Properties

Label 160.6.d.a.81.18
Level 160160
Weight 66
Character 160.81
Analytic conductor 25.66125.661
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 160.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.661411170125.6614111701
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 29034512 2^{90}\cdot 3^{4}\cdot 5^{12}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 81.18
Root 0.236693+3.99299i0.236693 + 3.99299i of defining polynomial
Character χ\chi == 160.81
Dual form 160.6.d.a.81.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+25.0521iq3+25.0000iq5103.624q7384.607q9740.776iq11892.067iq13626.302q15+1138.81q17+1155.46iq192596.00iq211602.57q23625.000q253547.55iq27+2158.47iq294955.24q31+18558.0q332590.60iq35+4403.89iq37+22348.1q39+3780.62q4113068.3iq439615.17iq45+8000.58q476069.06q49+28529.6iq5134313.6iq53+18519.4q5528946.6q5722065.0iq59+2822.53iq61+39854.5q63+22301.7q6554981.5iq6740147.8iq6942879.2q7120893.2q7315657.6iq75+76762.2iq7730227.6q794586.03q8193949.9iq83+28470.3iq8554074.1q87+1178.06q89+92439.5iq91124139.iq9328886.4q95+74100.8q97+284908.iq99+O(q100)q+25.0521i q^{3} +25.0000i q^{5} -103.624 q^{7} -384.607 q^{9} -740.776i q^{11} -892.067i q^{13} -626.302 q^{15} +1138.81 q^{17} +1155.46i q^{19} -2596.00i q^{21} -1602.57 q^{23} -625.000 q^{25} -3547.55i q^{27} +2158.47i q^{29} -4955.24 q^{31} +18558.0 q^{33} -2590.60i q^{35} +4403.89i q^{37} +22348.1 q^{39} +3780.62 q^{41} -13068.3i q^{43} -9615.17i q^{45} +8000.58 q^{47} -6069.06 q^{49} +28529.6i q^{51} -34313.6i q^{53} +18519.4 q^{55} -28946.6 q^{57} -22065.0i q^{59} +2822.53i q^{61} +39854.5 q^{63} +22301.7 q^{65} -54981.5i q^{67} -40147.8i q^{69} -42879.2 q^{71} -20893.2 q^{73} -15657.6i q^{75} +76762.2i q^{77} -30227.6 q^{79} -4586.03 q^{81} -93949.9i q^{83} +28470.3i q^{85} -54074.1 q^{87} +1178.06 q^{89} +92439.5i q^{91} -124139. i q^{93} -28886.4 q^{95} +74100.8 q^{97} +284908. i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+196q71620q9900q15+4676q2312500q257160q31+5672q33+44904q39+11608q4144180q47+18756q49+24200q55+5032q57240620q63++147376q97+O(q100) 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 25.0521i 1.60709i 0.595243 + 0.803546i 0.297056π0.297056\pi
−0.595243 + 0.803546i 0.702944π0.702944\pi
44 0 0
55 25.0000i 0.447214i
66 0 0
77 −103.624 −0.799310 −0.399655 0.916666i 0.630870π-0.630870\pi
−0.399655 + 0.916666i 0.630870π0.630870\pi
88 0 0
99 −384.607 −1.58274
1010 0 0
1111 − 740.776i − 1.84589i −0.384935 0.922944i 0.625776π-0.625776\pi
0.384935 0.922944i 0.374224π-0.374224\pi
1212 0 0
1313 − 892.067i − 1.46399i −0.681309 0.731996i 0.738589π-0.738589\pi
0.681309 0.731996i 0.261411π-0.261411\pi
1414 0 0
1515 −626.302 −0.718713
1616 0 0
1717 1138.81 0.955717 0.477859 0.878437i 0.341413π-0.341413\pi
0.477859 + 0.878437i 0.341413π0.341413\pi
1818 0 0
1919 1155.46i 0.734294i 0.930163 + 0.367147i 0.119665π0.119665\pi
−0.930163 + 0.367147i 0.880335π0.880335\pi
2020 0 0
2121 − 2596.00i − 1.28457i
2222 0 0
2323 −1602.57 −0.631682 −0.315841 0.948812i 0.602287π-0.602287\pi
−0.315841 + 0.948812i 0.602287π0.602287\pi
2424 0 0
2525 −625.000 −0.200000
2626 0 0
2727 − 3547.55i − 0.936524i
2828 0 0
2929 2158.47i 0.476596i 0.971192 + 0.238298i 0.0765896π0.0765896\pi
−0.971192 + 0.238298i 0.923410π0.923410\pi
3030 0 0
3131 −4955.24 −0.926106 −0.463053 0.886331i 0.653246π-0.653246\pi
−0.463053 + 0.886331i 0.653246π0.653246\pi
3232 0 0
3333 18558.0 2.96651
3434 0 0
3535 − 2590.60i − 0.357462i
3636 0 0
3737 4403.89i 0.528850i 0.964406 + 0.264425i 0.0851821π0.0851821\pi
−0.964406 + 0.264425i 0.914818π0.914818\pi
3838 0 0
3939 22348.1 2.35277
4040 0 0
4141 3780.62 0.351240 0.175620 0.984458i 0.443807π-0.443807\pi
0.175620 + 0.984458i 0.443807π0.443807\pi
4242 0 0
4343 − 13068.3i − 1.07783i −0.842361 0.538913i 0.818835π-0.818835\pi
0.842361 0.538913i 0.181165π-0.181165\pi
4444 0 0
4545 − 9615.17i − 0.707825i
4646 0 0
4747 8000.58 0.528296 0.264148 0.964482i 0.414909π-0.414909\pi
0.264148 + 0.964482i 0.414909π0.414909\pi
4848 0 0
4949 −6069.06 −0.361103
5050 0 0
5151 28529.6i 1.53593i
5252 0 0
5353 − 34313.6i − 1.67794i −0.544175 0.838971i 0.683157π-0.683157\pi
0.544175 0.838971i 0.316843π-0.316843\pi
5454 0 0
5555 18519.4 0.825506
5656 0 0
5757 −28946.6 −1.18008
5858 0 0
5959 − 22065.0i − 0.825227i −0.910906 0.412613i 0.864616π-0.864616\pi
0.910906 0.412613i 0.135384π-0.135384\pi
6060 0 0
6161 2822.53i 0.0971212i 0.998820 + 0.0485606i 0.0154634π0.0154634\pi
−0.998820 + 0.0485606i 0.984537π0.984537\pi
6262 0 0
6363 39854.5 1.26510
6464 0 0
6565 22301.7 0.654717
6666 0 0
