Properties

Label 200.6.f.c.149.5
Level $200$
Weight $6$
Character 200.149
Analytic conductor $32.077$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{45}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.5
Root \(0.236693 - 3.99299i\) of defining polynomial
Character \(\chi\) \(=\) 200.149
Dual form 200.6.f.c.149.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.75630 - 4.22968i) q^{2} +25.0521 q^{3} +(-3.78045 + 31.7759i) q^{4} +(-94.1031 - 105.962i) q^{6} -103.624i q^{7} +(148.603 - 103.370i) q^{8} +384.607 q^{9} +740.776i q^{11} +(-94.7080 + 796.053i) q^{12} +892.067 q^{13} +(-438.297 + 389.243i) q^{14} +(-995.416 - 240.254i) q^{16} -1138.81i q^{17} +(-1444.70 - 1626.77i) q^{18} +1155.46i q^{19} -2596.00i q^{21} +(3133.25 - 2782.58i) q^{22} +1602.57i q^{23} +(3722.80 - 2589.63i) q^{24} +(-3350.87 - 3773.16i) q^{26} +3547.55 q^{27} +(3292.75 + 391.745i) q^{28} -2158.47i q^{29} +4955.24 q^{31} +(2722.88 + 5112.76i) q^{32} +18558.0i q^{33} +(-4816.81 + 4277.71i) q^{34} +(-1453.99 + 12221.2i) q^{36} +4403.89 q^{37} +(4887.22 - 4340.24i) q^{38} +22348.1 q^{39} +3780.62 q^{41} +(-10980.3 + 9751.34i) q^{42} -13068.3 q^{43} +(-23538.8 - 2800.46i) q^{44} +(6778.38 - 6019.75i) q^{46} +8000.58i q^{47} +(-24937.3 - 6018.87i) q^{48} +6069.06 q^{49} -28529.6i q^{51} +(-3372.41 + 28346.2i) q^{52} +34313.6 q^{53} +(-13325.6 - 15005.0i) q^{54} +(-10711.6 - 15398.8i) q^{56} +28946.6i q^{57} +(-9129.64 + 8107.85i) q^{58} -22065.0i q^{59} +2822.53i q^{61} +(-18613.4 - 20959.1i) q^{62} -39854.5i q^{63} +(11397.4 - 30722.0i) q^{64} +(78494.4 - 69709.3i) q^{66} +54981.5 q^{67} +(36186.7 + 4305.21i) q^{68} +40147.8i q^{69} +42879.2 q^{71} +(57153.5 - 39756.7i) q^{72} -20893.2i q^{73} +(-16542.3 - 18627.1i) q^{74} +(-36715.7 - 4368.14i) q^{76} +76762.2 q^{77} +(-83946.2 - 94525.5i) q^{78} -30227.6 q^{79} -4586.03 q^{81} +(-14201.1 - 15990.8i) q^{82} -93949.9 q^{83} +(82490.2 + 9814.03i) q^{84} +(49088.5 + 55274.9i) q^{86} -54074.1i q^{87} +(76573.8 + 110081. i) q^{88} -1178.06 q^{89} -92439.5i q^{91} +(-50923.2 - 6058.44i) q^{92} +124139. q^{93} +(33839.9 - 30052.6i) q^{94} +(68213.9 + 128085. i) q^{96} -74100.8i q^{97} +(-22797.2 - 25670.2i) q^{98} +284908. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 36 q^{3} + 32 q^{4} + 204 q^{6} + 248 q^{8} + 1620 q^{9} + 1252 q^{12} - 2708 q^{14} + 3080 q^{16} + 2070 q^{18} + 8244 q^{22} - 1032 q^{24} - 8084 q^{26} + 11664 q^{27} + 22924 q^{28}+ \cdots + 663674 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.75630 4.22968i −0.664026 0.747709i
\(3\) 25.0521 1.60709 0.803546 0.595243i \(-0.202944\pi\)
0.803546 + 0.595243i \(0.202944\pi\)
\(4\) −3.78045 + 31.7759i −0.118139 + 0.992997i
\(5\) 0 0
\(6\) −94.1031 105.962i −1.06715 1.20164i
\(7\) 103.624i 0.799310i −0.916666 0.399655i \(-0.869130\pi\)
0.916666 0.399655i \(-0.130870\pi\)
\(8\) 148.603 103.370i 0.820921 0.571042i
\(9\) 384.607 1.58274
\(10\) 0 0
\(11\) 740.776i 1.84589i 0.384935 + 0.922944i \(0.374224\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(12\) −94.7080 + 796.053i −0.189860 + 1.59584i
\(13\) 892.067 1.46399 0.731996 0.681309i \(-0.238589\pi\)
0.731996 + 0.681309i \(0.238589\pi\)
\(14\) −438.297 + 389.243i −0.597652 + 0.530763i
\(15\) 0 0
\(16\) −995.416 240.254i −0.972086 0.234623i
\(17\) 1138.81i 0.955717i −0.878437 0.477859i \(-0.841413\pi\)
0.878437 0.477859i \(-0.158587\pi\)
\(18\) −1444.70 1626.77i −1.05098 1.18343i
\(19\) 1155.46i 0.734294i 0.930163 + 0.367147i \(0.119665\pi\)
−0.930163 + 0.367147i \(0.880335\pi\)
\(20\) 0 0
\(21\) 2596.00i 1.28457i
\(22\) 3133.25 2782.58i 1.38019 1.22572i
\(23\) 1602.57i 0.631682i 0.948812 + 0.315841i \(0.102287\pi\)
−0.948812 + 0.315841i \(0.897713\pi\)
\(24\) 3722.80 2589.63i 1.31929 0.917717i
\(25\) 0 0
\(26\) −3350.87 3773.16i −0.972129 1.09464i
\(27\) 3547.55 0.936524
\(28\) 3292.75 + 391.745i 0.793713 + 0.0944297i
\(29\) 2158.47i 0.476596i −0.971192 0.238298i \(-0.923410\pi\)
0.971192 0.238298i \(-0.0765896\pi\)
\(30\) 0 0
\(31\) 4955.24 0.926106 0.463053 0.886331i \(-0.346754\pi\)
0.463053 + 0.886331i \(0.346754\pi\)
\(32\) 2722.88 + 5112.76i 0.470061 + 0.882634i
\(33\) 18558.0i 2.96651i
\(34\) −4816.81 + 4277.71i −0.714599 + 0.634621i
\(35\) 0 0
\(36\) −1453.99 + 12221.2i −0.186984 + 1.57166i
\(37\) 4403.89 0.528850 0.264425 0.964406i \(-0.414818\pi\)
0.264425 + 0.964406i \(0.414818\pi\)
\(38\) 4887.22 4340.24i 0.549039 0.487590i
\(39\) 22348.1 2.35277
\(40\) 0 0
\(41\) 3780.62 0.351240 0.175620 0.984458i \(-0.443807\pi\)
0.175620 + 0.984458i \(0.443807\pi\)
\(42\) −10980.3 + 9751.34i −0.960482 + 0.852985i
\(43\) −13068.3 −1.07783 −0.538913 0.842361i \(-0.681165\pi\)
−0.538913 + 0.842361i \(0.681165\pi\)
\(44\) −23538.8 2800.46i −1.83296 0.218071i
\(45\) 0 0
\(46\) 6778.38 6019.75i 0.472315 0.419453i
\(47\) 8000.58i 0.528296i 0.964482 + 0.264148i \(0.0850907\pi\)
−0.964482 + 0.264148i \(0.914909\pi\)
\(48\) −24937.3 6018.87i −1.56223 0.377061i
\(49\) 6069.06 0.361103
\(50\) 0 0
\(51\) 28529.6i 1.53593i
\(52\) −3372.41 + 28346.2i −0.172955 + 1.45374i
\(53\) 34313.6 1.67794 0.838971 0.544175i \(-0.183157\pi\)
0.838971 + 0.544175i \(0.183157\pi\)
\(54\) −13325.6 15005.0i −0.621876 0.700248i
\(55\) 0 0
\(56\) −10711.6 15398.8i −0.456440 0.656170i
\(57\) 28946.6i 1.18008i
\(58\) −9129.64 + 8107.85i −0.356356 + 0.316472i
\(59\) 22065.0i 0.825227i −0.910906 0.412613i \(-0.864616\pi\)
0.910906 0.412613i \(-0.135384\pi\)
\(60\) 0 0
\(61\) 2822.53i 0.0971212i 0.998820 + 0.0485606i \(0.0154634\pi\)
−0.998820 + 0.0485606i \(0.984537\pi\)
\(62\) −18613.4 20959.1i −0.614959 0.692458i
\(63\) 39854.5i 1.26510i
\(64\) 11397.4 30722.0i 0.347821 0.937561i
\(65\) 0 0
\(66\) 78494.4 69709.3i 2.21809 1.96984i
