) 92439.5i 1.17018i
\(92\) 0 0
\(93\) − 124139.i − 1.48834i
\(94\) 0 0
\(95\) −28886.4 −0.328386
\(96\) 0 0
\(97\) 74100.8 0.799638 0.399819 0.916594i \(-0.369073\pi\)
0.399819 + 0.916594i \(0.369073\pi\)
\(98\) 0 0
\(99\) 284908.i 2.92157i
\(100\) 0 0
\(101\) 31104.3i 0.303401i 0.988427 + 0.151700i \(0.0484749\pi\)
−0.988427 + 0.151700i \(0.951525\pi\)
\(102\) 0 0
\(103\) 140298. 1.30305 0.651523 0.758629i \(-0.274130\pi\)
0.651523 + 0.758629i \(0.274130\pi\)
\(104\) 0 0
\(105\) 64900.0 0.574475
\(106\) 0 0
\(107\) 34792.6i 0.293784i 0.989153 + 0.146892i \(0.0469269\pi\)
−0.989153 + 0.146892i \(0.953073\pi\)
\(108\) 0 0
\(109\) 83759.2i 0.675252i 0.941280 + 0.337626i \(0.109624\pi\)
−0.941280 + 0.337626i \(0.890376\pi\)
\(110\) 0 0
\(111\) −110327. −0.849910
\(112\) 0 0
\(113\) 57262.1 0.421863 0.210931 0.977501i \(-0.432350\pi\)
0.210931 + 0.977501i \(0.432350\pi\)
\(114\) 0 0
\(115\) − 40064.3i − 0.282497i
\(116\) 0 0
\(117\) 343095.i 2.31713i
\(118\) 0 0
\(119\) −118008. −0.763914
\(120\) 0 0
\(121\) −387698. −2.40730
\(122\) 0 0
\(123\) 94712.5i 0.564475i
\(124\) 0 0
\(125\) − 15625.0i − 0.0894427i
\(126\) 0 0
\(127\) 8848.12 0.0486790 0.0243395 0.999704i \(-0.492252\pi\)
0.0243395 + 0.999704i \(0.492252\pi\)
\(128\) 0 0
\(129\) 327389. 1.73217
\(130\) 0 0
\(131\) − 110458.i − 0.562365i −0.959654 0.281183i \(-0.909273\pi\)
0.959654 0.281183i \(-0.0907267\pi\)
\(132\) 0 0
\(133\) − 119733.i − 0.586929i
\(134\) 0 0
\(135\) 88688.7 0.418826
\(136\) 0 0
\(137\) −304365. −1.38546 −0.692728 0.721199i \(-0.743591\pi\)
−0.692728 + 0.721199i \(0.743591\pi\)
\(138\) 0 0
\(139\) 59379.5i 0.260675i 0.991470 + 0.130338i \(0.0416061\pi\)
−0.991470 + 0.130338i \(0.958394\pi\)
\(140\) 0 0
\(141\) 200431.i 0.849020i
\(142\) 0 0
\(143\) −660822. −2.70237
\(144\) 0 0
\(145\) −53961.7 −0.213140
\(146\) 0 0
\(147\) − 152043.i − 0.580326i
\(148\) 0 0
\(149\) − 233744.i − 0.862529i −0.902225 0.431265i \(-0.858068\pi\)
0.902225 0.431265i \(-0.141932\pi\)
\(150\) 0 0
\(151\) 89068.4 0.317893 0.158947 0.987287i \(-0.449190\pi\)
0.158947 + 0.987287i \(0.449190\pi\)
\(152\) 0 0
\(153\) −437994. −1.51266
\(154\) 0 0
\(155\) − 123881.i − 0.414167i
\(156\) 0 0
\(157\) − 608909.i − 1.97153i −0.168132 0.985764i \(-0.553773\pi\)
0.168132 0.985764i \(-0.446227\pi\)
\(158\) 0 0
\(159\) 859628. 2.69661
\(160\) 0 0
\(161\) 166065. 0.504910
\(162\) 0 0
\(163\) 172801.i 0.509421i 0.967017 + 0.254711i \(0.0819802\pi\)
−0.967017 + 0.254711i \(0.918020\pi\)
\(164\) 0 0
\(165\) 463950.i 1.32666i
\(166\) 0 0
\(167\) −441506. −1.22503 −0.612513 0.790461i \(-0.709841\pi\)
−0.612513 + 0.790461i \(0.709841\pi\)
\(168\) 0 0
\(169\) −424490. −1.14327
\(170\) 0 0
\(171\) − 444397.i − 1.16220i
\(172\) 0 0
\(173\) 281414.i 0.714874i 0.933937 + 0.357437i \(0.116349\pi\)
−0.933937 + 0.357437i \(0.883651\pi\)
\(174\) 0 0
\(175\) 64765.0 0.159862
\(176\) 0 0
\(177\) 552774. 1.32622
\(178\) 0 0
\(179\) 805768.i 1.87965i 0.341655 + 0.939825i \(0.389013\pi\)
−0.341655 + 0.939825i \(0.610987\pi\)
\(180\) 0 0
\(181\) − 610344.i − 1.38477i −0.721528 0.692385i \(-0.756560\pi\)
0.721528 0.692385i \(-0.243440\pi\)
\(182\) 0 0
\(183\) −70710.3 −0.156083
\(184\) 0 0
\(185\) −110097. −0.236509
\(186\) 0 0
\(187\) − 843604.i − 1.76415i
\(188\) 0 0
\(189\) 367611.i 0.748573i
\(190\) 0 0
\(191\) 845737. 1.67746 0.838729 0.544549i \(-0.183299\pi\)
0.838729 + 0.544549i \(0.183299\pi\)
\(192\) 0 0
\(193\) −184089. −0.355742 −0.177871 0.984054i \(-0.556921\pi\)
−0.177871 + 0.984054i \(0.556921\pi\)
\(194\) 0 0
\(195\) 558703.i 1.05219i
\(196\) 0 0
\(197\) 390522.i 0.716935i 0.933542 + 0.358468i \(0.116701\pi\)
−0.933542 + 0.358468i \(0.883299\pi\)
\(198\) 0 0
\(199\) 584263. 1.04587 0.522933 0.852374i \(-0.324838\pi\)
0.522933 + 0.852374i \(0.324838\pi\)
\(200\) 0 0
\(201\) 1.37740e6 2.40475