6767 − 54981.5i − 1.49634i −0.663509 0.748168i 0.730934π-0.730934\pi
0.663509 0.748168i 0.269066π-0.269066\pi
6868 0 0
6969 − 40147.8i − 1.01517i
7070 0 0
7171 −42879.2 −1.00949 −0.504744 0.863269i 0.668413π-0.668413\pi
−0.504744 + 0.863269i 0.668413π0.668413\pi
7272 0 0
7373 −20893.2 −0.458879 −0.229440 0.973323i 0.573689π-0.573689\pi
−0.229440 + 0.973323i 0.573689π0.573689\pi
7474 0 0
7575 − 15657.6i − 0.321418i
7676 0 0
7777 76762.2i 1.47544i
7878 0 0
7979 −30227.6 −0.544925 −0.272462 0.962166i 0.587838π-0.587838\pi
−0.272462 + 0.962166i 0.587838π0.587838\pi
8080 0 0
8181 −4586.03 −0.0776648
8282 0 0
8383 − 93949.9i − 1.49693i −0.663175 0.748465i 0.730791π-0.730791\pi
0.663175 0.748465i 0.269209π-0.269209\pi
8484 0 0
8585 28470.3i 0.427410i
8686 0 0
8787 −54074.1 −0.765934
8888 0 0
8989 1178.06 0.0157650 0.00788248 0.999969i 0.497491π-0.497491\pi
0.00788248 + 0.999969i 0.497491π0.497491\pi
9090 0 0
9191 92439.5i 1.17018i
9292 0 0
9393 − 124139.i − 1.48834i
9494 0 0
9595 −28886.4 −0.328386
9696 0 0
9797 74100.8 0.799638 0.399819 0.916594i 0.369073π-0.369073\pi
0.399819 + 0.916594i 0.369073π0.369073\pi
9898 0 0
9999 284908.i 2.92157i
100100 0 0
101101 31104.3i 0.303401i 0.988427 + 0.151700i 0.0484749π0.0484749\pi
−0.988427 + 0.151700i 0.951525π0.951525\pi
102102 0 0
103103 140298. 1.30305 0.651523 0.758629i 0.274130π-0.274130\pi
0.651523 + 0.758629i 0.274130π0.274130\pi
104104 0 0
105105 64900.0 0.574475
106106 0 0
107107 34792.6i 0.293784i 0.989153 + 0.146892i 0.0469269π0.0469269\pi
−0.989153 + 0.146892i 0.953073π0.953073\pi
108108 0 0
109109 83759.2i 0.675252i 0.941280 + 0.337626i 0.109624π0.109624\pi
−0.941280 + 0.337626i 0.890376π0.890376\pi
110110 0 0
111111 −110327. −0.849910
112112 0 0
113113 57262.1 0.421863 0.210931 0.977501i 0.432350π-0.432350\pi
0.210931 + 0.977501i 0.432350π0.432350\pi
114114 0 0
115115 − 40064.3i − 0.282497i
116116 0 0
117117 343095.i 2.31713i
118118 0 0
119119 −118008. −0.763914
120120 0 0
121121 −387698. −2.40730
122122 0 0
123123 94712.5i 0.564475i
124124 0 0
125125 − 15625.0i − 0.0894427i
126126 0 0
127127 8848.12 0.0486790 0.0243395 0.999704i 0.492252π-0.492252\pi
0.0243395 + 0.999704i 0.492252π0.492252\pi
128128 0 0
129129 327389. 1.73217
130130 0 0
131131 − 110458.i − 0.562365i −0.959654 0.281183i 0.909273π-0.909273\pi
0.959654 0.281183i 0.0907267π-0.0907267\pi
132132 0 0
133133 − 119733.i − 0.586929i
134134 0 0
135135 88688.7 0.418826
136136 0 0
137137 −304365. −1.38546 −0.692728 0.721199i 0.743591π-0.743591\pi
−0.692728 + 0.721199i 0.743591π0.743591\pi
138138 0 0
139139 59379.5i 0.260675i 0.991470 + 0.130338i 0.0416061π0.0416061\pi
−0.991470 + 0.130338i 0.958394π0.958394\pi
140140 0 0
141141 200431.i 0.849020i
142142 0 0
143143 −660822. −2.70237
144144 0 0
145145 −53961.7 −0.213140
146146 0 0
147147 − 152043.i − 0.580326i
148148 0 0
149149 − 233744.i − 0.862529i −0.902225 0.431265i 0.858068π-0.858068\pi
0.902225 0.431265i 0.141932π-0.141932\pi
150150 0 0
151151 89068.4 0.317893 0.158947 0.987287i 0.449190π-0.449190\pi
0.158947 + 0.987287i 0.449190π0.449190\pi
152152 0 0
153153 −437994. −1.51266
154154 0 0
155155 − 123881.i − 0.414167i
156156 0 0
157157 − 608909.i − 1.97153i −0.168132 0.985764i 0.553773π-0.553773\pi
0.168132 0.985764i 0.446227π-0.446227\pi
158158 0 0
159159 859628. 2.69661
160160 0 0
161161 166065. 0.504910
162162 0 0
163163 172801.i 0.509421i 0.967017 + 0.254711i 0.0819802π0.0819802\pi
−0.967017 + 0.254711i 0.918020π0.918020\pi
164164 0 0
165165 463950.i 1.32666i
166166 0 0
167167 −441506. −1.22503 −0.612513 0.790461i 0.709841π-0.709841\pi
−0.612513 + 0.790461i 0.709841π0.709841\pi
168168 0 0
169169 −424490. −1.14327
170170 0 0
171171 − 444397.i − 1.16220i
172172 0 0
173173 281414.i 0.714874i 0.933937 + 0.357437i 0.116349π0.116349\pi
−0.933937 + 0.357437i 0.883651π0.883651\pi
174174 0 0
175175 64765.0 0.159862
176176 0 0
177177 552774. 1.32622
178178 0 0
179179 805768.i 1.87965i 0.341655 + 0.939825i 0.389013π0.389013\pi
−0.341655 + 0.939825i 0.610987π0.610987\pi
180180 0 0
181181 − 610344.i − 1.38477i −0.721528 0.692385i 0.756560π-0.756560\pi
0.721528 0.692385i 0.243440π-0.243440\pi
182182 0 0
183183 −70710.3 −0.156083
184184 0 0
185185 −110097. −0.236509
186186 0 0
187187 − 843604.i − 1.76415i
188188 0 0
189189 367611.i 0.748573i
190190 0 0
191191 845737. 1.67746 0.838729 0.544549i 0.183299π-0.183299\pi
0.838729 + 0.544549i 0.183299π0.183299\pi
192192 0 0
193193 −184089. −0.355742 −0.177871 0.984054i 0.556921π-0.556921\pi
−0.177871 + 0.984054i 0.556921π0.556921\pi
194194 0 0
195195 558703.i 1.05219i
196196 0 0