\(67\) 54981.5 1.49634 0.748168 0.663509i \(-0.230934\pi\)
0.748168 + 0.663509i \(0.230934\pi\)
\(68\) 36186.7 + 4305.21i 0.949024 + 0.112907i
\(69\) 40147.8i 1.01517i
\(70\) 0 0
\(71\) 42879.2 1.00949 0.504744 0.863269i \(-0.331587\pi\)
0.504744 + 0.863269i \(0.331587\pi\)
\(72\) 57153.5 39756.7i 1.29931 0.903814i
\(73\) 20893.2i 0.458879i −0.973323 0.229440i \(-0.926311\pi\)
0.973323 0.229440i \(-0.0736894\pi\)
\(74\) −16542.3 18627.1i −0.351170 0.395426i
\(75\) 0 0
\(76\) −36715.7 4368.14i −0.729152 0.0867487i
\(77\) 76762.2 1.47544
\(78\) −83946.2 94525.5i −1.56230 1.75919i
\(79\) −30227.6 −0.544925 −0.272462 0.962166i \(-0.587838\pi\)
−0.272462 + 0.962166i \(0.587838\pi\)
\(80\) 0 0
\(81\) −4586.03 −0.0776648
\(82\) −14201.1 15990.8i −0.233232 0.262625i
\(83\) −93949.9 −1.49693 −0.748465 0.663175i \(-0.769209\pi\)
−0.748465 + 0.663175i \(0.769209\pi\)
\(84\) 82490.2 + 9814.03i 1.27557 + 0.151757i
\(85\) 0 0
\(86\) 49088.5 + 55274.9i 0.715704 + 0.805901i
\(87\) 54074.1i 0.765934i
\(88\) 76573.8 + 110081.i 1.05408 + 1.51533i
\(89\) −1178.06 −0.0157650 −0.00788248 0.999969i \(-0.502509\pi\)
−0.00788248 + 0.999969i \(0.502509\pi\)
\(90\) 0 0
\(91\) 92439.5i 1.17018i
\(92\) −50923.2 6058.44i −0.627258 0.0746262i
\(93\) 124139. 1.48834
\(94\) 33839.9 30052.6i 0.395012 0.350802i
\(95\) 0 0
\(96\) 68213.9 + 128085.i 0.755431 + 1.41847i
\(97\) 74100.8i 0.799638i −0.916594 0.399819i \(-0.869073\pi\)
0.916594 0.399819i \(-0.130927\pi\)
\(98\) −22797.2 25670.2i −0.239782 0.270000i
\(99\) 284908.i 2.92157i
\(100\) 0 0
\(101\) 31104.3i 0.303401i 0.988427 + 0.151700i \(0.0484749\pi\)
−0.988427 + 0.151700i \(0.951525\pi\)
\(102\) −120671. + 107166.i −1.14843 + 1.01989i
\(103\) 140298.i 1.30305i −0.758629 0.651523i \(-0.774130\pi\)
0.758629 0.651523i \(-0.225870\pi\)
\(104\) 132563. 92212.7i 1.20182 0.836002i
\(105\) 0 0
\(106\) −128892. 145136.i −1.11420 1.25461i
\(107\) −34792.6 −0.293784 −0.146892 0.989153i \(-0.546927\pi\)
−0.146892 + 0.989153i \(0.546927\pi\)
\(108\) −13411.3 + 112727.i −0.110640 + 0.929965i
\(109\) 83759.2i 0.675252i −0.941280 0.337626i \(-0.890376\pi\)
0.941280 0.337626i \(-0.109624\pi\)
\(110\) 0 0
\(111\) 110327. 0.849910
\(112\) −24896.1 + 103149.i −0.187537 + 0.776999i
\(113\) 57262.1i 0.421863i 0.977501 + 0.210931i \(0.0676497\pi\)
−0.977501 + 0.210931i \(0.932350\pi\)
\(114\) 122435. 108732.i 0.882355 0.783602i
\(115\) 0 0
\(116\) 68587.3 + 8159.97i 0.473259 + 0.0563046i
\(117\) 343095. 2.31713
\(118\) −93327.9 + 82882.6i −0.617030 + 0.547972i
\(119\) −118008. −0.763914
\(120\) 0 0
\(121\) −387698. −2.40730
\(122\) 11938.4 10602.3i 0.0726184 0.0644910i
\(123\) 94712.5 0.564475
\(124\) −18733.0 + 157457.i −0.109409 + 0.919621i
\(125\) 0 0
\(126\) −168572. + 149705.i −0.945930 + 0.840062i
\(127\) 8848.12i 0.0486790i 0.999704 + 0.0243395i \(0.00774827\pi\)
−0.999704 + 0.0243395i \(0.992252\pi\)
\(128\) −172756. + 67193.5i −0.931986 + 0.362495i
\(129\) −327389. −1.73217
\(130\) 0 0
\(131\) 110458.i 0.562365i 0.959654 + 0.281183i \(0.0907267\pi\)
−0.959654 + 0.281183i \(0.909273\pi\)
\(132\) −589697. 70157.4i −2.94574 0.350460i
\(133\) 119733. 0.586929
\(134\) −206527. 232554.i −0.993606 1.11882i
\(135\) 0 0
\(136\) −117719. 169230.i −0.545755 0.784568i
\(137\) 304365.i 1.38546i 0.721199 + 0.692728i \(0.243591\pi\)
−0.721199 + 0.692728i \(0.756409\pi\)
\(138\) 169813. 150807.i 0.759053 0.674100i
\(139\) 59379.5i 0.260675i 0.991470 + 0.130338i \(0.0416061\pi\)
−0.991470 + 0.130338i \(0.958394\pi\)
\(140\) 0 0
\(141\) 200431.i 0.849020i
\(142\) −161067. 181366.i −0.670326 0.754804i
\(143\) 660822.i 2.70237i
\(144\) −382844. 92403.4i −1.53856 0.371349i
\(145\) 0 0
\(146\) −88371.8 + 78481.2i −0.343108 + 0.304708i
\(147\) 152043. 0.580326
\(148\) −16648.7 + 139938.i −0.0624777 + 0.525146i
\(149\) 233744.i 0.862529i 0.902225 + 0.431265i \(0.141932\pi\)
−0.902225 + 0.431265i \(0.858068\pi\)
\(150\) 0 0
\(151\) −89068.4 −0.317893 −0.158947 0.987287i \(-0.550810\pi\)
−0.158947 + 0.987287i \(0.550810\pi\)
\(152\) 119439. + 171704.i 0.419313 + 0.602797i
\(153\) 437994.i 1.51266i
\(154\) −288342. 324680.i −0.979728 1.10320i
\(155\) 0 0
\(156\) −84485.9 + 710132.i −0.277954 + 2.33629i
\(157\) −608909. −1.97153 −0.985764 0.168132i \(-0.946227\pi\)
−0.985764 + 0.168132i \(0.946227\pi\)
\(158\) 113544. + 127853.i 0.361844 + 0.407445i
\(159\) 859628. 2.69661
\(160\) 0 0
\(161\) 166065. 0.504910
\(162\) 17226.5 + 19397.4i 0.0515714 + 0.0580707i
\(163\) 172801. 0.509421 0.254711 0.967017i \(-0.418020\pi\)
0.254711 + 0.967017i \(0.418020\pi\)
\(164\) −14292.4 + 120133.i −0.0414951 + 0.348780i
\(165\) 0 0
\(166\) 352904. + 397378.i 0.994000 + 1.11927i
\(167\) 441506.i 1.22503i −0.790461 0.612513i \(-0.790159\pi\)
0.790461 0.612513i \(-0.209841\pi\)
\(168\) −268348. 385772.i −0.733541 1.05453i
\(169\) 424490. 1.14327
\(170\) 0 0
\(171\) 444397.i 1.16220i
\(172\) 49404.1 415258.i 0.127333 1.07028i
\(173\) −281414. −0.714874 −0.357437 0.933937i \(-0.616349\pi\)
−0.357437 + 0.933937i \(0.616349\pi\)
\(174\) −228717. + 203119.i −0.572696 + 0.508600i
\(175\) 0 0
\(176\) 177975. 737381.i 0.433088 1.79436i
\(177\) 552774.i 1.32622i
\(178\) 4425.15 + 4982.83i 0.0104683 + 0.0117876i
\(179\) 805768.i 1.87965i 0.341655 + 0.939825i \(0.389013\pi\)
−0.341655 + 0.939825i \(0.610987\pi\)
\(180\) 0 0
\(181\) 610344.i 1.38477i −0.721528 0.692385i \(-0.756560\pi\)
0.721528 0.692385i \(-0.243440\pi\)
\(182\) −390990. + 347231.i −0.874958 + 0.777033i
\(183\) 70710.3i 0.156083i
\(184\) 165658. + 238147.i 0.360717 + 0.518561i
\(185\) 0 0
\(186\) −466304. 525070.i −0.988295 1.11284i
\(187\) 843604. 1.76415
\(188\) −254226. 30245.8i −0.524596 0.0624123i