\(202\) 0 0
\(203\) − 223669.i − 0.380948i
\(204\) 0 0
\(205\) 94515.6i 0.157079i
\(206\) 0 0
\(207\) 616361. 0.999791
\(208\) 0 0
\(209\) 855935. 1.35542
\(210\) 0 0
\(211\) − 428258.i − 0.662215i −0.943593 0.331107i \(-0.892578\pi\)
0.943593 0.331107i \(-0.107422\pi\)
\(212\) 0 0
\(213\) − 1.07421e6i − 1.62234i
\(214\) 0 0
\(215\) 326708. 0.482018
\(216\) 0 0
\(217\) 513482. 0.740246
\(218\) 0 0
\(219\) − 523419.i − 0.737461i
\(220\) 0 0
\(221\) − 1.01590e6i − 1.39916i
\(222\) 0 0
\(223\) −955618. −1.28683 −0.643416 0.765517i \(-0.722484\pi\)
−0.643416 + 0.765517i \(0.722484\pi\)
\(224\) 0 0
\(225\) 240379. 0.316549
\(226\) 0 0
\(227\) 866233.i 1.11576i 0.829922 + 0.557879i \(0.188385\pi\)
−0.829922 + 0.557879i \(0.811615\pi\)
\(228\) 0 0
\(229\) 654035.i 0.824161i 0.911147 + 0.412080i \(0.135198\pi\)
−0.911147 + 0.412080i \(0.864802\pi\)
\(230\) 0 0
\(231\) −1.92305e6 −2.37116
\(232\) 0 0
\(233\) −820513. −0.990138 −0.495069 0.868854i \(-0.664857\pi\)
−0.495069 + 0.868854i \(0.664857\pi\)
\(234\) 0 0
\(235\) 200015.i 0.236261i
\(236\) 0 0
\(237\) − 757265.i − 0.875744i
\(238\) 0 0
\(239\) −867314. −0.982159 −0.491079 0.871115i \(-0.663397\pi\)
−0.491079 + 0.871115i \(0.663397\pi\)
\(240\) 0 0
\(241\) −1.65377e6 −1.83414 −0.917072 0.398722i \(-0.869454\pi\)
−0.917072 + 0.398722i \(0.869454\pi\)
\(242\) 0 0
\(243\) − 976943.i − 1.06134i
\(244\) 0 0
\(245\) − 151726.i − 0.161490i
\(246\) 0 0
\(247\) 1.03075e6 1.07500
\(248\) 0 0
\(249\) 2.35364e6 2.40570
\(250\) 0 0
\(251\) − 860879.i − 0.862497i −0.902233 0.431249i \(-0.858073\pi\)
0.902233 0.431249i \(-0.141927\pi\)
\(252\) 0 0
\(253\) 1.18715e6i 1.16601i
\(254\) 0 0
\(255\) −713240. −0.686887
\(256\) 0 0
\(257\) −765335. −0.722801 −0.361401 0.932411i \(-0.617701\pi\)
−0.361401 + 0.932411i \(0.617701\pi\)
\(258\) 0 0
\(259\) − 456349.i − 0.422715i
\(260\) 0 0
\(261\) − 830162.i − 0.754330i
\(262\) 0 0
\(263\) −260746. −0.232449 −0.116225 0.993223i \(-0.537079\pi\)
−0.116225 + 0.993223i \(0.537079\pi\)
\(264\) 0 0
\(265\) 857841. 0.750399
\(266\) 0 0
\(267\) 29512.9i 0.0253357i
\(268\) 0 0
\(269\) 1.12412e6i 0.947175i 0.880747 + 0.473587i \(0.157041\pi\)
−0.880747 + 0.473587i \(0.842959\pi\)
\(270\) 0 0
\(271\) 1.07277e6 0.887330 0.443665 0.896193i \(-0.353678\pi\)
0.443665 + 0.896193i \(0.353678\pi\)
\(272\) 0 0
\(273\) −2.31580e6 −1.88059
\(274\) 0 0
\(275\) 462985.i 0.369177i
\(276\) 0 0
\(277\) − 615080.i − 0.481651i −0.970568 0.240825i \(-0.922582\pi\)
0.970568 0.240825i \(-0.0774181\pi\)
\(278\) 0 0
\(279\) 1.90582e6 1.46579
\(280\) 0 0
\(281\) −652198. −0.492736 −0.246368 0.969176i \(-0.579237\pi\)
−0.246368 + 0.969176i \(0.579237\pi\)
\(282\) 0 0
\(283\) − 908596.i − 0.674380i −0.941437 0.337190i \(-0.890524\pi\)
0.941437 0.337190i \(-0.109476\pi\)
\(284\) 0 0
\(285\) − 723665.i − 0.527747i
\(286\) 0 0
\(287\) −391763. −0.280750
\(288\) 0 0
\(289\) −122967. −0.0866050
\(290\) 0 0
\(291\) 1.85638e6i 1.28509i
\(292\) 0 0
\(293\) − 514047.i − 0.349811i −0.984585 0.174906i \(-0.944038\pi\)
0.984585 0.174906i \(-0.0559621\pi\)
\(294\) 0 0
\(295\) 551624. 0.369053
\(296\) 0 0
\(297\) −2.62794e6 −1.72872
\(298\) 0 0
\(299\) 1.42960e6i 0.924778i
\(300\) 0 0
\(301\) 1.35419e6i 0.861517i
\(302\) 0 0
\(303\) −779227. −0.487593
\(304\) 0 0
\(305\) −70563.3 −0.0434339
\(306\) 0 0
\(307\) 1.46693e6i 0.888309i 0.895950 + 0.444155i \(0.146496\pi\)
−0.895950 + 0.444155i \(0.853504\pi\)
\(308\) 0 0
\(309\) 3.51477e6i 2.09411i
\(310\) 0 0
\(311\) −547919. −0.321229 −0.160615 0.987017i \(-0.551348\pi\)
−0.160615 + 0.987017i \(0.551348\pi\)
\(312\) 0 0
\(313\) 1.70857e6 0.985762 0.492881 0.870097i \(-0.335944\pi\)
0.492881 + 0.870097i \(0.335944\pi\)
\(314\) 0 0
\(315\) 996363.i 0.565772i
\(316\) 0 0
\(317\) 978608.i 0.546966i 0.961877 + 0.273483i \(0.0881758\pi\)
−0.961877 + 0.273483i \(0.911824\pi\)