197197 390522.i 0.716935i 0.933542 + 0.358468i 0.116701π0.116701\pi
−0.933542 + 0.358468i 0.883299π0.883299\pi
198198 0 0
199199 584263. 1.04587 0.522933 0.852374i 0.324838π-0.324838\pi
0.522933 + 0.852374i 0.324838π0.324838\pi
200200 0 0
201201 1.37740e6 2.40475
202202 0 0
203203 − 223669.i − 0.380948i
204204 0 0
205205 94515.6i 0.157079i
206206 0 0
207207 616361. 0.999791
208208 0 0
209209 855935. 1.35542
210210 0 0
211211 − 428258.i − 0.662215i −0.943593 0.331107i 0.892578π-0.892578\pi
0.943593 0.331107i 0.107422π-0.107422\pi
212212 0 0
213213 − 1.07421e6i − 1.62234i
214214 0 0
215215 326708. 0.482018
216216 0 0
217217 513482. 0.740246
218218 0 0
219219 − 523419.i − 0.737461i
220220 0 0
221221 − 1.01590e6i − 1.39916i
222222 0 0
223223 −955618. −1.28683 −0.643416 0.765517i 0.722484π-0.722484\pi
−0.643416 + 0.765517i 0.722484π0.722484\pi
224224 0 0
225225 240379. 0.316549
226226 0 0
227227 866233.i 1.11576i 0.829922 + 0.557879i 0.188385π0.188385\pi
−0.829922 + 0.557879i 0.811615π0.811615\pi
228228 0 0
229229 654035.i 0.824161i 0.911147 + 0.412080i 0.135198π0.135198\pi
−0.911147 + 0.412080i 0.864802π0.864802\pi
230230 0 0
231231 −1.92305e6 −2.37116
232232 0 0
233233 −820513. −0.990138 −0.495069 0.868854i 0.664857π-0.664857\pi
−0.495069 + 0.868854i 0.664857π0.664857\pi
234234 0 0
235235 200015.i 0.236261i
236236 0 0
237237 − 757265.i − 0.875744i
238238 0 0
239239 −867314. −0.982159 −0.491079 0.871115i 0.663397π-0.663397\pi
−0.491079 + 0.871115i 0.663397π0.663397\pi
240240 0 0
241241 −1.65377e6 −1.83414 −0.917072 0.398722i 0.869454π-0.869454\pi
−0.917072 + 0.398722i 0.869454π0.869454\pi
242242 0 0
243243 − 976943.i − 1.06134i
244244 0 0
245245 − 151726.i − 0.161490i
246246 0 0
247247 1.03075e6 1.07500
248248 0 0
249249 2.35364e6 2.40570
250250 0 0
251251 − 860879.i − 0.862497i −0.902233 0.431249i 0.858073π-0.858073\pi
0.902233 0.431249i 0.141927π-0.141927\pi
252252 0 0
253253 1.18715e6i 1.16601i
254254 0 0
255255 −713240. −0.686887
256256 0 0
257257 −765335. −0.722801 −0.361401 0.932411i 0.617701π-0.617701\pi
−0.361401 + 0.932411i 0.617701π0.617701\pi
258258 0 0
259259 − 456349.i − 0.422715i
260260 0 0
261261 − 830162.i − 0.754330i
262262 0 0
263263 −260746. −0.232449 −0.116225 0.993223i 0.537079π-0.537079\pi
−0.116225 + 0.993223i 0.537079π0.537079\pi
264264 0 0
265265 857841. 0.750399
266266 0 0
267267 29512.9i 0.0253357i
268268 0 0
269269 1.12412e6i 0.947175i 0.880747 + 0.473587i 0.157041π0.157041\pi
−0.880747 + 0.473587i 0.842959π0.842959\pi
270270 0 0
271271 1.07277e6 0.887330 0.443665 0.896193i 0.353678π-0.353678\pi
0.443665 + 0.896193i 0.353678π0.353678\pi
272272 0 0
273273 −2.31580e6 −1.88059
274274 0 0
275275 462985.i 0.369177i
276276 0 0
277277 − 615080.i − 0.481651i −0.970568 0.240825i 0.922582π-0.922582\pi
0.970568 0.240825i 0.0774181π-0.0774181\pi
278278 0 0
279279 1.90582e6 1.46579
280280 0 0
281281 −652198. −0.492736 −0.246368 0.969176i 0.579237π-0.579237\pi
−0.246368 + 0.969176i 0.579237π0.579237\pi
282282 0 0
283283 − 908596.i − 0.674380i −0.941437 0.337190i 0.890524π-0.890524\pi
0.941437 0.337190i 0.109476π-0.109476\pi
284284 0 0
285285 − 723665.i − 0.527747i
286286 0 0
287287 −391763. −0.280750
288288 0 0
289289 −122967. −0.0866050
290290 0 0
291291 1.85638e6i 1.28509i
292292 0 0
293293 − 514047.i − 0.349811i −0.984585 0.174906i 0.944038π-0.944038\pi
0.984585 0.174906i 0.0559621π-0.0559621\pi
294294 0 0
295295 551624. 0.369053
296296 0 0
297297 −2.62794e6 −1.72872
298298 0 0
299299 1.42960e6i 0.924778i
300300 0 0
301301 1.35419e6i 0.861517i
302302 0 0
303303 −779227. −0.487593
304304 0 0
305305 −70563.3 −0.0434339
306306 0 0
307307 1.46693e6i 0.888309i 0.895950 + 0.444155i 0.146496π0.146496\pi
−0.895950 + 0.444155i 0.853504π0.853504\pi
308308 0 0
309309 3.51477e6i 2.09411i
310310 0 0
311311 −547919. −0.321229 −0.160615 0.987017i 0.551348π-0.551348\pi
−0.160615 + 0.987017i 0.551348π0.551348\pi
312312 0 0
313313 1.70857e6 0.985762 0.492881 0.870097i 0.335944π-0.335944\pi
0.492881 + 0.870097i 0.335944π0.335944\pi
314314 0 0
315315 996363.i 0.565772i
316316 0 0
317317 978608.i 0.546966i 0.961877 + 0.273483i 0.0881758π0.0881758\pi
−0.961877 + 0.273483i 0.911824π0.911824\pi
318318 0 0
319319 1.59894e6 0.879743
320320 0 0
321321 −871627. −0.472137
322322 0 0
323323 1.31585e6i 0.701777i
324324 0 0
325325 557542.i 0.292799i
326326 0 0
327327 −2.09834e6 −1.08519
328328 0 0
329329 −829053. −0.422272
330330 0 0
331331 345907.i 0.173536i 0.996229 + 0.0867679i 0.0276539π0.0276539\pi
−0.996229 + 0.0867679i 0.972346π0.972346\pi
332332 0 0
333333 − 1.69377e6i − 0.837034i
334334 0 0