\(189\) 367611.i 0.748573i
\(190\) 0 0
\(191\) −845737. −1.67746 −0.838729 0.544549i \(-0.816701\pi\)
−0.838729 + 0.544549i \(0.816701\pi\)
\(192\) 285529. 769650.i 0.558981 1.50675i
\(193\) 184089.i 0.355742i −0.984054 0.177871i \(-0.943079\pi\)
0.984054 0.177871i \(-0.0569210\pi\)
\(194\) −313423. + 278345.i −0.597897 + 0.530981i
\(195\) 0 0
\(196\) −22943.7 + 192850.i −0.0426603 + 0.358574i
\(197\) 390522. 0.716935 0.358468 0.933542i \(-0.383299\pi\)
0.358468 + 0.933542i \(0.383299\pi\)
\(198\) 1.20507e6 1.07020e6i 2.18448 1.94000i
\(199\) 584263. 1.04587 0.522933 0.852374i \(-0.324838\pi\)
0.522933 + 0.852374i \(0.324838\pi\)
\(200\) 0 0
\(201\) 1.37740e6 2.40475
\(202\) 131561. 116837.i 0.226856 0.201466i
\(203\) −223669. −0.380948
\(204\) 906553. + 107855.i 1.52517 + 0.181453i
\(205\) 0 0
\(206\) −593418. + 527003.i −0.974300 + 0.865256i
\(207\) 616361.i 0.999791i
\(208\) −887978. 214323.i −1.42313 0.343487i
\(209\) −855935. −1.35542
\(210\) 0 0
\(211\) 428258.i 0.662215i 0.943593 + 0.331107i \(0.107422\pi\)
−0.943593 + 0.331107i \(0.892578\pi\)
\(212\) −129721. + 1.09035e6i −0.198230 + 1.66619i
\(213\) 1.07421e6 1.62234
\(214\) 130691. + 147162.i 0.195080 + 0.219665i
\(215\) 0 0
\(216\) 527174. 366709.i 0.768812 0.534795i
\(217\) 513482.i 0.740246i
\(218\) −354275. + 314624.i −0.504893 + 0.448385i
\(219\) 523419.i 0.737461i
\(220\) 0 0
\(221\) 1.01590e6i 1.39916i
\(222\) −414420. 466647.i −0.564362 0.635486i
\(223\) 955618.i 1.28683i 0.765517 + 0.643416i \(0.222484\pi\)
−0.765517 + 0.643416i \(0.777516\pi\)
\(224\) 529805. 282156.i 0.705499 0.375724i
\(225\) 0 0
\(226\) 242201. 215094.i 0.315431 0.280128i
\(227\) −866233. −1.11576 −0.557879 0.829922i \(-0.688385\pi\)
−0.557879 + 0.829922i \(0.688385\pi\)
\(228\) −919805. 109431.i −1.17181 0.139413i
\(229\) 654035.i 0.824161i −0.911147 0.412080i \(-0.864802\pi\)
0.911147 0.412080i \(-0.135198\pi\)
\(230\) 0 0
\(231\) 1.92305e6 2.37116
\(232\) −223120. 320754.i −0.272157 0.391248i
\(233\) 820513.i 0.990138i −0.868854 0.495069i \(-0.835143\pi\)
0.868854 0.495069i \(-0.164857\pi\)
\(234\) −1.28877e6 1.45118e6i −1.53863 1.73254i
\(235\) 0 0
\(236\) 701135. + 83415.4i 0.819448 + 0.0974914i
\(237\) −757265. −0.875744
\(238\) 443274. + 499137.i 0.507259 + 0.571186i
\(239\) −867314. −0.982159 −0.491079 0.871115i \(-0.663397\pi\)
−0.491079 + 0.871115i \(0.663397\pi\)
\(240\) 0 0
\(241\) −1.65377e6 −1.83414 −0.917072 0.398722i \(-0.869454\pi\)
−0.917072 + 0.398722i \(0.869454\pi\)
\(242\) 1.45631e6 + 1.63984e6i 1.59851 + 1.79996i
\(243\) −976943. −1.06134
\(244\) −89688.5 10670.4i −0.0964411 0.0114738i
\(245\) 0 0
\(246\) −355768. 400604.i −0.374826 0.422063i
\(247\) 1.03075e6i 1.07500i
\(248\) 736362. 512222.i 0.760260 0.528846i
\(249\) −2.35364e6 −2.40570
\(250\) 0 0
\(251\) 860879.i 0.862497i 0.902233 + 0.431249i \(0.141927\pi\)
−0.902233 + 0.431249i \(0.858073\pi\)
\(252\) 1.26641e6 + 150668.i 1.25624 + 0.149458i
\(253\) −1.18715e6 −1.16601
\(254\) 37424.7 33236.2i 0.0363978 0.0323241i
\(255\) 0 0
\(256\) 933132. + 478306.i 0.889904 + 0.456148i
\(257\) 765335.i 0.722801i 0.932411 + 0.361401i \(0.117701\pi\)
−0.932411 + 0.361401i \(0.882299\pi\)
\(258\) 1.22977e6 + 1.38475e6i 1.15020 + 1.29516i
\(259\) 456349.i 0.422715i
\(260\) 0 0
\(261\) 830162.i 0.754330i
\(262\) 467202. 414913.i 0.420486 0.373425i
\(263\) 260746.i 0.232449i 0.993223 + 0.116225i \(0.0370792\pi\)
−0.993223 + 0.116225i \(0.962921\pi\)
\(264\) 1.91833e6 + 2.75776e6i 1.69400 + 2.43527i
\(265\) 0 0
\(266\) −449754. 506433.i −0.389736 0.438852i
\(267\) −29512.9 −0.0253357
\(268\) −207854. + 1.74709e6i −0.176776 + 1.48586i
\(269\) 1.12412e6i 0.947175i −0.880747 0.473587i \(-0.842959\pi\)
0.880747 0.473587i \(-0.157041\pi\)
\(270\) 0 0
\(271\) −1.07277e6 −0.887330 −0.443665 0.896193i \(-0.646322\pi\)
−0.443665 + 0.896193i \(0.646322\pi\)
\(272\) −273604. + 1.13359e6i −0.224233 + 0.929039i
\(273\) 2.31580e6i 1.88059i
\(274\) 1.28737e6 1.14328e6i 1.03592 0.919979i
\(275\) 0 0
\(276\) −1.27573e6 151777.i −1.00806 0.119931i
\(277\) −615080. −0.481651 −0.240825 0.970568i \(-0.577418\pi\)
−0.240825 + 0.970568i \(0.577418\pi\)
\(278\) 251157. 223047.i 0.194909 0.173095i
\(279\) 1.90582e6 1.46579
\(280\) 0 0
\(281\) −652198. −0.492736 −0.246368 0.969176i \(-0.579237\pi\)
−0.246368 + 0.969176i \(0.579237\pi\)
\(282\) 847761. 752880.i 0.634820 0.563771i
\(283\) −908596. −0.674380 −0.337190 0.941437i \(-0.609476\pi\)
−0.337190 + 0.941437i \(0.609476\pi\)
\(284\) −162103. + 1.36253e6i −0.119260 + 1.00242i
\(285\) 0 0
\(286\) 2.79507e6 2.48224e6i 2.02058 1.79444i
\(287\) 391763.i 0.280750i
\(288\) 1.04724e6 + 1.96640e6i 0.743986 + 1.39698i
\(289\) 122967. 0.0866050
\(290\) 0 0
\(291\) 1.85638e6i 1.28509i
\(292\) 663901. + 78985.7i 0.455666 + 0.0542115i
\(293\) 514047. 0.349811 0.174906 0.984585i \(-0.444038\pi\)
0.174906 + 0.984585i \(0.444038\pi\)
\(294\) −571117. 643092.i −0.385351 0.433915i
\(295\) 0 0
\(296\) 654429. 455229.i 0.434144 0.301996i
\(297\) 2.62794e6i 1.72872i
\(298\) 988661. 878010.i 0.644921 0.572742i
\(299\) 1.42960e6i 0.924778i
\(300\) 0 0
\(301\) 1.35419e6i 0.861517i
\(302\) 334568. + 376731.i 0.211089 + 0.237692i
\(303\) 779227.i 0.487593i
\(304\) 277604. 1.15016e6i 0.172282 0.713797i
\(305\) 0 0
\(306\) −1.85258e6 + 1.64524e6i −1.13103 + 1.00444i
\(307\) −1.46693e6 −0.888309 −0.444155 0.895950i \(-0.646496\pi\)
−0.444155 + 0.895950i \(0.646496\pi\)
\(308\) −290195. + 2.43919e6i −0.174307 + 1.46510i
\(309\) 3.51477e6i 2.09411i
\(310\) 0 0
\(311\) 547919. 0.321229 0.160615 0.987017i \(-0.448652\pi\)
0.160615 + 0.987017i \(0.448652\pi\)
\(312\) 3.32099e6 2.31012e6i 1.93144 1.34353i
\(313\) 1.70857e6i 0.985762i 0.870097 + 0.492881i \(0.164056\pi\)