\(318\) 0 0
\(319\) 1.59894e6 0.879743
\(320\) 0 0
\(321\) −871627. −0.472137
\(322\) 0 0
\(323\) 1.31585e6i 0.701777i
\(324\) 0 0
\(325\) 557542.i 0.292799i
\(326\) 0 0
\(327\) −2.09834e6 −1.08519
\(328\) 0 0
\(329\) −829053. −0.422272
\(330\) 0 0
\(331\) 345907.i 0.173536i 0.996229 + 0.0867679i \(0.0276539\pi\)
−0.996229 + 0.0867679i \(0.972346\pi\)
\(332\) 0 0
\(333\) − 1.69377e6i − 0.837034i
\(334\) 0 0
\(335\) 1.37454e6 0.669182
\(336\) 0 0
\(337\) 376513. 0.180595 0.0902975 0.995915i \(-0.471218\pi\)
0.0902975 + 0.995915i \(0.471218\pi\)
\(338\) 0 0
\(339\) 1.43454e6i 0.677972i
\(340\) 0 0
\(341\) 3.67073e6i 1.70949i
\(342\) 0 0
\(343\) 2.37051e6 1.08794
\(344\) 0 0
\(345\) 1.00370e6 0.453998
\(346\) 0 0
\(347\) 164656.i 0.0734099i 0.999326 + 0.0367049i \(0.0116862\pi\)
−0.999326 + 0.0367049i \(0.988314\pi\)
\(348\) 0 0
\(349\) 35942.6i 0.0157959i 0.999969 + 0.00789797i \(0.00251403\pi\)
−0.999969 + 0.00789797i \(0.997486\pi\)
\(350\) 0 0
\(351\) −3.16465e6 −1.37106
\(352\) 0 0
\(353\) 1.39430e6 0.595550 0.297775 0.954636i \(-0.403756\pi\)
0.297775 + 0.954636i \(0.403756\pi\)
\(354\) 0 0
\(355\) − 1.07198e6i − 0.451457i
\(356\) 0 0
\(357\) − 2.95635e6i − 1.22768i
\(358\) 0 0
\(359\) −3.50589e6 −1.43569 −0.717847 0.696201i \(-0.754872\pi\)
−0.717847 + 0.696201i \(0.754872\pi\)
\(360\) 0 0
\(361\) 1.14102e6 0.460812
\(362\) 0 0
\(363\) − 9.71265e6i − 3.86875i
\(364\) 0 0
\(365\) − 522331.i − 0.205217i
\(366\) 0 0
\(367\) −3.64440e6 −1.41241 −0.706206 0.708007i \(-0.749595\pi\)
−0.706206 + 0.708007i \(0.749595\pi\)
\(368\) 0 0
\(369\) −1.45405e6 −0.555923
\(370\) 0 0
\(371\) 3.55572e6i 1.34120i
\(372\) 0 0
\(373\) − 4.19252e6i − 1.56028i −0.625603 0.780142i \(-0.715147\pi\)
0.625603 0.780142i \(-0.284853\pi\)
\(374\) 0 0
\(375\) 391439. 0.143743
\(376\) 0 0
\(377\) 1.92550e6 0.697734
\(378\) 0 0
\(379\) − 2.31089e6i − 0.826384i −0.910644 0.413192i \(-0.864414\pi\)
0.910644 0.413192i \(-0.135586\pi\)
\(380\) 0 0
\(381\) 221664.i 0.0782316i
\(382\) 0 0
\(383\) −1.18240e6 −0.411876 −0.205938 0.978565i \(-0.566024\pi\)
−0.205938 + 0.978565i \(0.566024\pi\)
\(384\) 0 0
\(385\) −1.91906e6 −0.659835
\(386\) 0 0
\(387\) 5.02617e6i 1.70592i
\(388\) 0 0
\(389\) 5.09219e6i 1.70620i 0.521745 + 0.853102i \(0.325281\pi\)
−0.521745 + 0.853102i \(0.674719\pi\)
\(390\) 0 0
\(391\) −1.82503e6 −0.603709
\(392\) 0 0
\(393\) 2.76720e6 0.903773
\(394\) 0 0
\(395\) − 755691.i − 0.243698i
\(396\) 0 0
\(397\) 63006.9i 0.0200637i 0.999950 + 0.0100319i \(0.00319330\pi\)
−0.999950 + 0.0100319i \(0.996807\pi\)
\(398\) 0 0
\(399\) 2.99957e6 0.943248
\(400\) 0 0
\(401\) −4.48960e6 −1.39427 −0.697135 0.716940i \(-0.745542\pi\)
−0.697135 + 0.716940i \(0.745542\pi\)
\(402\) 0 0
\(403\) 4.42041e6i 1.35581i
\(404\) 0 0
\(405\) − 114651.i − 0.0347327i
\(406\) 0 0
\(407\) 3.26230e6 0.976197
\(408\) 0 0
\(409\) 2.03416e6 0.601281 0.300641 0.953738i \(-0.402800\pi\)
0.300641 + 0.953738i \(0.402800\pi\)
\(410\) 0 0
\(411\) − 7.62497e6i − 2.22656i
\(412\) 0 0
\(413\) 2.28646e6i 0.659612i
\(414\) 0 0
\(415\) 2.34875e6 0.669447
\(416\) 0 0
\(417\) −1.48758e6 −0.418929
\(418\) 0 0
\(419\) 1.53143e6i 0.426150i 0.977036 + 0.213075i \(0.0683479\pi\)
−0.977036 + 0.213075i \(0.931652\pi\)
\(420\) 0 0
\(421\) − 4.86857e6i − 1.33874i −0.742929 0.669370i \(-0.766564\pi\)
0.742929 0.669370i \(-0.233436\pi\)
\(422\) 0 0
\(423\) −3.07708e6 −0.836157
\(424\) 0 0
\(425\) −711757. −0.191143
\(426\) 0 0
\(427\) − 292482.i − 0.0776300i
\(428\) 0 0
\(429\) − 1.65550e7i − 4.34295i
\(430\) 0 0
\(431\) −537754. −0.139441 −0.0697204 0.997567i \(-0.522211\pi\)
−0.0697204 + 0.997567i \(0.522211\pi\)
\(432\) 0 0
\(433\) 1.48235e6 0.379954 0.189977 0.981789i \(-0.439159\pi\)
0.189977 + 0.981789i \(0.439159\pi\)
\(434\) 0 0
\(435\) − 1.35185e6i − 0.342536i
\(436\) 0 0