335335 1.37454e6 0.669182
336336 0 0
337337 376513. 0.180595 0.0902975 0.995915i 0.471218π-0.471218\pi
0.0902975 + 0.995915i 0.471218π0.471218\pi
338338 0 0
339339 1.43454e6i 0.677972i
340340 0 0
341341 3.67073e6i 1.70949i
342342 0 0
343343 2.37051e6 1.08794
344344 0 0
345345 1.00370e6 0.453998
346346 0 0
347347 164656.i 0.0734099i 0.999326 + 0.0367049i 0.0116862π0.0116862\pi
−0.999326 + 0.0367049i 0.988314π0.988314\pi
348348 0 0
349349 35942.6i 0.0157959i 0.999969 + 0.00789797i 0.00251403π0.00251403\pi
−0.999969 + 0.00789797i 0.997486π0.997486\pi
350350 0 0
351351 −3.16465e6 −1.37106
352352 0 0
353353 1.39430e6 0.595550 0.297775 0.954636i 0.403756π-0.403756\pi
0.297775 + 0.954636i 0.403756π0.403756\pi
354354 0 0
355355 − 1.07198e6i − 0.451457i
356356 0 0
357357 − 2.95635e6i − 1.22768i
358358 0 0
359359 −3.50589e6 −1.43569 −0.717847 0.696201i 0.754872π-0.754872\pi
−0.717847 + 0.696201i 0.754872π0.754872\pi
360360 0 0
361361 1.14102e6 0.460812
362362 0 0
363363 − 9.71265e6i − 3.86875i
364364 0 0
365365 − 522331.i − 0.205217i
366366 0 0
367367 −3.64440e6 −1.41241 −0.706206 0.708007i 0.749595π-0.749595\pi
−0.706206 + 0.708007i 0.749595π0.749595\pi
368368 0 0
369369 −1.45405e6 −0.555923
370370 0 0
371371 3.55572e6i 1.34120i
372372 0 0
373373 − 4.19252e6i − 1.56028i −0.625603 0.780142i 0.715147π-0.715147\pi
0.625603 0.780142i 0.284853π-0.284853\pi
374374 0 0
375375 391439. 0.143743
376376 0 0
377377 1.92550e6 0.697734
378378 0 0
379379 − 2.31089e6i − 0.826384i −0.910644 0.413192i 0.864414π-0.864414\pi
0.910644 0.413192i 0.135586π-0.135586\pi
380380 0 0
381381 221664.i 0.0782316i
382382 0 0
383383 −1.18240e6 −0.411876 −0.205938 0.978565i 0.566024π-0.566024\pi
−0.205938 + 0.978565i 0.566024π0.566024\pi
384384 0 0
385385 −1.91906e6 −0.659835
386386 0 0
387387 5.02617e6i 1.70592i
388388 0 0
389389 5.09219e6i 1.70620i 0.521745 + 0.853102i 0.325281π0.325281\pi
−0.521745 + 0.853102i 0.674719π0.674719\pi
390390 0 0
391391 −1.82503e6 −0.603709
392392 0 0
393393 2.76720e6 0.903773
394394 0 0
395395 − 755691.i − 0.243698i
396396 0 0
397397 63006.9i 0.0200637i 0.999950 + 0.0100319i 0.00319330π0.00319330\pi
−0.999950 + 0.0100319i 0.996807π0.996807\pi
398398 0 0
399399 2.99957e6 0.943248
400400 0 0
401401 −4.48960e6 −1.39427 −0.697135 0.716940i 0.745542π-0.745542\pi
−0.697135 + 0.716940i 0.745542π0.745542\pi
402402 0 0
403403 4.42041e6i 1.35581i
404404 0 0
405405 − 114651.i − 0.0347327i
406406 0 0
407407 3.26230e6 0.976197
408408 0 0
409409 2.03416e6 0.601281 0.300641 0.953738i 0.402800π-0.402800\pi
0.300641 + 0.953738i 0.402800π0.402800\pi
410410 0 0
411411 − 7.62497e6i − 2.22656i
412412 0 0
413413 2.28646e6i 0.659612i
414414 0 0
415415 2.34875e6 0.669447
416416 0 0
417417 −1.48758e6 −0.418929
418418 0 0
419419 1.53143e6i 0.426150i 0.977036 + 0.213075i 0.0683479π0.0683479\pi
−0.977036 + 0.213075i 0.931652π0.931652\pi
420420 0 0
421421 − 4.86857e6i − 1.33874i −0.742929 0.669370i 0.766564π-0.766564\pi
0.742929 0.669370i 0.233436π-0.233436\pi
422422 0 0
423423 −3.07708e6 −0.836157
424424 0 0
425425 −711757. −0.191143
426426 0 0
427427 − 292482.i − 0.0776300i
428428 0 0
429429 − 1.65550e7i − 4.34295i
430430 0 0
431431 −537754. −0.139441 −0.0697204 0.997567i 0.522211π-0.522211\pi
−0.0697204 + 0.997567i 0.522211π0.522211\pi
432432 0 0
433433 1.48235e6 0.379954 0.189977 0.981789i 0.439159π-0.439159\pi
0.189977 + 0.981789i 0.439159π0.439159\pi
434434 0 0
435435 − 1.35185e6i − 0.342536i
436436 0 0
437437 − 1.85171e6i − 0.463840i
438438 0 0
439439 2.49966e6 0.619041 0.309520 0.950893i 0.399832π-0.399832\pi
0.309520 + 0.950893i 0.399832π0.399832\pi
440440 0 0
441441 2.33420e6 0.571534
442442 0 0
443443 5.00804e6i 1.21244i 0.795299 + 0.606218i 0.207314π0.207314\pi
−0.795299 + 0.606218i 0.792686π0.792686\pi
444444 0 0
445445 29451.5i 0.00705030i
446446 0 0
447447 5.85576e6 1.38616
448448 0 0
449449 3.04025e6 0.711694 0.355847 0.934544i 0.384192π-0.384192\pi
0.355847 + 0.934544i 0.384192π0.384192\pi
450450 0 0
451451 − 2.80059e6i − 0.648349i
452452 0 0
453453 2.23135e6i 0.510884i
454454 0 0
455455 −2.31099e6 −0.523322
456456 0 0
457457 7.20014e6 1.61269 0.806345 0.591446i 0.201443π-0.201443\pi
0.806345 + 0.591446i 0.201443π0.201443\pi
458458 0 0
459459 − 4.03999e6i − 0.895052i
460460 0 0
461461 7.87732e6i 1.72634i 0.504914 + 0.863170i 0.331524π0.331524\pi
−0.504914 + 0.863170i 0.668476π0.668476\pi
462462 0 0
463463 6.18812e6 1.34155 0.670774 0.741662i 0.265962π-0.265962\pi
0.670774 + 0.741662i 0.265962π0.265962\pi
464464 0 0
465465 3.10348e6 0.665605
466466 0 0