−0.870097 + 0.492881i \(0.835944\pi\)
\(314\) 2.28724e6 + 2.57549e6i 1.30915 + 1.47413i
\(315\) 0 0
\(316\) 114274. 960510.i 0.0643768 0.541109i
\(317\) 978608. 0.546966 0.273483 0.961877i \(-0.411824\pi\)
0.273483 + 0.961877i \(0.411824\pi\)
\(318\) −3.22902e6 3.63596e6i −1.79062 2.01628i
\(319\) 1.59894e6 0.879743
\(320\) 0 0
\(321\) −871627. −0.472137
\(322\) −623790. 702403.i −0.335273 0.377526i
\(323\) 1.31585e6 0.701777
\(324\) 17337.2 145725.i 0.00917523 0.0771209i
\(325\) 0 0
\(326\) −649092. 730893.i −0.338269 0.380899i
\(327\) 2.09834e6i 1.08519i
\(328\) 561810. 390802.i 0.288340 0.200573i
\(329\) 829053. 0.422272
\(330\) 0 0
\(331\) 345907.i 0.173536i −0.996229 0.0867679i \(-0.972346\pi\)
0.996229 0.0867679i \(-0.0276539\pi\)
\(332\) 355173. 2.98534e6i 0.176846 1.48645i
\(333\) 1.69377e6 0.837034
\(334\) −1.86743e6 + 1.65843e6i −0.915963 + 0.813449i
\(335\) 0 0
\(336\) −623699. + 2.58410e6i −0.301389 + 1.24871i
\(337\) 376513.i 0.180595i −0.995915 0.0902975i \(-0.971218\pi\)
0.995915 0.0902975i \(-0.0287818\pi\)
\(338\) −1.59451e6 1.79546e6i −0.759164 0.854837i
\(339\) 1.43454e6i 0.677972i
\(340\) 0 0
\(341\) 3.67073e6i 1.70949i
\(342\) 1.87966e6 1.66929e6i 0.868988 0.771731i
\(343\) 2.37051e6i 1.08794i
\(344\) −1.94199e6 + 1.35087e6i −0.884810 + 0.615484i
\(345\) 0 0
\(346\) 1.05707e6 + 1.19029e6i 0.474695 + 0.534518i
\(347\) −164656. −0.0734099 −0.0367049 0.999326i \(-0.511686\pi\)
−0.0367049 + 0.999326i \(0.511686\pi\)
\(348\) 1.71825e6 + 204424.i 0.760571 + 0.0904867i
\(349\) 35942.6i 0.0157959i −0.999969 0.00789797i \(-0.997486\pi\)
0.999969 0.00789797i \(-0.00251403\pi\)
\(350\) 0 0
\(351\) 3.16465e6 1.37106
\(352\) −3.78741e6 + 2.01705e6i −1.62924 + 0.867679i
\(353\) 1.39430e6i 0.595550i 0.954636 + 0.297775i \(0.0962445\pi\)
−0.954636 + 0.297775i \(0.903756\pi\)
\(354\) −2.33806e6 + 2.07638e6i −0.991624 + 0.880642i
\(355\) 0 0
\(356\) 4453.60 37434.0i 0.00186246 0.0156546i
\(357\) −2.95635e6 −1.22768
\(358\) 3.40814e6 3.02670e6i 1.40543 1.24814i
\(359\) −3.50589e6 −1.43569 −0.717847 0.696201i \(-0.754872\pi\)
−0.717847 + 0.696201i \(0.754872\pi\)
\(360\) 0 0
\(361\) 1.14102e6 0.460812
\(362\) −2.58156e6 + 2.29263e6i −1.03541 + 0.919524i
\(363\) −9.71265e6 −3.86875
\(364\) 2.93735e6 + 349463.i 1.16199 + 0.138244i
\(365\) 0 0
\(366\) 299082. 265609.i 0.116705 0.103643i
\(367\) 3.64440e6i 1.41241i −0.708007 0.706206i \(-0.750405\pi\)
0.708007 0.706206i \(-0.249595\pi\)
\(368\) 385025. 1.59523e6i 0.148207 0.614049i
\(369\) 1.45405e6 0.555923
\(370\) 0 0
\(371\) 3.55572e6i 1.34120i
\(372\) −469302. + 3.94464e6i −0.175831 + 1.47792i
\(373\) 4.19252e6 1.56028 0.780142 0.625603i \(-0.215147\pi\)
0.780142 + 0.625603i \(0.215147\pi\)
\(374\) −3.16883e6 3.56818e6i −1.17144 1.31907i
\(375\) 0 0
\(376\) 827018. + 1.18891e6i 0.301679 + 0.433689i
\(377\) 1.92550e6i 0.697734i
\(378\) −1.55488e6 + 1.38086e6i −0.559715 + 0.497072i
\(379\) 2.31089e6i 0.826384i −0.910644 0.413192i \(-0.864414\pi\)
0.910644 0.413192i \(-0.135586\pi\)
\(380\) 0 0
\(381\) 221664.i 0.0782316i
\(382\) 3.17684e6 + 3.57720e6i 1.11388 + 1.25425i
\(383\) 1.18240e6i 0.411876i 0.978565 + 0.205938i \(0.0660245\pi\)
−0.978565 + 0.205938i \(0.933976\pi\)
\(384\) −4.32791e6 + 1.68334e6i −1.49779 + 0.582563i
\(385\) 0 0
\(386\) −778639. + 691494.i −0.265992 + 0.236222i
\(387\) −5.02617e6 −1.70592
\(388\) 2.35462e6 + 280134.i 0.794038 + 0.0944684i
\(389\) 5.09219e6i 1.70620i −0.521745 0.853102i \(-0.674719\pi\)
0.521745 0.853102i \(-0.325281\pi\)
\(390\) 0 0
\(391\) 1.82503e6 0.603709
\(392\) 901877. 627357.i 0.296437 0.206205i
\(393\) 2.76720e6i 0.903773i
\(394\) −1.46692e6 1.65178e6i −0.476064 0.536059i
\(395\) 0 0
\(396\) −9.05320e6 1.07708e6i −2.90111 0.345151i
\(397\) 63006.9 0.0200637 0.0100319 0.999950i \(-0.496807\pi\)
0.0100319 + 0.999950i \(0.496807\pi\)
\(398\) −2.19467e6 2.47125e6i −0.694482 0.782004i
\(399\) 2.99957e6 0.943248
\(400\) 0 0
\(401\) −4.48960e6 −1.39427 −0.697135 0.716940i \(-0.745542\pi\)
−0.697135 + 0.716940i \(0.745542\pi\)
\(402\) −5.17392e6 5.82597e6i −1.59682 1.79805i
\(403\) 4.42041e6 1.35581
\(404\) −988367. 117588.i −0.301276 0.0358434i
\(405\) 0 0
\(406\) 840169. + 946050.i 0.252960 + 0.284839i
\(407\) 3.26230e6i 0.976197i
\(408\) −2.94909e6 4.23957e6i −0.877078 1.26087i
\(409\) −2.03416e6 −0.601281 −0.300641 0.953738i \(-0.597200\pi\)
−0.300641 + 0.953738i \(0.597200\pi\)
\(410\) 0 0
\(411\) 7.62497e6i 2.22656i
\(412\) 4.45811e6 + 530391.i 1.29392 + 0.153940i
\(413\) −2.28646e6 −0.659612
\(414\) 2.60701e6 2.31524e6i 0.747553 0.663887i
\(415\) 0 0
\(416\) 2.42899e6 + 4.56093e6i 0.688165 + 1.29217i
\(417\) 1.48758e6i 0.418929i
\(418\) 3.21515e6 + 3.62034e6i 0.900037 + 1.01346i
\(419\) 1.53143e6i 0.426150i 0.977036 + 0.213075i \(0.0683479\pi\)
−0.977036 + 0.213075i \(0.931652\pi\)
\(420\) 0 0
\(421\) 4.86857e6i 1.33874i −0.742929 0.669370i \(-0.766564\pi\)
0.742929 0.669370i \(-0.233436\pi\)
\(422\) 1.81139e6 1.60866e6i 0.495144 0.439728i
\(423\) 3.07708e6i 0.836157i
\(424\) 5.09909e6 3.54699e6i 1.37746 0.958176i
\(425\) 0 0
\(426\) −4.03507e6 4.54359e6i −1.07728 1.21304i
\(427\) 292482. 0.0776300
\(428\) 131532. 1.10557e6i 0.0347073 0.291726i
\(429\) 1.65550e7i 4.34295i
\(430\) 0 0
\(431\) 537754. 0.139441 0.0697204 0.997567i \(-0.477789\pi\)
0.0697204 + 0.997567i \(0.477789\pi\)
\(432\) −3.53129e6 852313.i −0.910382 0.219730i
\(433\) 1.48235e6i 0.379954i 0.981789 + 0.189977i \(0.0608414\pi\)
−0.981789 + 0.189977i \(0.939159\pi\)
\(434\) −2.17187e6 + 1.92879e6i −0.553489 + 0.491543i
\(435\) 0 0
\(436\) 2.66152e6 + 316647.i 0.670524 + 0.0797736i
\(437\) −1.85171e6 −0.463840
\(438\) −2.21390e6 + 1.96612e6i −0.551407 + 0.489693i