\(437\) − 1.85171e6i − 0.463840i
\(438\) 0 0
\(439\) 2.49966e6 0.619041 0.309520 0.950893i \(-0.399832\pi\)
0.309520 + 0.950893i \(0.399832\pi\)
\(440\) 0 0
\(441\) 2.33420e6 0.571534
\(442\) 0 0
\(443\) 5.00804e6i 1.21244i 0.795299 + 0.606218i \(0.207314\pi\)
−0.795299 + 0.606218i \(0.792686\pi\)
\(444\) 0 0
\(445\) 29451.5i 0.00705030i
\(446\) 0 0
\(447\) 5.85576e6 1.38616
\(448\) 0 0
\(449\) 3.04025e6 0.711694 0.355847 0.934544i \(-0.384192\pi\)
0.355847 + 0.934544i \(0.384192\pi\)
\(450\) 0 0
\(451\) − 2.80059e6i − 0.648349i
\(452\) 0 0
\(453\) 2.23135e6i 0.510884i
\(454\) 0 0
\(455\) −2.31099e6 −0.523322
\(456\) 0 0
\(457\) 7.20014e6 1.61269 0.806345 0.591446i \(-0.201443\pi\)
0.806345 + 0.591446i \(0.201443\pi\)
\(458\) 0 0
\(459\) − 4.03999e6i − 0.895052i
\(460\) 0 0
\(461\) 7.87732e6i 1.72634i 0.504914 + 0.863170i \(0.331524\pi\)
−0.504914 + 0.863170i \(0.668476\pi\)
\(462\) 0 0
\(463\) 6.18812e6 1.34155 0.670774 0.741662i \(-0.265962\pi\)
0.670774 + 0.741662i \(0.265962\pi\)
\(464\) 0 0
\(465\) 3.10348e6 0.665605
\(466\) 0 0
\(467\) − 7.21143e6i − 1.53013i −0.643952 0.765066i \(-0.722706\pi\)
0.643952 0.765066i \(-0.277294\pi\)
\(468\) 0 0
\(469\) 5.69740e6i 1.19604i
\(470\) 0 0
\(471\) 1.52544e7 3.16843
\(472\) 0 0
\(473\) −9.68070e6 −1.98955
\(474\) 0 0
\(475\) − 722161.i − 0.146859i
\(476\) 0 0
\(477\) 1.31973e7i 2.65575i
\(478\) 0 0
\(479\) −4.05783e6 −0.808081 −0.404040 0.914741i \(-0.632395\pi\)
−0.404040 + 0.914741i \(0.632395\pi\)
\(480\) 0 0
\(481\) 3.92856e6 0.774232
\(482\) 0 0
\(483\) 4.16028e6i 0.811437i
\(484\) 0 0
\(485\) 1.85252e6i 0.357609i
\(486\) 0 0
\(487\) −121792. −0.0232700 −0.0116350 0.999932i \(-0.503704\pi\)
−0.0116350 + 0.999932i \(0.503704\pi\)
\(488\) 0 0
\(489\) −4.32902e6 −0.818687
\(490\) 0 0
\(491\) 2.80649e6i 0.525363i 0.964883 + 0.262682i \(0.0846069\pi\)
−0.964883 + 0.262682i \(0.915393\pi\)
\(492\) 0 0
\(493\) 2.45809e6i 0.455491i
\(494\) 0 0
\(495\) −7.12269e6 −1.30656
\(496\) 0 0
\(497\) 4.44332e6 0.806894
\(498\) 0 0
\(499\) 2.59476e6i 0.466494i 0.972418 + 0.233247i \(0.0749351\pi\)
−0.972418 + 0.233247i \(0.925065\pi\)
\(500\) 0 0
\(501\) − 1.10606e7i − 1.96873i
\(502\) 0 0
\(503\) −1.04638e6 −0.184404 −0.0922021 0.995740i \(-0.529391\pi\)
−0.0922021 + 0.995740i \(0.529391\pi\)
\(504\) 0 0
\(505\) −777607. −0.135685
\(506\) 0 0
\(507\) − 1.06344e7i − 1.83735i
\(508\) 0 0
\(509\) − 8.38369e6i − 1.43430i −0.696918 0.717151i \(-0.745446\pi\)
0.696918 0.717151i \(-0.254554\pi\)
\(510\) 0 0
\(511\) 2.16504e6 0.366787
\(512\) 0 0
\(513\) 4.09904e6 0.687684
\(514\) 0 0
\(515\) 3.50746e6i 0.582740i
\(516\) 0 0
\(517\) − 5.92664e6i − 0.975174i
\(518\) 0 0
\(519\) −7.05000e6 −1.14887
\(520\) 0 0
\(521\) −4.38397e6 −0.707577 −0.353788 0.935325i \(-0.615107\pi\)
−0.353788 + 0.935325i \(0.615107\pi\)
\(522\) 0 0
\(523\) 915789.i 0.146400i 0.997317 + 0.0732000i \(0.0233211\pi\)
−0.997317 + 0.0732000i \(0.976679\pi\)
\(524\) 0 0
\(525\) 1.62250e6i 0.256913i
\(526\) 0 0
\(527\) −5.64309e6 −0.885096
\(528\) 0 0
\(529\) −3.86810e6 −0.600978
\(530\) 0 0
\(531\) 8.48634e6i 1.30612i
\(532\) 0 0
\(533\) − 3.37257e6i − 0.514212i
\(534\) 0 0
\(535\) −869815. −0.131384
\(536\) 0 0
\(537\) −2.01862e7 −3.02077
\(538\) 0 0
\(539\) 4.49581e6i 0.666556i
\(540\) 0 0
\(541\) − 6.98594e6i − 1.02620i −0.858329 0.513100i \(-0.828497\pi\)
0.858329 0.513100i \(-0.171503\pi\)
\(542\) 0 0
\(543\) 1.52904e7 2.22545
\(544\) 0 0
\(545\) −2.09398e6 −0.301982
\(546\) 0 0
\(547\) − 4.72947e6i − 0.675841i −0.941175 0.337920i \(-0.890277\pi\)
0.941175 0.337920i \(-0.109723\pi\)
\(548\) 0 0
\(549\) − 1.08556e6i − 0.153718i
\(550\) 0 0
\(551\) −2.49402e6 −0.349962
\(552\) 0 0
\(553\) 3.13231e6 0.435564
\(554\) 0 0
\(555\) − 2.75817e6i − 0.380091i
\(556\) 0 0
\(557\) − 3.26312e6i − 0.445651i −0.974858 0.222825i \(-0.928472\pi\)