467467 − 7.21143e6i − 1.53013i −0.643952 0.765066i 0.722706π-0.722706\pi
0.643952 0.765066i 0.277294π-0.277294\pi
468468 0 0
469469 5.69740e6i 1.19604i
470470 0 0
471471 1.52544e7 3.16843
472472 0 0
473473 −9.68070e6 −1.98955
474474 0 0
475475 − 722161.i − 0.146859i
476476 0 0
477477 1.31973e7i 2.65575i
478478 0 0
479479 −4.05783e6 −0.808081 −0.404040 0.914741i 0.632395π-0.632395\pi
−0.404040 + 0.914741i 0.632395π0.632395\pi
480480 0 0
481481 3.92856e6 0.774232
482482 0 0
483483 4.16028e6i 0.811437i
484484 0 0
485485 1.85252e6i 0.357609i
486486 0 0
487487 −121792. −0.0232700 −0.0116350 0.999932i 0.503704π-0.503704\pi
−0.0116350 + 0.999932i 0.503704π0.503704\pi
488488 0 0
489489 −4.32902e6 −0.818687
490490 0 0
491491 2.80649e6i 0.525363i 0.964883 + 0.262682i 0.0846069π0.0846069\pi
−0.964883 + 0.262682i 0.915393π0.915393\pi
492492 0 0
493493 2.45809e6i 0.455491i
494494 0 0
495495 −7.12269e6 −1.30656
496496 0 0
497497 4.44332e6 0.806894
498498 0 0
499499 2.59476e6i 0.466494i 0.972418 + 0.233247i 0.0749351π0.0749351\pi
−0.972418 + 0.233247i 0.925065π0.925065\pi
500500 0 0
501501 − 1.10606e7i − 1.96873i
502502 0 0
503503 −1.04638e6 −0.184404 −0.0922021 0.995740i 0.529391π-0.529391\pi
−0.0922021 + 0.995740i 0.529391π0.529391\pi
504504 0 0
505505 −777607. −0.135685
506506 0 0
507507 − 1.06344e7i − 1.83735i
508508 0 0
509509 − 8.38369e6i − 1.43430i −0.696918 0.717151i 0.745446π-0.745446\pi
0.696918 0.717151i 0.254554π-0.254554\pi
510510 0 0
511511 2.16504e6 0.366787
512512 0 0
513513 4.09904e6 0.687684
514514 0 0
515515 3.50746e6i 0.582740i
516516 0 0
517517 − 5.92664e6i − 0.975174i
518518 0 0
519519 −7.05000e6 −1.14887
520520 0 0
521521 −4.38397e6 −0.707577 −0.353788 0.935325i 0.615107π-0.615107\pi
−0.353788 + 0.935325i 0.615107π0.615107\pi
522522 0 0
523523 915789.i 0.146400i 0.997317 + 0.0732000i 0.0233211π0.0233211\pi
−0.997317 + 0.0732000i 0.976679π0.976679\pi
524524 0 0
525525 1.62250e6i 0.256913i
526526 0 0
527527 −5.64309e6 −0.885096
528528 0 0
529529 −3.86810e6 −0.600978
530530 0 0
531531 8.48634e6i 1.30612i
532532 0 0
533533 − 3.37257e6i − 0.514212i
534534 0 0
535535 −869815. −0.131384
536536 0 0
537537 −2.01862e7 −3.02077
538538 0 0
539539 4.49581e6i 0.666556i
540540 0 0
541541 − 6.98594e6i − 1.02620i −0.858329 0.513100i 0.828497π-0.828497\pi
0.858329 0.513100i 0.171503π-0.171503\pi
542542 0 0
543543 1.52904e7 2.22545
544544 0 0
545545 −2.09398e6 −0.301982
546546 0 0
547547 − 4.72947e6i − 0.675841i −0.941175 0.337920i 0.890277π-0.890277\pi
0.941175 0.337920i 0.109723π-0.109723\pi
548548 0 0
549549 − 1.08556e6i − 0.153718i
550550 0 0
551551 −2.49402e6 −0.349962
552552 0 0
553553 3.13231e6 0.435564
554554 0 0
555555 − 2.75817e6i − 0.380091i
556556 0 0
557557 − 3.26312e6i − 0.445651i −0.974858 0.222825i 0.928472π-0.928472\pi
0.974858 0.222825i 0.0715280π-0.0715280\pi
558558 0 0
559559 −1.16578e7 −1.57793
560560 0 0
561561 2.11340e7 2.83514
562562 0 0
563563 5.81898e6i 0.773706i 0.922141 + 0.386853i 0.126438π0.126438\pi
−0.922141 + 0.386853i 0.873562π0.873562\pi
564564 0 0
565565 1.43155e6i 0.188663i
566566 0 0
567567 475223. 0.0620782
568568 0 0
569569 −9.08770e6 −1.17672 −0.588360 0.808599i 0.700226π-0.700226\pi
−0.588360 + 0.808599i 0.700226π0.700226\pi
570570 0 0
571571 258870.i 0.0332270i 0.999862 + 0.0166135i 0.00528849π0.00528849\pi
−0.999862 + 0.0166135i 0.994712π0.994712\pi
572572 0 0
573573 2.11875e7i 2.69583i
574574 0 0
575575 1.00161e6 0.126336
576576 0 0
577577 2.45070e6 0.306444 0.153222 0.988192i 0.451035π-0.451035\pi
0.153222 + 0.988192i 0.451035π0.451035\pi
578578 0 0
579579 − 4.61182e6i − 0.571710i
580580 0 0
581581 9.73547e6i 1.19651i
582582 0 0
583583 −2.54187e7 −3.09729
584584 0 0
585585 −8.57737e6 −1.03625
586586 0 0
587587 − 3.61982e6i − 0.433602i −0.976216 0.216801i 0.930438π-0.930438\pi
0.976216 0.216801i 0.0695623π-0.0695623\pi
588588 0 0
589589 − 5.72557e6i − 0.680034i
590590 0 0
591591 −9.78339e6 −1.15218
592592 0 0
593593 −7.07347e6 −0.826030 −0.413015 0.910724i 0.635524π-0.635524\pi
−0.413015 + 0.910724i 0.635524π0.635524\pi
594594 0 0
595595 − 2.95020e6i − 0.341633i
596596 0 0
597597 1.46370e7i 1.68080i
598598 0 0
599599 2.71813e6 0.309530 0.154765 0.987951i 0.450538π-0.450538\pi
0.154765 + 0.987951i 0.450538π0.450538\pi
600600 0 0
601601 1.67171e6 0.188788 0.0943942 0.995535i 0.469909π-0.469909\pi
0.0943942 + 0.995535i 0.469909π0.469909\pi
602602 0 0
603603 2.11462e7i 2.36832i
604604 0 0
605605 − 9.69245e6i − 1.07658i
606606 0 0
607607 2.35562e6 0.259498 0.129749 0.991547i 0.458583π-0.458583\pi
0.129749 + 0.991547i 0.458583π0.458583\pi
608608 0 0
609609 5.60338e6 0.612219