\(439\) 2.49966e6 0.619041 0.309520 0.950893i \(-0.399832\pi\)
0.309520 + 0.950893i \(0.399832\pi\)
\(440\) 0 0
\(441\) 2.33420e6 0.571534
\(442\) −4.29692e6 + 3.81601e6i −1.04617 + 0.929080i
\(443\) 5.00804e6 1.21244 0.606218 0.795299i \(-0.292686\pi\)
0.606218 + 0.795299i \(0.292686\pi\)
\(444\) −417084. + 3.50573e6i −0.100407 + 0.843958i
\(445\) 0 0
\(446\) 4.04196e6 3.58959e6i 0.962177 0.854490i
\(447\) 5.85576e6i 1.38616i
\(448\) −3.18354e6 1.18105e6i −0.749402 0.278017i
\(449\) −3.04025e6 −0.711694 −0.355847 0.934544i \(-0.615808\pi\)
−0.355847 + 0.934544i \(0.615808\pi\)
\(450\) 0 0
\(451\) 2.80059e6i 0.648349i
\(452\) −1.81956e6 216476.i −0.418909 0.0498384i
\(453\) −2.23135e6 −0.510884
\(454\) 3.25383e6 + 3.66389e6i 0.740892 + 0.834263i
\(455\) 0 0
\(456\) 2.99220e6 + 4.30154e6i 0.673874 + 0.968750i
\(457\) 7.20014e6i 1.61269i −0.591446 0.806345i \(-0.701443\pi\)
0.591446 0.806345i \(-0.298557\pi\)
\(458\) −2.76636e6 + 2.45675e6i −0.616233 + 0.547264i
\(459\) 4.03999e6i 0.895052i
\(460\) 0 0
\(461\) 7.87732e6i 1.72634i 0.504914 + 0.863170i \(0.331524\pi\)
−0.504914 + 0.863170i \(0.668476\pi\)
\(462\) −7.22356e6 8.13391e6i −1.57451 1.77294i
\(463\) 6.18812e6i 1.34155i −0.741662 0.670774i \(-0.765962\pi\)
0.741662 0.670774i \(-0.234038\pi\)
\(464\) −518581. + 2.14858e6i −0.111821 + 0.463293i
\(465\) 0 0
\(466\) −3.47051e6 + 3.08209e6i −0.740336 + 0.657477i
\(467\) 7.21143e6 1.53013 0.765066 0.643952i \(-0.222706\pi\)
0.765066 + 0.643952i \(0.222706\pi\)
\(468\) −1.29705e6 + 1.09022e7i −0.273743 + 2.30090i
\(469\) 5.69740e6i 1.19604i
\(470\) 0 0
\(471\) −1.52544e7 −3.16843
\(472\) −2.28085e6 3.27891e6i −0.471239 0.677446i
\(473\) 9.68070e6i 1.98955i
\(474\) 2.84451e6 + 3.20299e6i 0.581517 + 0.654802i
\(475\) 0 0
\(476\) 446124. 3.74982e6i 0.0902480 0.758565i
\(477\) 1.31973e7 2.65575
\(478\) 3.25789e6 + 3.66846e6i 0.652179 + 0.734369i
\(479\) −4.05783e6 −0.808081 −0.404040 0.914741i \(-0.632395\pi\)
−0.404040 + 0.914741i \(0.632395\pi\)
\(480\) 0 0
\(481\) 3.92856e6 0.774232
\(482\) 6.21206e6 + 6.99494e6i 1.21792 + 1.37141i
\(483\) 4.16028e6 0.811437
\(484\) 1.46567e6 1.23195e7i 0.284396 2.39044i
\(485\) 0 0
\(486\) 3.66969e6 + 4.13216e6i 0.704756 + 0.793573i
\(487\) 121792.i 0.0232700i −0.999932 0.0116350i \(-0.996296\pi\)
0.999932 0.0116350i \(-0.00370361\pi\)
\(488\) 291764. + 419435.i 0.0554603 + 0.0797288i
\(489\) 4.32902e6 0.818687
\(490\) 0 0
\(491\) 2.80649e6i 0.525363i −0.964883 0.262682i \(-0.915393\pi\)
0.964883 0.262682i \(-0.0846069\pi\)
\(492\) −358055. + 3.00957e6i −0.0666864 + 0.560522i
\(493\) −2.45809e6 −0.455491
\(494\) 4.35973e6 3.87179e6i 0.803789 0.713829i
\(495\) 0 0
\(496\) −4.93253e6 1.19052e6i −0.900255 0.217286i
\(497\) 4.44332e6i 0.806894i
\(498\) 8.84098e6 + 9.95516e6i 1.59745 + 1.79877i
\(499\) 2.59476e6i 0.466494i 0.972418 + 0.233247i \(0.0749351\pi\)
−0.972418 + 0.233247i \(0.925065\pi\)
\(500\) 0 0
\(501\) 1.10606e7i 1.96873i
\(502\) 3.64125e6 3.23372e6i 0.644897 0.572721i
\(503\) 1.04638e6i 0.184404i 0.995740 + 0.0922021i \(0.0293906\pi\)
−0.995740 + 0.0922021i \(0.970609\pi\)
\(504\) −4.11975e6 5.92248e6i −0.722428 1.03855i
\(505\) 0 0
\(506\) 4.45928e6 + 5.02126e6i 0.774264 + 0.871840i
\(507\) 1.06344e7 1.83735
\(508\) −281157. 33449.8i −0.0483381 0.00575089i
\(509\) 8.38369e6i 1.43430i 0.696918 + 0.717151i \(0.254554\pi\)
−0.696918 + 0.717151i \(0.745446\pi\)
\(510\) 0 0
\(511\) −2.16504e6 −0.366787
\(512\) −1.48204e6 5.74351e6i −0.249853 0.968284i
\(513\) 4.09904e6i 0.687684i
\(514\) 3.23713e6 2.87483e6i 0.540445 0.479959i
\(515\) 0 0
\(516\) 1.23767e6 1.04031e7i 0.204636 1.72004i
\(517\) −5.92664e6 −0.975174
\(518\) −1.93021e6 + 1.71418e6i −0.316068 + 0.280694i
\(519\) −7.05000e6 −1.14887
\(520\) 0 0
\(521\) −4.38397e6 −0.707577 −0.353788 0.935325i \(-0.615107\pi\)
−0.353788 + 0.935325i \(0.615107\pi\)
\(522\) −3.51132e6 + 3.11834e6i −0.564020 + 0.500895i
\(523\) 915789. 0.146400 0.0732000 0.997317i \(-0.476679\pi\)
0.0732000 + 0.997317i \(0.476679\pi\)
\(524\) −3.50990e6 417580.i −0.558427 0.0664372i
\(525\) 0 0
\(526\) 1.10287e6 979439.i 0.173804 0.154352i
\(527\) 5.64309e6i 0.885096i
\(528\) 4.45863e6 1.84729e7i 0.696012 2.88370i
\(529\) 3.86810e6 0.600978
\(530\) 0 0
\(531\) 8.48634e6i 1.30612i
\(532\) −452645. + 3.80463e6i −0.0693391 + 0.582819i
\(533\) 3.37257e6 0.514212
\(534\) 110859. + 124830.i 0.0168236 + 0.0189438i
\(535\) 0 0
\(536\) 8.17038e6 5.68342e6i 1.22837 0.854471i
\(537\) 2.01862e7i 3.02077i
\(538\) −4.75465e6 + 4.22251e6i −0.708212 + 0.628949i
\(539\) 4.49581e6i 0.666556i
\(540\) 0 0
\(541\) 6.98594e6i 1.02620i −0.858329 0.513100i \(-0.828497\pi\)
0.858329 0.513100i \(-0.171503\pi\)
\(542\) 4.02966e6 + 4.53750e6i 0.589210 + 0.663465i
\(543\) 1.52904e7i 2.22545i
\(544\) 5.82247e6 3.10085e6i 0.843548 0.449245i
\(545\) 0 0
\(546\) −9.79511e6 + 8.69885e6i −1.40614 + 1.24876i
\(547\) 4.72947e6 0.675841 0.337920 0.941175i \(-0.390277\pi\)
0.337920 + 0.941175i \(0.390277\pi\)
\(548\) −9.67146e6 1.15063e6i −1.37575 0.163676i
\(549\) 1.08556e6i 0.153718i
\(550\) 0 0
\(551\) 2.49402e6 0.349962
\(552\) 4.15007e6 + 5.96607e6i 0.579706 + 0.833375i
\(553\) 3.13231e6i 0.435564i
\(554\) 2.31042e6 + 2.60159e6i 0.319829 + 0.360135i
\(555\) 0 0
\(556\) −1.88684e6 224481.i −0.258850 0.0307959i
\(557\) −3.26312e6 −0.445651 −0.222825 0.974858i \(-0.571528\pi\)
−0.222825 + 0.974858i \(0.571528\pi\)
\(558\) −7.15883e6 8.06102e6i −0.973322 1.09598i
\(559\) −1.16578e7 −1.57793
\(560\) 0 0
\(561\) 2.11340e7 2.83514
\(562\) 2.44985e6 + 2.75859e6i 0.327189 + 0.368423i
\(563\) 5.81898e6 0.773706 0.386853 0.922141i \(-0.373562\pi\)
0.386853 + 0.922141i \(0.373562\pi\)
\(564\) −6.36889e6 757720.i −0.843074 0.100302i