0.974858 0.222825i \(-0.0715280\pi\)
\(558\) 0 0
\(559\) −1.16578e7 −1.57793
\(560\) 0 0
\(561\) 2.11340e7 2.83514
\(562\) 0 0
\(563\) 5.81898e6i 0.773706i 0.922141 + 0.386853i \(0.126438\pi\)
−0.922141 + 0.386853i \(0.873562\pi\)
\(564\) 0 0
\(565\) 1.43155e6i 0.188663i
\(566\) 0 0
\(567\) 475223. 0.0620782
\(568\) 0 0
\(569\) −9.08770e6 −1.17672 −0.588360 0.808599i \(-0.700226\pi\)
−0.588360 + 0.808599i \(0.700226\pi\)
\(570\) 0 0
\(571\) 258870.i 0.0332270i 0.999862 + 0.0166135i \(0.00528849\pi\)
−0.999862 + 0.0166135i \(0.994712\pi\)
\(572\) 0 0
\(573\) 2.11875e7i 2.69583i
\(574\) 0 0
\(575\) 1.00161e6 0.126336
\(576\) 0 0
\(577\) 2.45070e6 0.306444 0.153222 0.988192i \(-0.451035\pi\)
0.153222 + 0.988192i \(0.451035\pi\)
\(578\) 0 0
\(579\) − 4.61182e6i − 0.571710i
\(580\) 0 0
\(581\) 9.73547e6i 1.19651i
\(582\) 0 0
\(583\) −2.54187e7 −3.09729
\(584\) 0 0
\(585\) −8.57737e6 −1.03625
\(586\) 0 0
\(587\) − 3.61982e6i − 0.433602i −0.976216 0.216801i \(-0.930438\pi\)
0.976216 0.216801i \(-0.0695623\pi\)
\(588\) 0 0
\(589\) − 5.72557e6i − 0.680034i
\(590\) 0 0
\(591\) −9.78339e6 −1.15218
\(592\) 0 0
\(593\) −7.07347e6 −0.826030 −0.413015 0.910724i \(-0.635524\pi\)
−0.413015 + 0.910724i \(0.635524\pi\)
\(594\) 0 0
\(595\) − 2.95020e6i − 0.341633i
\(596\) 0 0
\(597\) 1.46370e7i 1.68080i
\(598\) 0 0
\(599\) 2.71813e6 0.309530 0.154765 0.987951i \(-0.450538\pi\)
0.154765 + 0.987951i \(0.450538\pi\)
\(600\) 0 0
\(601\) 1.67171e6 0.188788 0.0943942 0.995535i \(-0.469909\pi\)
0.0943942 + 0.995535i \(0.469909\pi\)
\(602\) 0 0
\(603\) 2.11462e7i 2.36832i
\(604\) 0 0
\(605\) − 9.69245e6i − 1.07658i
\(606\) 0 0
\(607\) 2.35562e6 0.259498 0.129749 0.991547i \(-0.458583\pi\)
0.129749 + 0.991547i \(0.458583\pi\)
\(608\) 0 0
\(609\) 5.60338e6 0.612219
\(610\) 0 0
\(611\) − 7.13705e6i − 0.773421i
\(612\) 0 0
\(613\) − 1.88749e6i − 0.202877i −0.994842 0.101439i \(-0.967655\pi\)
0.994842 0.101439i \(-0.0323445\pi\)
\(614\) 0 0
\(615\) −2.36781e6 −0.252441
\(616\) 0 0
\(617\) 1.45446e7 1.53812 0.769058 0.639178i \(-0.220725\pi\)
0.769058 + 0.639178i \(0.220725\pi\)
\(618\) 0 0
\(619\) − 1.08497e7i − 1.13813i −0.822292 0.569066i \(-0.807305\pi\)
0.822292 0.569066i \(-0.192695\pi\)
\(620\) 0 0
\(621\) 5.68521e6i 0.591585i
\(622\) 0 0
\(623\) −122075. −0.0126011
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 2.14430e7i 2.17829i
\(628\) 0 0
\(629\) 5.01520e6i 0.505431i
\(630\) 0 0
\(631\) −3.76561e6 −0.376497 −0.188249 0.982121i \(-0.560281\pi\)
−0.188249 + 0.982121i \(0.560281\pi\)
\(632\) 0 0
\(633\) 1.07287e7 1.06424
\(634\) 0 0
\(635\) 221203.i 0.0217699i
\(636\) 0 0
\(637\) 5.41400e6i 0.528652i
\(638\) 0 0
\(639\) 1.64917e7 1.59776
\(640\) 0 0
\(641\) −223711. −0.0215052 −0.0107526 0.999942i \(-0.503423\pi\)
−0.0107526 + 0.999942i \(0.503423\pi\)
\(642\) 0 0
\(643\) 2.53011e6i 0.241330i 0.992693 + 0.120665i \(0.0385028\pi\)
−0.992693 + 0.120665i \(0.961497\pi\)
\(644\) 0 0
\(645\) 8.18472e6i 0.774648i
\(646\) 0 0
\(647\) 8.44825e6 0.793425 0.396713 0.917943i \(-0.370151\pi\)
0.396713 + 0.917943i \(0.370151\pi\)
\(648\) 0 0
\(649\) −1.63452e7 −1.52328
\(650\) 0 0
\(651\) 1.28638e7i 1.18964i
\(652\) 0 0
\(653\) 1.72303e7i 1.58128i 0.612280 + 0.790641i \(0.290253\pi\)
−0.612280 + 0.790641i \(0.709747\pi\)
\(654\) 0 0
\(655\) 2.76145e6 0.251497
\(656\) 0 0
\(657\) 8.03568e6 0.726289
\(658\) 0 0
\(659\) 5.43243e6i 0.487282i 0.969865 + 0.243641i \(0.0783419\pi\)
−0.969865 + 0.243641i \(0.921658\pi\)
\(660\) 0 0
\(661\) − 1.12770e7i − 1.00390i −0.864897 0.501949i \(-0.832616\pi\)
0.864897 0.501949i \(-0.167384\pi\)
\(662\) 0 0
\(663\) 2.54503e7 2.24858
\(664\) 0 0
\(665\) 2.99333e6 0.262483
\(666\) 0 0
\(667\) − 3.45911e6i − 0.301057i
\(668\) 0 0
\(669\) − 2.39402e7i − 2.06806i
\(670\) 0 0
\(671\) 2.09086e6 0.179275
\(672\) 0 0