610610 0 0
611611 − 7.13705e6i − 0.773421i
612612 0 0
613613 − 1.88749e6i − 0.202877i −0.994842 0.101439i 0.967655π-0.967655\pi
0.994842 0.101439i 0.0323445π-0.0323445\pi
614614 0 0
615615 −2.36781e6 −0.252441
616616 0 0
617617 1.45446e7 1.53812 0.769058 0.639178i 0.220725π-0.220725\pi
0.769058 + 0.639178i 0.220725π0.220725\pi
618618 0 0
619619 − 1.08497e7i − 1.13813i −0.822292 0.569066i 0.807305π-0.807305\pi
0.822292 0.569066i 0.192695π-0.192695\pi
620620 0 0
621621 5.68521e6i 0.591585i
622622 0 0
623623 −122075. −0.0126011
624624 0 0
625625 390625. 0.0400000
626626 0 0
627627 2.14430e7i 2.17829i
628628 0 0
629629 5.01520e6i 0.505431i
630630 0 0
631631 −3.76561e6 −0.376497 −0.188249 0.982121i 0.560281π-0.560281\pi
−0.188249 + 0.982121i 0.560281π0.560281\pi
632632 0 0
633633 1.07287e7 1.06424
634634 0 0
635635 221203.i 0.0217699i
636636 0 0
637637 5.41400e6i 0.528652i
638638 0 0
639639 1.64917e7 1.59776
640640 0 0
641641 −223711. −0.0215052 −0.0107526 0.999942i 0.503423π-0.503423\pi
−0.0107526 + 0.999942i 0.503423π0.503423\pi
642642 0 0
643643 2.53011e6i 0.241330i 0.992693 + 0.120665i 0.0385028π0.0385028\pi
−0.992693 + 0.120665i 0.961497π0.961497\pi
644644 0 0
645645 8.18472e6i 0.774648i
646646 0 0
647647 8.44825e6 0.793425 0.396713 0.917943i 0.370151π-0.370151\pi
0.396713 + 0.917943i 0.370151π0.370151\pi
648648 0 0
649649 −1.63452e7 −1.52328
650650 0 0
651651 1.28638e7i 1.18964i
652652 0 0
653653 1.72303e7i 1.58128i 0.612280 + 0.790641i 0.290253π0.290253\pi
−0.612280 + 0.790641i 0.709747π0.709747\pi
654654 0 0
655655 2.76145e6 0.251497
656656 0 0
657657 8.03568e6 0.726289
658658 0 0
659659 5.43243e6i 0.487282i 0.969865 + 0.243641i 0.0783419π0.0783419\pi
−0.969865 + 0.243641i 0.921658π0.921658\pi
660660 0 0
661661 − 1.12770e7i − 1.00390i −0.864897 0.501949i 0.832616π-0.832616\pi
0.864897 0.501949i 0.167384π-0.167384\pi
662662 0 0
663663 2.54503e7 2.24858
664664 0 0
665665 2.99333e6 0.262483
666666 0 0
667667 − 3.45911e6i − 0.301057i
668668 0 0
669669 − 2.39402e7i − 2.06806i
670670 0 0
671671 2.09086e6 0.179275
672672 0 0
673673 1.15475e7 0.982769 0.491384 0.870943i 0.336491π-0.336491\pi
0.491384 + 0.870943i 0.336491π0.336491\pi
674674 0 0
675675 2.21722e6i 0.187305i
676676 0 0
677677 8.72804e6i 0.731889i 0.930637 + 0.365944i 0.119254π0.119254\pi
−0.930637 + 0.365944i 0.880746π0.880746\pi
678678 0 0
679679 −7.67862e6 −0.639159
680680 0 0
681681 −2.17009e7 −1.79313
682682 0 0
683683 − 5.37492e6i − 0.440880i −0.975401 0.220440i 0.929251π-0.929251\pi
0.975401 0.220440i 0.0707493π-0.0707493\pi
684684 0 0
685685 − 7.60912e6i − 0.619595i
686686 0 0
687687 −1.63849e7 −1.32450
688688 0 0
689689 −3.06101e7 −2.45650
690690 0 0
691691 1.03106e7i 0.821467i 0.911756 + 0.410733i 0.134727π0.134727\pi
−0.911756 + 0.410733i 0.865273π0.865273\pi
692692 0 0
693693 − 2.95233e7i − 2.33524i
694694 0 0
695695 −1.48449e6 −0.116577
696696 0 0
697697 4.30541e6 0.335686
698698 0 0
699699 − 2.05556e7i − 1.59124i
700700 0 0
701701 7.87993e6i 0.605658i 0.953045 + 0.302829i 0.0979311π0.0979311\pi
−0.953045 + 0.302829i 0.902069π0.902069\pi
702702 0 0
703703 −5.08851e6 −0.388331
704704 0 0
705705 −5.01078e6 −0.379693
706706 0 0
707707 − 3.22315e6i − 0.242511i
708708 0 0
709709 2.06172e7i 1.54033i 0.637846 + 0.770164i 0.279826π0.279826\pi
−0.637846 + 0.770164i 0.720174π0.720174\pi
710710 0 0
711711 1.16258e7 0.862476
712712 0 0
713713 7.94115e6 0.585005
714714 0 0
715715 − 1.65205e7i − 1.20853i
716716 0 0
717717 − 2.17280e7i − 1.57842i
718718 0 0
719719 −1.37162e7 −0.989490 −0.494745 0.869038i 0.664738π-0.664738\pi
−0.494745 + 0.869038i 0.664738π0.664738\pi
720720 0 0
721721 −1.45383e7 −1.04154
722722 0 0
723723 − 4.14305e7i − 2.94764i
724724 0 0
725725 − 1.34904e6i − 0.0953193i
726726 0 0
727727 2.33681e7 1.63979 0.819895 0.572514i 0.194032π-0.194032\pi
0.819895 + 0.572514i 0.194032π0.194032\pi
728728 0 0
729729 2.33601e7 1.62800
730730 0 0
731731 − 1.48823e7i − 1.03010i
732732 0 0
733733 − 2.94411e6i − 0.202392i −0.994866 0.101196i 0.967733π-0.967733\pi
0.994866 0.101196i 0.0322670π-0.0322670\pi
734734 0 0
735735 3.80106e6 0.259530
736736 0 0
737737 −4.07289e7 −2.76207
738738 0 0
739739 3.66027e6i 0.246548i 0.992373 + 0.123274i 0.0393395π0.0393395\pi
−0.992373 + 0.123274i 0.960661π0.960661\pi
740740 0 0
741741 2.58223e7i 1.72763i
742742 0 0
743743 2.60824e7 1.73331 0.866653 0.498912i 0.166267π-0.166267\pi
0.866653 + 0.498912i 0.166267π0.166267\pi
744744 0 0
745745 5.84359e6 0.385735
746746 0 0
747747 3.61338e7i 2.36926i
748748 0 0
749749 − 3.60535e6i − 0.234824i
750750 0 0