\(565\) 0 0
\(566\) 3.41296e6 + 3.84307e6i 0.447806 + 0.504240i
\(567\) 475223.i 0.0620782i
\(568\) 6.37196e6 4.43241e6i 0.828710 0.576461i
\(569\) 9.08770e6 1.17672 0.588360 0.808599i \(-0.299774\pi\)
0.588360 + 0.808599i \(0.299774\pi\)
\(570\) 0 0
\(571\) 258870.i 0.0332270i −0.999862 0.0166135i \(-0.994712\pi\)
0.999862 0.0166135i \(-0.00528849\pi\)
\(572\) −2.09982e7 2.49820e6i −2.68344 0.319255i
\(573\) −2.11875e7 −2.69583
\(574\) −1.65704e6 + 1.47158e6i −0.209919 + 0.186425i
\(575\) 0 0
\(576\) 4.38352e6 1.18159e7i 0.550512 1.48392i
\(577\) 2.45070e6i 0.306444i −0.988192 0.153222i \(-0.951035\pi\)
0.988192 0.153222i \(-0.0489650\pi\)
\(578\) −461900. 520110.i −0.0575080 0.0647554i
\(579\) 4.61182e6i 0.571710i
\(580\) 0 0
\(581\) 9.73547e6i 1.19651i
\(582\) −7.85190e6 + 6.97311e6i −0.960875 + 0.853334i
\(583\) 2.54187e7i 3.09729i
\(584\) −2.15973e6 3.10479e6i −0.262039 0.376703i
\(585\) 0 0
\(586\) −1.93091e6 2.17426e6i −0.232284 0.261557i
\(587\) 3.61982e6 0.433602 0.216801 0.976216i \(-0.430438\pi\)
0.216801 + 0.976216i \(0.430438\pi\)
\(588\) −574789. + 4.83129e6i −0.0685591 + 0.576262i
\(589\) 5.72557e6i 0.680034i
\(590\) 0 0
\(591\) 9.78339e6 1.15218
\(592\) −4.38371e6 1.05805e6i −0.514088 0.124080i
\(593\) 7.07347e6i 0.826030i −0.910724 0.413015i \(-0.864476\pi\)
0.910724 0.413015i \(-0.135524\pi\)
\(594\) 1.11153e7 9.87132e6i 1.29258 1.14791i
\(595\) 0 0
\(596\) −7.42741e6 883655.i −0.856489 0.101898i
\(597\) 1.46370e7 1.68080
\(598\) 6.04677e6 5.37001e6i 0.691465 0.614077i
\(599\) 2.71813e6 0.309530 0.154765 0.987951i \(-0.450538\pi\)
0.154765 + 0.987951i \(0.450538\pi\)
\(600\) 0 0
\(601\) 1.67171e6 0.188788 0.0943942 0.995535i \(-0.469909\pi\)
0.0943942 + 0.995535i \(0.469909\pi\)
\(602\) 5.72780e6 5.08675e6i 0.644165 0.572070i
\(603\) 2.11462e7 2.36832
\(604\) 336718. 2.83023e6i 0.0375556 0.315667i
\(605\) 0 0
\(606\) 3.29588e6 2.92701e6i 0.364578 0.323774i
\(607\) 2.35562e6i 0.259498i 0.991547 + 0.129749i \(0.0414171\pi\)
−0.991547 + 0.129749i \(0.958583\pi\)
\(608\) −5.90758e6 + 3.14617e6i −0.648113 + 0.345163i
\(609\) −5.60338e6 −0.612219
\(610\) 0 0
\(611\) 7.13705e6i 0.773421i
\(612\) 1.39177e7 + 1.65581e6i 1.50206 + 0.178704i
\(613\) 1.88749e6 0.202877 0.101439 0.994842i \(-0.467655\pi\)
0.101439 + 0.994842i \(0.467655\pi\)
\(614\) 5.51024e6 + 6.20466e6i 0.589860 + 0.664197i
\(615\) 0 0
\(616\) 1.14071e7 7.93489e6i 1.21122 0.842537i
\(617\) 1.45446e7i 1.53812i −0.639178 0.769058i \(-0.720725\pi\)
0.639178 0.769058i \(-0.279275\pi\)
\(618\) −1.48664e7 + 1.32025e7i −1.56579 + 1.39055i
\(619\) 1.08497e7i 1.13813i −0.822292 0.569066i \(-0.807305\pi\)
0.822292 0.569066i \(-0.192695\pi\)
\(620\) 0 0
\(621\) 5.68521e6i 0.591585i
\(622\) −2.05815e6 2.31752e6i −0.213305 0.240186i
\(623\) 122075.i 0.0126011i
\(624\) −2.22457e7 5.36923e6i −2.28710 0.552015i
\(625\) 0 0
\(626\) 7.22671e6 6.41790e6i 0.737063 0.654571i
\(627\) −2.14430e7 −2.17829
\(628\) 2.30195e6 1.93486e7i 0.232914 1.95772i
\(629\) 5.01520e6i 0.505431i
\(630\) 0 0
\(631\) 3.76561e6 0.376497 0.188249 0.982121i \(-0.439719\pi\)
0.188249 + 0.982121i \(0.439719\pi\)
\(632\) −4.49190e6 + 3.12462e6i −0.447340 + 0.311175i
\(633\) 1.07287e7i 1.06424i
\(634\) −3.67594e6 4.13920e6i −0.363200 0.408972i
\(635\) 0 0
\(636\) −3.24978e6 + 2.73155e7i −0.318574 + 2.67772i
\(637\) 5.41400e6 0.528652
\(638\) −6.00610e6 6.76302e6i −0.584173 0.657792i
\(639\) 1.64917e7 1.59776
\(640\) 0 0
\(641\) −223711. −0.0215052 −0.0107526 0.999942i \(-0.503423\pi\)
−0.0107526 + 0.999942i \(0.503423\pi\)
\(642\) 3.27409e6 + 3.68671e6i 0.313511 + 0.353021i
\(643\) 2.53011e6 0.241330 0.120665 0.992693i \(-0.461497\pi\)
0.120665 + 0.992693i \(0.461497\pi\)
\(644\) −627800. + 5.27687e6i −0.0596495 + 0.501374i
\(645\) 0 0
\(646\) −4.94272e6 5.56562e6i −0.465998 0.524726i
\(647\) 8.44825e6i 0.793425i 0.917943 + 0.396713i \(0.129849\pi\)
−0.917943 + 0.396713i \(0.870151\pi\)
\(648\) −681495. + 474056.i −0.0637566 + 0.0443499i
\(649\) 1.63452e7 1.52328
\(650\) 0 0
\(651\) 1.28638e7i 1.18964i
\(652\) −653265. + 5.49091e6i −0.0601825 + 0.505854i
\(653\) −1.72303e7 −1.58128 −0.790641 0.612280i \(-0.790253\pi\)
−0.790641 + 0.612280i \(0.790253\pi\)
\(654\) −8.87532e6 + 7.88200e6i −0.811409 + 0.720596i
\(655\) 0 0
\(656\) −3.76329e6 908310.i −0.341435 0.0824090i
\(657\) 8.03568e6i 0.726289i
\(658\) −3.11417e6 3.50663e6i −0.280400 0.315737i
\(659\) 5.43243e6i 0.487282i 0.969865 + 0.243641i \(0.0783419\pi\)
−0.969865 + 0.243641i \(0.921658\pi\)
\(660\) 0 0
\(661\) 1.12770e7i 1.00390i −0.864897 0.501949i \(-0.832616\pi\)
0.864897 0.501949i \(-0.167384\pi\)
\(662\) −1.46308e6 + 1.29933e6i −0.129754 + 0.115232i
\(663\) 2.54503e7i 2.24858i
\(664\) −1.39612e7 + 9.71158e6i −1.22886 + 0.854810i
\(665\) 0 0
\(666\) −6.36229e6 7.16410e6i −0.555812 0.625858i
\(667\) 3.45911e6 0.301057
\(668\) 1.40292e7 + 1.66909e6i 1.21645 + 0.144723i
\(669\) 2.39402e7i 2.06806i
\(670\) 0 0
\(671\) −2.09086e6 −0.179275
\(672\) 1.32727e7 7.06860e6i 1.13380 0.603823i
\(673\) 1.15475e7i 0.982769i 0.870943 + 0.491384i \(0.163509\pi\)
−0.870943 + 0.491384i \(0.836491\pi\)
\(674\) −1.59253e6 + 1.41430e6i −0.135033 + 0.119920i
\(675\) 0 0
\(676\) −1.60476e6 + 1.34886e7i −0.135065 + 1.13527i
\(677\) 8.72804e6 0.731889 0.365944 0.930637i \(-0.380746\pi\)
0.365944 + 0.930637i \(0.380746\pi\)
\(678\) 6.06763e6 5.38854e6i 0.506926 0.450191i
\(679\) −7.67862e6 −0.639159
\(680\) 0 0
\(681\) −2.17009e7 −1.79313
\(682\) 1.55260e7 1.37883e7i 1.27820 1.13514i
\(683\) −5.37492e6 −0.440880 −0.220440 0.975401i \(-0.570749\pi\)
−0.220440 + 0.975401i \(0.570749\pi\)
\(684\) −1.41211e7 1.68002e6i −1.15406 0.137301i
\(685\) 0 0