\(673\) 1.15475e7 0.982769 0.491384 0.870943i \(-0.336491\pi\)
0.491384 + 0.870943i \(0.336491\pi\)
\(674\) 0 0
\(675\) 2.21722e6i 0.187305i
\(676\) 0 0
\(677\) 8.72804e6i 0.731889i 0.930637 + 0.365944i \(0.119254\pi\)
−0.930637 + 0.365944i \(0.880746\pi\)
\(678\) 0 0
\(679\) −7.67862e6 −0.639159
\(680\) 0 0
\(681\) −2.17009e7 −1.79313
\(682\) 0 0
\(683\) − 5.37492e6i − 0.440880i −0.975401 0.220440i \(-0.929251\pi\)
0.975401 0.220440i \(-0.0707493\pi\)
\(684\) 0 0
\(685\) − 7.60912e6i − 0.619595i
\(686\) 0 0
\(687\) −1.63849e7 −1.32450
\(688\) 0 0
\(689\) −3.06101e7 −2.45650
\(690\) 0 0
\(691\) 1.03106e7i 0.821467i 0.911756 + 0.410733i \(0.134727\pi\)
−0.911756 + 0.410733i \(0.865273\pi\)
\(692\) 0 0
\(693\) − 2.95233e7i − 2.33524i
\(694\) 0 0
\(695\) −1.48449e6 −0.116577
\(696\) 0 0
\(697\) 4.30541e6 0.335686
\(698\) 0 0
\(699\) − 2.05556e7i − 1.59124i
\(700\) 0 0
\(701\) 7.87993e6i 0.605658i 0.953045 + 0.302829i \(0.0979311\pi\)
−0.953045 + 0.302829i \(0.902069\pi\)
\(702\) 0 0
\(703\) −5.08851e6 −0.388331
\(704\) 0 0
\(705\) −5.01078e6 −0.379693
\(706\) 0 0
\(707\) − 3.22315e6i − 0.242511i
\(708\) 0 0
\(709\) 2.06172e7i 1.54033i 0.637846 + 0.770164i \(0.279826\pi\)
−0.637846 + 0.770164i \(0.720174\pi\)
\(710\) 0 0
\(711\) 1.16258e7 0.862476
\(712\) 0 0
\(713\) 7.94115e6 0.585005
\(714\) 0 0
\(715\) − 1.65205e7i − 1.20853i
\(716\) 0 0
\(717\) − 2.17280e7i − 1.57842i
\(718\) 0 0
\(719\) −1.37162e7 −0.989490 −0.494745 0.869038i \(-0.664738\pi\)
−0.494745 + 0.869038i \(0.664738\pi\)
\(720\) 0 0
\(721\) −1.45383e7 −1.04154
\(722\) 0 0
\(723\) − 4.14305e7i − 2.94764i
\(724\) 0 0
\(725\) − 1.34904e6i − 0.0953193i
\(726\) 0 0
\(727\) 2.33681e7 1.63979 0.819895 0.572514i \(-0.194032\pi\)
0.819895 + 0.572514i \(0.194032\pi\)
\(728\) 0 0
\(729\) 2.33601e7 1.62800
\(730\) 0 0
\(731\) − 1.48823e7i − 1.03010i
\(732\) 0 0
\(733\) − 2.94411e6i − 0.202392i −0.994866 0.101196i \(-0.967733\pi\)
0.994866 0.101196i \(-0.0322670\pi\)
\(734\) 0 0
\(735\) 3.80106e6 0.259530
\(736\) 0 0
\(737\) −4.07289e7 −2.76207
\(738\) 0 0
\(739\) 3.66027e6i 0.246548i 0.992373 + 0.123274i \(0.0393395\pi\)
−0.992373 + 0.123274i \(0.960661\pi\)
\(740\) 0 0
\(741\) 2.58223e7i 1.72763i
\(742\) 0 0
\(743\) 2.60824e7 1.73331 0.866653 0.498912i \(-0.166267\pi\)
0.866653 + 0.498912i \(0.166267\pi\)
\(744\) 0 0
\(745\) 5.84359e6 0.385735
\(746\) 0 0
\(747\) 3.61338e7i 2.36926i
\(748\) 0 0
\(749\) − 3.60535e6i − 0.234824i
\(750\) 0 0
\(751\) 1.03196e7 0.667673 0.333836 0.942631i \(-0.391657\pi\)
0.333836 + 0.942631i \(0.391657\pi\)
\(752\) 0 0
\(753\) 2.15668e7 1.38611
\(754\) 0 0
\(755\) 2.22671e6i 0.142166i
\(756\) 0 0
\(757\) − 2.70313e7i − 1.71446i −0.514936 0.857228i \(-0.672184\pi\)
0.514936 0.857228i \(-0.327816\pi\)
\(758\) 0 0
\(759\) −2.97405e7 −1.87389
\(760\) 0 0
\(761\) 1.29548e7 0.810905 0.405452 0.914116i \(-0.367114\pi\)
0.405452 + 0.914116i \(0.367114\pi\)
\(762\) 0 0
\(763\) − 8.67946e6i − 0.539736i
\(764\) 0 0
\(765\) − 1.09499e7i − 0.676480i
\(766\) 0 0
\(767\) −1.96834e7 −1.20813
\(768\) 0 0
\(769\) 8.35551e6 0.509515 0.254757 0.967005i \(-0.418004\pi\)
0.254757 + 0.967005i \(0.418004\pi\)
\(770\) 0 0
\(771\) − 1.91732e7i − 1.16161i
\(772\) 0 0
\(773\) − 3.12215e7i − 1.87934i −0.342087 0.939668i \(-0.611134\pi\)
0.342087 0.939668i \(-0.388866\pi\)
\(774\) 0 0
\(775\) 3.09703e6 0.185221
\(776\) 0 0
\(777\) 1.14325e7 0.679342
\(778\) 0 0
\(779\) 4.36835e6i 0.257913i
\(780\) 0 0
\(781\) 3.17639e7i 1.86340i
\(782\) 0 0
\(783\) 7.65727e6 0.446344
\(784\) 0 0
\(785\) 1.52227e7 0.881695
\(786\) 0 0
\(787\) − 1.14664e7i − 0.659920i −0.943995 0.329960i \(-0.892965\pi\)
0.943995 0.329960i \(-0.107035\pi\)
\(788\) 0 0
\(789\) − 6.53222e6i − 0.373567i
\(790\) 0 0
\(791\) −5.93373e6 −0.337199
\(792\) 0 0
\(793\) 2.51789e6 0.142185
\(794\) 0 0
\(795\) 2.14907e7i 1.20596i
\(796\) 0 0