751751 1.03196e7 0.667673 0.333836 0.942631i 0.391657π-0.391657\pi
0.333836 + 0.942631i 0.391657π0.391657\pi
752752 0 0
753753 2.15668e7 1.38611
754754 0 0
755755 2.22671e6i 0.142166i
756756 0 0
757757 − 2.70313e7i − 1.71446i −0.514936 0.857228i 0.672184π-0.672184\pi
0.514936 0.857228i 0.327816π-0.327816\pi
758758 0 0
759759 −2.97405e7 −1.87389
760760 0 0
761761 1.29548e7 0.810905 0.405452 0.914116i 0.367114π-0.367114\pi
0.405452 + 0.914116i 0.367114π0.367114\pi
762762 0 0
763763 − 8.67946e6i − 0.539736i
764764 0 0
765765 − 1.09499e7i − 0.676480i
766766 0 0
767767 −1.96834e7 −1.20813
768768 0 0
769769 8.35551e6 0.509515 0.254757 0.967005i 0.418004π-0.418004\pi
0.254757 + 0.967005i 0.418004π0.418004\pi
770770 0 0
771771 − 1.91732e7i − 1.16161i
772772 0 0
773773 − 3.12215e7i − 1.87934i −0.342087 0.939668i 0.611134π-0.611134\pi
0.342087 0.939668i 0.388866π-0.388866\pi
774774 0 0
775775 3.09703e6 0.185221
776776 0 0
777777 1.14325e7 0.679342
778778 0 0
779779 4.36835e6i 0.257913i
780780 0 0
781781 3.17639e7i 1.86340i
782782 0 0
783783 7.65727e6 0.446344
784784 0 0
785785 1.52227e7 0.881695
786786 0 0
787787 − 1.14664e7i − 0.659920i −0.943995 0.329960i 0.892965π-0.892965\pi
0.943995 0.329960i 0.107035π-0.107035\pi
788788 0 0
789789 − 6.53222e6i − 0.373567i
790790 0 0
791791 −5.93373e6 −0.337199
792792 0 0
793793 2.51789e6 0.142185
794794 0 0
795795 2.14907e7i 1.20596i
796796 0 0
797797 − 2.28998e7i − 1.27699i −0.769628 0.638493i 0.779558π-0.779558\pi
0.769628 0.638493i 0.220442π-0.220442\pi
798798 0 0
799799 9.11115e6 0.504901
800800 0 0
801801 −453090. −0.0249519
802802 0 0
803803 1.54772e7i 0.847040i
804804 0 0
805805 4.15163e6i 0.225803i
806806 0 0
807807 −2.81614e7 −1.52220
808808 0 0
809809 2.82761e7 1.51896 0.759482 0.650528i 0.225452π-0.225452\pi
0.759482 + 0.650528i 0.225452π0.225452\pi
810810 0 0
811811 2.97657e7i 1.58915i 0.607167 + 0.794574i 0.292306π0.292306\pi
−0.607167 + 0.794574i 0.707694π0.707694\pi
812812 0 0
813813 2.68752e7i 1.42602i
814814 0 0
815815 −4.32002e6 −0.227820
816816 0 0
817817 1.50999e7 0.791441
818818 0 0
819819 − 3.55529e7i − 1.85210i
820820 0 0
821821 − 2.33663e7i − 1.20985i −0.796282 0.604926i 0.793203π-0.793203\pi
0.796282 0.604926i 0.206797π-0.206797\pi
822822 0 0
823823 3.90864e6 0.201153 0.100576 0.994929i 0.467931π-0.467931\pi
0.100576 + 0.994929i 0.467931π0.467931\pi
824824 0 0
825825 −1.15987e7 −0.593302
826826 0 0
827827 1.34407e7i 0.683371i 0.939814 + 0.341686i 0.110998π0.110998\pi
−0.939814 + 0.341686i 0.889002π0.889002\pi
828828 0 0
829829 2.39273e7i 1.20923i 0.796519 + 0.604613i 0.206672π0.206672\pi
−0.796519 + 0.604613i 0.793328π0.793328\pi
830830 0 0
831831 1.54090e7 0.774057
832832 0 0
833833 −6.91151e6 −0.345112
834834 0 0
835835 − 1.10376e7i − 0.547848i
836836 0 0
837837 1.75790e7i 0.867320i
838838 0 0
839839 4.44572e6 0.218041 0.109020 0.994040i 0.465229π-0.465229\pi
0.109020 + 0.994040i 0.465229π0.465229\pi
840840 0 0
841841 1.58522e7 0.772856
842842 0 0
843843 − 1.63389e7i − 0.791871i
844844 0 0
845845 − 1.06122e7i − 0.511288i
846846 0 0
847847 4.01748e7 1.92418
848848 0 0
849849 2.27622e7 1.08379
850850 0 0
851851 − 7.05756e6i − 0.334065i
852852 0 0
853853 2.57954e7i 1.21386i 0.794754 + 0.606931i 0.207600π0.207600\pi
−0.794754 + 0.606931i 0.792400π0.792400\pi
854854 0 0
855855 1.11099e7 0.519752
856856 0 0
857857 1.79012e7 0.832590 0.416295 0.909230i 0.363328π-0.363328\pi
0.416295 + 0.909230i 0.363328π0.363328\pi
858858 0 0
859859 2.50747e7i 1.15945i 0.814811 + 0.579727i 0.196841π0.196841\pi
−0.814811 + 0.579727i 0.803159π0.803159\pi
860860 0 0
861861 − 9.81449e6i − 0.451190i
862862 0 0
863863 −8.98511e6 −0.410673 −0.205337 0.978691i 0.565829π-0.565829\pi
−0.205337 + 0.978691i 0.565829π0.565829\pi
864864 0 0
865865 −7.03534e6 −0.319702
866866 0 0
867867 − 3.08057e6i − 0.139182i
868868 0 0
869869 2.23919e7i 1.00587i
870870 0 0
871871 −4.90471e7 −2.19063
872872 0 0
873873 −2.84997e7 −1.26562
874874 0 0
875875 1.61913e6i 0.0714925i
876876 0 0
877877 − 1.08381e7i − 0.475834i −0.971286 0.237917i 0.923535π-0.923535\pi
0.971286 0.237917i 0.0764646π-0.0764646\pi
878878 0 0
879879 1.28780e7 0.562179
880880 0 0
881881 −816876. −0.0354582 −0.0177291 0.999843i 0.505644π-0.505644\pi
−0.0177291 + 0.999843i 0.505644π0.505644\pi
882882 0 0
883883 2.50842e6i 0.108268i 0.998534 + 0.0541339i 0.0172398π0.0172398\pi
−0.998534 + 0.0541339i 0.982760π0.982760\pi
884884 0 0
885885 1.38193e7i 0.593102i
886886 0 0
887887 1.58294e7 0.675545 0.337773 0.941228i 0.390327π-0.390327\pi
0.337773 + 0.941228i 0.390327π0.390327\pi
888888 0 0
889889 −916878. −0.0389096