\(686\) −1.00265e7 + 8.90434e6i −0.813466 + 0.722423i
\(687\) 1.63849e7i 1.32450i
\(688\) 1.30084e7 + 3.13972e6i 1.04774 + 0.252883i
\(689\) 3.06101e7 2.45650
\(690\) 0 0
\(691\) 1.03106e7i 0.821467i −0.911756 0.410733i \(-0.865273\pi\)
0.911756 0.410733i \(-0.134727\pi\)
\(692\) 1.06387e6 8.94217e6i 0.0844545 0.709868i
\(693\) 2.95233e7 2.33524
\(694\) 618498. + 696444.i 0.0487461 + 0.0548893i
\(695\) 0 0
\(696\) −5.58963e6 8.03555e6i −0.437381 0.628771i
\(697\) 4.30541e6i 0.335686i
\(698\) −152026. + 135011.i −0.0118108 + 0.0104889i
\(699\) 2.05556e7i 1.59124i
\(700\) 0 0
\(701\) 7.87993e6i 0.605658i 0.953045 + 0.302829i \(0.0979311\pi\)
−0.953045 + 0.302829i \(0.902069\pi\)
\(702\) −1.18874e7 1.33855e7i −0.910422 1.02516i
\(703\) 5.08851e6i 0.388331i
\(704\) 2.27581e7 + 8.44293e6i 1.73063 + 0.642039i
\(705\) 0 0
\(706\) 5.89743e6 5.23739e6i 0.445298 0.395460i
\(707\) 3.22315e6 0.242511
\(708\) 1.75649e7 + 2.08973e6i 1.31693 + 0.156678i
\(709\) 2.06172e7i 1.54033i −0.637846 0.770164i \(-0.720174\pi\)
0.637846 0.770164i \(-0.279826\pi\)
\(710\) 0 0
\(711\) −1.16258e7 −0.862476
\(712\) −175063. + 121776.i −0.0129418 + 0.00900246i
\(713\) 7.94115e6i 0.585005i
\(714\) 1.11049e7 + 1.25044e7i 0.815212 + 0.917949i
\(715\) 0 0
\(716\) −2.56040e7 3.04616e6i −1.86649 0.222060i
\(717\) −2.17280e7 −1.57842
\(718\) 1.31692e7 + 1.48288e7i 0.953338 + 1.07348i
\(719\) −1.37162e7 −0.989490 −0.494745 0.869038i \(-0.664738\pi\)
−0.494745 + 0.869038i \(0.664738\pi\)
\(720\) 0 0
\(721\) −1.45383e7 −1.04154
\(722\) −4.28600e6 4.82614e6i −0.305991 0.344554i
\(723\) −4.14305e7 −2.94764
\(724\) 1.93942e7 + 2.30737e6i 1.37507 + 0.163595i
\(725\) 0 0
\(726\) 3.64836e7 + 4.10814e7i 2.56895 + 2.89270i
\(727\) 2.33681e7i 1.63979i 0.572514 + 0.819895i \(0.305968\pi\)
−0.572514 + 0.819895i \(0.694032\pi\)
\(728\) −9.55545e6 1.37367e7i −0.668225 0.960629i
\(729\) −2.33601e7 −1.62800
\(730\) 0 0
\(731\) 1.48823e7i 1.03010i
\(732\) −2.24688e6 267316.i −0.154990 0.0184394i
\(733\) 2.94411e6 0.202392 0.101196 0.994866i \(-0.467733\pi\)
0.101196 + 0.994866i \(0.467733\pi\)
\(734\) −1.54147e7 + 1.36895e7i −1.05607 + 0.937878i
\(735\) 0 0
\(736\) −8.19358e6 + 4.36362e6i −0.557544 + 0.296929i
\(737\) 4.07289e7i 2.76207i
\(738\) −5.46186e6 6.15019e6i −0.369147 0.415669i
\(739\) 3.66027e6i 0.246548i 0.992373 + 0.123274i \(0.0393395\pi\)
−0.992373 + 0.123274i \(0.960661\pi\)
\(740\) 0 0
\(741\) 2.58223e7i 1.72763i
\(742\) −1.50396e7 + 1.33563e7i −1.00283 + 0.890590i
\(743\) 2.60824e7i 1.73331i −0.498912 0.866653i \(-0.666267\pi\)
0.498912 0.866653i \(-0.333733\pi\)
\(744\) 1.84474e7 1.28322e7i 1.22181 0.849904i
\(745\) 0 0
\(746\) −1.57484e7 1.77331e7i −1.03607 1.16664i
\(747\) −3.61338e7 −2.36926
\(748\) −3.18920e6 + 2.68063e7i −0.208414 + 1.75179i
\(749\) 3.60535e6i 0.234824i
\(750\) 0 0
\(751\) −1.03196e7 −0.667673 −0.333836 0.942631i \(-0.608343\pi\)
−0.333836 + 0.942631i \(0.608343\pi\)
\(752\) 1.92217e6 7.96391e6i 0.123950 0.513549i
\(753\) 2.15668e7i 1.38611i
\(754\) −8.14425e6 + 7.23275e6i −0.521702 + 0.463313i
\(755\) 0 0
\(756\) 1.16812e7 + 1.38973e6i 0.743331 + 0.0884356i
\(757\) −2.70313e7 −1.71446 −0.857228 0.514936i \(-0.827816\pi\)
−0.857228 + 0.514936i \(0.827816\pi\)
\(758\) −9.77434e6 + 8.68040e6i −0.617895 + 0.548740i
\(759\) −2.97405e7 −1.87389
\(760\) 0 0
\(761\) 1.29548e7 0.810905 0.405452 0.914116i \(-0.367114\pi\)
0.405452 + 0.914116i \(0.367114\pi\)
\(762\) 937568. 832635.i 0.0584945 0.0519478i
\(763\) −8.67946e6 −0.539736
\(764\) 3.19726e6 2.68741e7i 0.198173 1.66571i
\(765\) 0 0
\(766\) 5.00116e6 4.44143e6i 0.307963 0.273496i
\(767\) 1.96834e7i 1.20813i
\(768\) 2.33769e7 + 1.19826e7i 1.43016 + 0.733072i
\(769\) −8.35551e6 −0.509515 −0.254757 0.967005i \(-0.581996\pi\)
−0.254757 + 0.967005i \(0.581996\pi\)
\(770\) 0 0
\(771\) 1.91732e7i 1.16161i
\(772\) 5.84960e6 + 695939.i 0.353251 + 0.0420270i
\(773\) 3.12215e7 1.87934 0.939668 0.342087i \(-0.111134\pi\)
0.939668 + 0.342087i \(0.111134\pi\)
\(774\) 1.88798e7 + 2.12591e7i 1.13278 + 1.27553i
\(775\) 0 0
\(776\) −7.65978e6 1.10116e7i −0.456627 0.656439i
\(777\) 1.14325e7i 0.679342i
\(778\) −2.15384e7 + 1.91278e7i −1.27574 + 1.13296i
\(779\) 4.36835e6i 0.257913i
\(780\) 0 0
\(781\) 3.17639e7i 1.86340i
\(782\) −6.85535e6 7.71929e6i −0.400879 0.451399i
\(783\) 7.65727e6i 0.446344i
\(784\) −6.04124e6 1.45812e6i −0.351023 0.0847232i
\(785\) 0 0
\(786\) 1.17044e7 1.03944e7i 0.675760 0.600129i
\(787\) 1.14664e7 0.659920 0.329960 0.943995i \(-0.392965\pi\)
0.329960 + 0.943995i \(0.392965\pi\)
\(788\) −1.47635e6 + 1.24092e7i −0.0846980 + 0.711915i
\(789\) 6.53222e6i 0.373567i
\(790\) 0 0
\(791\) 5.93373e6 0.337199
\(792\) 2.94508e7 + 4.23380e7i 1.66834 + 2.39838i
\(793\) 2.51789e6i 0.142185i
\(794\) −236673. 266499.i −0.0133228 0.0150018i
\(795\) 0 0
\(796\) −2.20878e6 + 1.85655e7i −0.123557 + 1.03854i
\(797\) −2.28998e7 −1.27699 −0.638493 0.769628i \(-0.720442\pi\)
−0.638493 + 0.769628i \(0.720442\pi\)
\(798\) −1.12673e7 1.26872e7i −0.626342 0.705276i
\(799\) 9.11115e6 0.504901
\(800\) 0 0
\(801\) −453090. −0.0249519
\(802\) 1.68643e7 + 1.89896e7i 0.925831 + 1.04251i
\(803\) 1.54772e7 0.847040
\(804\) −5.20719e6 + 4.37681e7i −0.284095 + 2.38791i
\(805\) 0 0
\(806\) −1.66044e7 1.86969e7i −0.900295 1.01375i
\(807\) 2.81614e7i 1.52220i
\(808\) 3.21524e6 + 4.62217e6i 0.173255 + 0.249068i
\(809\) −2.82761e7 −1.51896 −0.759482 0.650528i \(-0.774548\pi\)
−0.759482 + 0.650528i \(0.774548\pi\)
\(810\) 0 0
\(811\) 2.97657e7i 1.58915i −0.607167 0.794574i \(-0.707694\pi\)
0.607167 0.794574i \(-0.292306\pi\)
\(812\) 845570. 7.10729e6i 0.0450048 0.378281i
\(813\) −2.68752e7 −1.42602
\(814\) 1.37985e7 1.22542e7i 0.729912 0.648220i
\(815\) 0 0