\(797\) − 2.28998e7i − 1.27699i −0.769628 0.638493i \(-0.779558\pi\)
0.769628 0.638493i \(-0.220442\pi\)
\(798\) 0 0
\(799\) 9.11115e6 0.504901
\(800\) 0 0
\(801\) −453090. −0.0249519
\(802\) 0 0
\(803\) 1.54772e7i 0.847040i
\(804\) 0 0
\(805\) 4.15163e6i 0.225803i
\(806\) 0 0
\(807\) −2.81614e7 −1.52220
\(808\) 0 0
\(809\) 2.82761e7 1.51896 0.759482 0.650528i \(-0.225452\pi\)
0.759482 + 0.650528i \(0.225452\pi\)
\(810\) 0 0
\(811\) 2.97657e7i 1.58915i 0.607167 + 0.794574i \(0.292306\pi\)
−0.607167 + 0.794574i \(0.707694\pi\)
\(812\) 0 0
\(813\) 2.68752e7i 1.42602i
\(814\) 0 0
\(815\) −4.32002e6 −0.227820
\(816\) 0 0
\(817\) 1.50999e7 0.791441
\(818\) 0 0
\(819\) − 3.55529e7i − 1.85210i
\(820\) 0 0
\(821\) − 2.33663e7i − 1.20985i −0.796282 0.604926i \(-0.793203\pi\)
0.796282 0.604926i \(-0.206797\pi\)
\(822\) 0 0
\(823\) 3.90864e6 0.201153 0.100576 0.994929i \(-0.467931\pi\)
0.100576 + 0.994929i \(0.467931\pi\)
\(824\) 0 0
\(825\) −1.15987e7 −0.593302
\(826\) 0 0
\(827\) 1.34407e7i 0.683371i 0.939814 + 0.341686i \(0.110998\pi\)
−0.939814 + 0.341686i \(0.889002\pi\)
\(828\) 0 0
\(829\) 2.39273e7i 1.20923i 0.796519 + 0.604613i \(0.206672\pi\)
−0.796519 + 0.604613i \(0.793328\pi\)
\(830\) 0 0
\(831\) 1.54090e7 0.774057
\(832\) 0 0
\(833\) −6.91151e6 −0.345112
\(834\) 0 0
\(835\) − 1.10376e7i − 0.547848i
\(836\) 0 0
\(837\) 1.75790e7i 0.867320i
\(838\) 0 0
\(839\) 4.44572e6 0.218041 0.109020 0.994040i \(-0.465229\pi\)
0.109020 + 0.994040i \(0.465229\pi\)
\(840\) 0 0
\(841\) 1.58522e7 0.772856
\(842\) 0 0
\(843\) − 1.63389e7i − 0.791871i
\(844\) 0 0
\(845\) − 1.06122e7i − 0.511288i
\(846\) 0 0
\(847\) 4.01748e7 1.92418
\(848\) 0 0
\(849\) 2.27622e7 1.08379
\(850\) 0 0
\(851\) − 7.05756e6i − 0.334065i
\(852\) 0 0
\(853\) 2.57954e7i 1.21386i 0.794754 + 0.606931i \(0.207600\pi\)
−0.794754 + 0.606931i \(0.792400\pi\)
\(854\) 0 0
\(855\) 1.11099e7 0.519752
\(856\) 0 0
\(857\) 1.79012e7 0.832590 0.416295 0.909230i \(-0.363328\pi\)
0.416295 + 0.909230i \(0.363328\pi\)
\(858\) 0 0
\(859\) 2.50747e7i 1.15945i 0.814811 + 0.579727i \(0.196841\pi\)
−0.814811 + 0.579727i \(0.803159\pi\)
\(860\) 0 0
\(861\) − 9.81449e6i − 0.451190i
\(862\) 0 0
\(863\) −8.98511e6 −0.410673 −0.205337 0.978691i \(-0.565829\pi\)
−0.205337 + 0.978691i \(0.565829\pi\)
\(864\) 0 0
\(865\) −7.03534e6 −0.319702
\(866\) 0 0
\(867\) − 3.08057e6i − 0.139182i
\(868\) 0 0
\(869\) 2.23919e7i 1.00587i
\(870\) 0 0
\(871\) −4.90471e7 −2.19063
\(872\) 0 0
\(873\) −2.84997e7 −1.26562
\(874\) 0 0
\(875\) 1.61913e6i 0.0714925i
\(876\) 0 0
\(877\) − 1.08381e7i − 0.475834i −0.971286 0.237917i \(-0.923535\pi\)
0.971286 0.237917i \(-0.0764646\pi\)
\(878\) 0 0
\(879\) 1.28780e7 0.562179
\(880\) 0 0
\(881\) −816876. −0.0354582 −0.0177291 0.999843i \(-0.505644\pi\)
−0.0177291 + 0.999843i \(0.505644\pi\)
\(882\) 0 0
\(883\) 2.50842e6i 0.108268i 0.998534 + 0.0541339i \(0.0172398\pi\)
−0.998534 + 0.0541339i \(0.982760\pi\)
\(884\) 0 0
\(885\) 1.38193e7i 0.593102i
\(886\) 0 0
\(887\) 1.58294e7 0.675545 0.337773 0.941228i \(-0.390327\pi\)
0.337773 + 0.941228i \(0.390327\pi\)
\(888\) 0 0
\(889\) −916878. −0.0389096
\(890\) 0 0
\(891\) 3.39722e6i 0.143360i
\(892\) 0 0
\(893\) 9.24434e6i 0.387924i
\(894\) 0 0
\(895\) −2.01442e7 −0.840605
\(896\) 0 0
\(897\) −3.58145e7 −1.48620
\(898\) 0 0
\(899\) − 1.06957e7i − 0.441379i
\(900\) 0 0
\(901\) − 3.90768e7i − 1.60364i
\(902\) 0 0
\(903\) −3.39253e7 −1.38454
\(904\) 0 0
\(905\) 1.52586e7 0.619288
\(906\) 0 0
\(907\) 2.36328e7i 0.953887i 0.878934 + 0.476944i \(0.158255\pi\)
−0.878934 + 0.476944i \(0.841745\pi\)
\(908\) 0 0
\(909\) − 1.19629e7i − 0.480206i
\(910\) 0 0
\(911\) 9.17484e6 0.366271 0.183136 0.983088i \(-0.441375\pi\)
0.183136 + 0.983088i \(0.441375\pi\)
\(912\) 0 0
\(913\) −6.95959e7 −2.76316
\(914\) 0 0
\(915\) − 1.76776e6i − 0.0698023i
\(916\) 0 0