890890 0 0
891891 3.39722e6i 0.143360i
892892 0 0
893893 9.24434e6i 0.387924i
894894 0 0
895895 −2.01442e7 −0.840605
896896 0 0
897897 −3.58145e7 −1.48620
898898 0 0
899899 − 1.06957e7i − 0.441379i
900900 0 0
901901 − 3.90768e7i − 1.60364i
902902 0 0
903903 −3.39253e7 −1.38454
904904 0 0
905905 1.52586e7 0.619288
906906 0 0
907907 2.36328e7i 0.953887i 0.878934 + 0.476944i 0.158255π0.158255\pi
−0.878934 + 0.476944i 0.841745π0.841745\pi
908908 0 0
909909 − 1.19629e7i − 0.480206i
910910 0 0
911911 9.17484e6 0.366271 0.183136 0.983088i 0.441375π-0.441375\pi
0.183136 + 0.983088i 0.441375π0.441375\pi
912912 0 0
913913 −6.95959e7 −2.76316
914914 0 0
915915 − 1.76776e6i − 0.0698023i
916916 0 0
917917 1.14461e7i 0.449504i
918918 0 0
919919 3.58059e7 1.39851 0.699255 0.714872i 0.253515π-0.253515\pi
0.699255 + 0.714872i 0.253515π0.253515\pi
920920 0 0
921921 −3.67497e7 −1.42759
922922 0 0
923923 3.82511e7i 1.47788i
924924 0 0
925925 − 2.75243e6i − 0.105770i
926926 0 0
927927 −5.39597e7 −2.06239
928928 0 0
929929 −2.41031e7 −0.916291 −0.458146 0.888877i 0.651486π-0.651486\pi
−0.458146 + 0.888877i 0.651486π0.651486\pi
930930 0 0
931931 − 7.01254e6i − 0.265156i
932932 0 0
933933 − 1.37265e7i − 0.516245i
934934 0 0
935935 2.10901e7 0.788950
936936 0 0
937937 −1.84615e7 −0.686938 −0.343469 0.939164i 0.611602π-0.611602\pi
−0.343469 + 0.939164i 0.611602π0.611602\pi
938938 0 0
939939 4.28032e7i 1.58421i
940940 0 0
941941 − 3.10319e6i − 0.114244i −0.998367 0.0571220i 0.981808π-0.981808\pi
0.998367 0.0571220i 0.0181924π-0.0181924\pi
942942 0 0
943943 −6.05873e6 −0.221872
944944 0 0
945945 −9.19028e6 −0.334772
946946 0 0
947947 − 4.89572e7i − 1.77395i −0.461817 0.886975i 0.652802π-0.652802\pi
0.461817 0.886975i 0.347198π-0.347198\pi
948948 0 0
949949 1.86382e7i 0.671796i
950950 0 0
951951 −2.45162e7 −0.879025
952952 0 0
953953 3.94753e7 1.40797 0.703984 0.710216i 0.251403π-0.251403\pi
0.703984 + 0.710216i 0.251403π0.251403\pi
954954 0 0
955955 2.11434e7i 0.750182i
956956 0 0
957957 4.00568e7i 1.41383i
958958 0 0
959959 3.15395e7 1.10741
960960 0 0
961961 −4.07470e6 −0.142327
962962 0 0
963963 − 1.33815e7i − 0.464984i
964964 0 0
965965 − 4.60223e6i − 0.159093i
966966 0 0
967967 2.23447e7 0.768438 0.384219 0.923242i 0.374471π-0.374471\pi
0.384219 + 0.923242i 0.374471π0.374471\pi
968968 0 0
969969 −3.29647e7 −1.12782
970970 0 0
971971 − 2.63033e7i − 0.895288i −0.894212 0.447644i 0.852263π-0.852263\pi
0.894212 0.447644i 0.147737π-0.147737\pi
972972 0 0
973973 − 6.15315e6i − 0.208360i
974974 0 0
975975 −1.39676e7 −0.470554
976976 0 0
977977 4.78338e7 1.60324 0.801619 0.597835i 0.203972π-0.203972\pi
0.801619 + 0.597835i 0.203972π0.203972\pi
978978 0 0
979979 − 872679.i − 0.0291003i
980980 0 0
981981 − 3.22144e7i − 1.06875i
982982 0 0
983983 −4.88361e7 −1.61197 −0.805986 0.591935i 0.798364π-0.798364\pi
−0.805986 + 0.591935i 0.798364π0.798364\pi
984984 0 0
985985 −9.76305e6 −0.320623
986986 0 0
987987 − 2.07695e7i − 0.678630i
988988 0 0
989989 2.09429e7i 0.680843i
990990 0 0
991991 −7.49231e6 −0.242344 −0.121172 0.992632i 0.538665π-0.538665\pi
−0.121172 + 0.992632i 0.538665π0.538665\pi
992992 0 0
993993 −8.66569e6 −0.278888
994994 0 0
995995 1.46066e7i 0.467725i
996996 0 0
997997 1.46209e7i 0.465841i 0.972496 + 0.232920i 0.0748281π0.0748281\pi
−0.972496 + 0.232920i 0.925172π0.925172\pi
998998 0 0
999999 1.56230e7 0.495280
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.d.a.81.18 20
4.3 odd 2 40.6.d.a.21.15 20
5.2 odd 4 800.6.f.c.49.17 20
5.3 odd 4 800.6.f.b.49.4 20
5.4 even 2 800.6.d.c.401.3 20
8.3 odd 2 40.6.d.a.21.16 yes 20
8.5 even 2 inner 160.6.d.a.81.3 20
12.11 even 2 360.6.k.b.181.6 20
20.3 even 4 200.6.f.c.149.5 20
20.7 even 4 200.6.f.b.149.16 20
20.19 odd 2 200.6.d.b.101.6 20
24.11 even 2 360.6.k.b.181.5 20
40.3 even 4 200.6.f.b.149.15 20
40.13 odd 4 800.6.f.c.49.18 20
40.19 odd 2 200.6.d.b.101.5 20
40.27 even 4 200.6.f.c.149.6 20
40.29 even 2 800.6.d.c.401.18 20
40.37 odd 4 800.6.f.b.49.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.15 20 4.3 odd 2
40.6.d.a.21.16 yes 20 8.3 odd 2
160.6.d.a.81.3 20 8.5 even 2 inner
160.6.d.a.81.18 20 1.1 even 1 trivial
200.6.d.b.101.5 20 40.19 odd 2
200.6.d.b.101.6 20 20.19 odd 2
200.6.f.b.149.15 20 40.3 even 4
200.6.f.b.149.16 20 20.7 even 4
200.6.f.c.149.5 20 20.3 even 4
200.6.f.c.149.6 20 40.27 even 4
360.6.k.b.181.5 20 24.11 even 2
360.6.k.b.181.6 20 12.11 even 2
800.6.d.c.401.3 20 5.4 even 2
800.6.d.c.401.18 20 40.29 even 2
800.6.f.b.49.3 20 40.37 odd 4
800.6.f.b.49.4 20 5.3 odd 4
800.6.f.c.49.17 20 5.2 odd 4
800.6.f.c.49.18 20 40.13 odd 4