\(917\) 1.14461e7i 0.449504i
\(918\) 0 0
\(919\) 3.58059e7 1.39851 0.699255 0.714872i \(-0.253515\pi\)
0.699255 + 0.714872i \(0.253515\pi\)
\(920\) 0 0
\(921\) −3.67497e7 −1.42759
\(922\) 0 0
\(923\) 3.82511e7i 1.47788i
\(924\) 0 0
\(925\) − 2.75243e6i − 0.105770i
\(926\) 0 0
\(927\) −5.39597e7 −2.06239
\(928\) 0 0
\(929\) −2.41031e7 −0.916291 −0.458146 0.888877i \(-0.651486\pi\)
−0.458146 + 0.888877i \(0.651486\pi\)
\(930\) 0 0
\(931\) − 7.01254e6i − 0.265156i
\(932\) 0 0
\(933\) − 1.37265e7i − 0.516245i
\(934\) 0 0
\(935\) 2.10901e7 0.788950
\(936\) 0 0
\(937\) −1.84615e7 −0.686938 −0.343469 0.939164i \(-0.611602\pi\)
−0.343469 + 0.939164i \(0.611602\pi\)
\(938\) 0 0
\(939\) 4.28032e7i 1.58421i
\(940\) 0 0
\(941\) − 3.10319e6i − 0.114244i −0.998367 0.0571220i \(-0.981808\pi\)
0.998367 0.0571220i \(-0.0181924\pi\)
\(942\) 0 0
\(943\) −6.05873e6 −0.221872
\(944\) 0 0
\(945\) −9.19028e6 −0.334772
\(946\) 0 0
\(947\) − 4.89572e7i − 1.77395i −0.461817 0.886975i \(-0.652802\pi\)
0.461817 0.886975i \(-0.347198\pi\)
\(948\) 0 0
\(949\) 1.86382e7i 0.671796i
\(950\) 0 0
\(951\) −2.45162e7 −0.879025
\(952\) 0 0
\(953\) 3.94753e7 1.40797 0.703984 0.710216i \(-0.251403\pi\)
0.703984 + 0.710216i \(0.251403\pi\)
\(954\) 0 0
\(955\) 2.11434e7i 0.750182i
\(956\) 0 0
\(957\) 4.00568e7i 1.41383i
\(958\) 0 0
\(959\) 3.15395e7 1.10741
\(960\) 0 0
\(961\) −4.07470e6 −0.142327
\(962\) 0 0
\(963\) − 1.33815e7i − 0.464984i
\(964\) 0 0
\(965\) − 4.60223e6i − 0.159093i
\(966\) 0 0
\(967\) 2.23447e7 0.768438 0.384219 0.923242i \(-0.374471\pi\)
0.384219 + 0.923242i \(0.374471\pi\)
\(968\) 0 0
\(969\) −3.29647e7 −1.12782
\(970\) 0 0
\(971\) − 2.63033e7i − 0.895288i −0.894212 0.447644i \(-0.852263\pi\)
0.894212 0.447644i \(-0.147737\pi\)
\(972\) 0 0
\(973\) − 6.15315e6i − 0.208360i
\(974\) 0 0
\(975\) −1.39676e7 −0.470554
\(976\) 0 0
\(977\) 4.78338e7 1.60324 0.801619 0.597835i \(-0.203972\pi\)
0.801619 + 0.597835i \(0.203972\pi\)
\(978\) 0 0
\(979\) − 872679.i − 0.0291003i
\(980\) 0 0
\(981\) − 3.22144e7i − 1.06875i
\(982\) 0 0
\(983\) −4.88361e7 −1.61197 −0.805986 0.591935i \(-0.798364\pi\)
−0.805986 + 0.591935i \(0.798364\pi\)
\(984\) 0 0
\(985\) −9.76305e6 −0.320623
\(986\) 0 0
\(987\) − 2.07695e7i − 0.678630i
\(988\) 0 0
\(989\) 2.09429e7i 0.680843i
\(990\) 0 0
\(991\) −7.49231e6 −0.242344 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(992\) 0 0
\(993\) −8.66569e6 −0.278888
\(994\) 0 0
\(995\) 1.46066e7i 0.467725i
\(996\) 0 0
\(997\) 1.46209e7i 0.465841i 0.972496 + 0.232920i \(0.0748281\pi\)
−0.972496 + 0.232920i \(0.925172\pi\)
\(998\) 0 0
\(999\) 1.56230e7 0.495280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.d.a.81.18 20
4.3 odd 2 40.6.d.a.21.15 20
5.2 odd 4 800.6.f.c.49.17 20
5.3 odd 4 800.6.f.b.49.4 20
5.4 even 2 800.6.d.c.401.3 20
8.3 odd 2 40.6.d.a.21.16 yes 20
8.5 even 2 inner 160.6.d.a.81.3 20
12.11 even 2 360.6.k.b.181.6 20
20.3 even 4 200.6.f.c.149.5 20
20.7 even 4 200.6.f.b.149.16 20
20.19 odd 2 200.6.d.b.101.6 20
24.11 even 2 360.6.k.b.181.5 20
40.3 even 4 200.6.f.b.149.15 20
40.13 odd 4 800.6.f.c.49.18 20
40.19 odd 2 200.6.d.b.101.5 20
40.27 even 4 200.6.f.c.149.6 20
40.29 even 2 800.6.d.c.401.18 20
40.37 odd 4 800.6.f.b.49.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.15 20 4.3 odd 2
40.6.d.a.21.16 yes 20 8.3 odd 2
160.6.d.a.81.3 20 8.5 even 2 inner
160.6.d.a.81.18 20 1.1 even 1 trivial
200.6.d.b.101.5 20 40.19 odd 2
200.6.d.b.101.6 20 20.19 odd 2
200.6.f.b.149.15 20 40.3 even 4
200.6.f.b.149.16 20 20.7 even 4
200.6.f.c.149.5 20 20.3 even 4
200.6.f.c.149.6 20 40.27 even 4
360.6.k.b.181.5 20 24.11 even 2
360.6.k.b.181.6 20 12.11 even 2
800.6.d.c.401.3 20 5.4 even 2
800.6.d.c.401.18 20 40.29 even 2
800.6.f.b.49.3 20 40.37 odd 4
800.6.f.b.49.4 20 5.3 odd 4
800.6.f.c.49.17 20 5.2 odd 4
800.6.f.c.49.18 20 40.13 odd 4