\(816\) −6.85435e6 + 2.83988e7i −0.360364 + 1.49305i
\(817\) 1.50999e7i 0.791441i
\(818\) 7.64092e6 + 8.60387e6i 0.399266 + 0.449584i
\(819\) 3.55529e7i 1.85210i
\(820\) 0 0
\(821\) 2.33663e7i 1.20985i −0.796282 0.604926i \(-0.793203\pi\)
0.796282 0.604926i \(-0.206797\pi\)
\(822\) 3.22512e7 2.86417e7i 1.66482 1.47849i
\(823\) 3.90864e6i 0.201153i −0.994929 0.100576i \(-0.967931\pi\)
0.994929 0.100576i \(-0.0320687\pi\)
\(824\) −1.45026e7 2.08487e7i −0.744094 1.06970i
\(825\) 0 0
\(826\) 8.58863e6 + 9.67101e6i 0.438000 + 0.493198i
\(827\) −1.34407e7 −0.683371 −0.341686 0.939814i \(-0.610998\pi\)
−0.341686 + 0.939814i \(0.610998\pi\)
\(828\) −1.95854e7 2.33012e6i −0.992790 0.118114i
\(829\) 2.39273e7i 1.20923i −0.796519 0.604613i \(-0.793328\pi\)
0.796519 0.604613i \(-0.206672\pi\)
\(830\) 0 0
\(831\) −1.54090e7 −0.774057
\(832\) 1.01673e7 2.74061e7i 0.509208 1.37258i
\(833\) 6.91151e6i 0.345112i
\(834\) 6.29200e6 5.58780e6i 0.313237 0.278180i
\(835\) 0 0
\(836\) 3.23582e6 2.71981e7i 0.160128 1.34593i
\(837\) 1.75790e7 0.867320
\(838\) 6.47747e6 5.75251e6i 0.318636 0.282975i
\(839\) 4.44572e6 0.218041 0.109020 0.994040i \(-0.465229\pi\)
0.109020 + 0.994040i \(0.465229\pi\)
\(840\) 0 0
\(841\) 1.58522e7 0.772856
\(842\) −2.05925e7 + 1.82878e7i −1.00099 + 0.888958i
\(843\) −1.63389e7 −0.791871
\(844\) −1.36083e7 1.61900e6i −0.657577 0.0782334i
\(845\) 0 0
\(846\) 1.30151e7 1.15584e7i 0.625203 0.555230i
\(847\) 4.01748e7i 1.92418i
\(848\) −3.41564e7 8.24400e6i −1.63111 0.393684i
\(849\) −2.27622e7 −1.08379
\(850\) 0 0
\(851\) 7.05756e6i 0.334065i
\(852\) −4.06101e6 + 3.41341e7i −0.191662 + 1.61098i
\(853\) −2.57954e7 −1.21386 −0.606931 0.794754i \(-0.707600\pi\)
−0.606931 + 0.794754i \(0.707600\pi\)
\(854\) −1.09865e6 1.23711e6i −0.0515483 0.0580447i
\(855\) 0 0
\(856\) −5.17027e6 + 3.59650e6i −0.241173 + 0.167763i
\(857\) 1.79012e7i 0.832590i −0.909230 0.416295i \(-0.863328\pi\)
0.909230 0.416295i \(-0.136672\pi\)
\(858\) 7.00222e7 6.21854e7i 3.24727 2.88383i
\(859\) 2.50747e7i 1.15945i 0.814811 + 0.579727i \(0.196841\pi\)
−0.814811 + 0.579727i \(0.803159\pi\)
\(860\) 0 0
\(861\) 9.81449e6i 0.451190i
\(862\) −2.01996e6 2.27453e6i −0.0925924 0.104261i
\(863\) 8.98511e6i 0.410673i 0.978691 + 0.205337i \(0.0658289\pi\)
−0.978691 + 0.205337i \(0.934171\pi\)
\(864\) 9.65955e6 + 1.81378e7i 0.440223 + 0.826608i
\(865\) 0 0
\(866\) 6.26988e6 5.56815e6i 0.284095 0.252300i
\(867\) 3.08057e6 0.139182
\(868\) 1.63164e7 + 1.94119e6i 0.735062 + 0.0874519i
\(869\) 2.23919e7i 1.00587i
\(870\) 0 0
\(871\) 4.90471e7 2.19063
\(872\) −8.65816e6 1.24468e7i −0.385598 0.554329i
\(873\) 2.84997e7i 1.26562i
\(874\) 6.95556e6 + 7.83213e6i 0.308002 + 0.346818i
\(875\) 0 0
\(876\) 1.66321e7 + 1.97876e6i 0.732297 + 0.0871229i
\(877\) −1.08381e7 −0.475834 −0.237917 0.971286i \(-0.576465\pi\)
−0.237917 + 0.971286i \(0.576465\pi\)
\(878\) −9.38946e6 1.05728e7i −0.411059 0.462863i
\(879\) 1.28780e7 0.562179
\(880\) 0 0
\(881\) −816876. −0.0354582 −0.0177291 0.999843i \(-0.505644\pi\)
−0.0177291 + 0.999843i \(0.505644\pi\)
\(882\) −8.76796e6 9.87293e6i −0.379513 0.427341i
\(883\) 2.50842e6 0.108268 0.0541339 0.998534i \(-0.482760\pi\)
0.0541339 + 0.998534i \(0.482760\pi\)
\(884\) 3.22810e7 + 3.84054e6i 1.38936 + 0.165296i
\(885\) 0 0
\(886\) −1.88117e7 2.11824e7i −0.805089 0.906550i
\(887\) 1.58294e7i 0.675545i 0.941228 + 0.337773i \(0.109673\pi\)
−0.941228 + 0.337773i \(0.890327\pi\)
\(888\) 1.63948e7 1.14044e7i 0.697709 0.485335i
\(889\) 916878. 0.0389096
\(890\) 0 0
\(891\) 3.39722e6i 0.143360i
\(892\) −3.03656e7 3.61266e6i −1.27782 0.152025i
\(893\) −9.24434e6 −0.387924
\(894\) 2.47680e7 2.19960e7i 1.03645 0.920449i
\(895\) 0 0
\(896\) 6.96286e6 + 1.79017e7i 0.289746 + 0.744946i
\(897\) 3.58145e7i 1.48620i
\(898\) 1.14201e7 + 1.28593e7i 0.472583 + 0.532140i
\(899\) 1.06957e7i 0.441379i
\(900\) 0 0
\(901\) 3.90768e7i 1.60364i
\(902\) 1.18456e7 1.05199e7i 0.484777 0.430521i
\(903\) 3.39253e7i 1.38454i
\(904\) 5.91917e6 + 8.50929e6i 0.240902 + 0.346316i
\(905\) 0 0
\(906\) 8.38162e6 + 9.43790e6i 0.339240 + 0.381993i
\(907\) −2.36328e7 −0.953887 −0.476944 0.878934i \(-0.658255\pi\)
−0.476944 + 0.878934i \(0.658255\pi\)
\(908\) 3.27475e6 2.75253e7i 0.131814 1.10794i
\(909\) 1.19629e7i 0.480206i
\(910\) 0 0
\(911\) −9.17484e6 −0.366271 −0.183136 0.983088i \(-0.558625\pi\)
−0.183136 + 0.983088i \(0.558625\pi\)
\(912\) 6.95455e6 2.88139e7i 0.276874 1.14714i
\(913\) 6.95959e7i 2.76316i
\(914\) −3.04543e7 + 2.70459e7i −1.20582 + 1.07087i
\(915\) 0 0
\(916\) 2.07825e7 + 2.47254e6i 0.818389 + 0.0973655i
\(917\) 1.14461e7 0.449504
\(918\) −1.70879e7 + 1.51754e7i −0.669239 + 0.594338i
\(919\) 3.58059e7 1.39851 0.699255 0.714872i \(-0.253515\pi\)
0.699255 + 0.714872i \(0.253515\pi\)
\(920\) 0 0
\(921\) −3.67497e7 −1.42759
\(922\) 3.33186e7 2.95896e7i 1.29080 1.14633i
\(923\) 3.82511e7 1.47788
\(924\) −7.27000e6 + 6.11068e7i −0.280127 + 2.35456i
\(925\) 0 0
\(926\) −2.61738e7 + 2.32444e7i −1.00309 + 0.890823i
\(927\) 5.39597e7i 2.06239i
\(928\) 1.10357e7 5.87726e6i 0.420660 0.224029i
\(929\) 2.41031e7 0.916291 0.458146 0.888877i \(-0.348514\pi\)
0.458146 + 0.888877i \(0.348514\pi\)
\(930\) 0 0
\(931\) 7.01254e6i 0.265156i
\(932\) 2.60726e7 + 3.10191e6i 0.983204 + 0.116974i
\(933\) 1.37265e7 0.516245
\(934\) −2.70883e7 3.05021e7i −1.01605 1.14409i
\(935\) 0 0
\(936\) 5.09848e7 3.54656e7i 1.90218 1.32318i
\(937\) 1.84615e7i 0.686938i 0.939164 + 0.343469i \(0.111602\pi\)
−0.939164 + 0.343469i \(0.888398\pi\)
\(938\) −2.40982e7 + 2.14011e7i −0.894288 + 0.794200i
\(939\) 4.28032e7i 1.58421i
\(940\) 0 0
\(941\) 3.10319e6i 0.114244i −0.998367 0.0571220i \(-0.981808\pi\)
0.998367 0.0571220i \(-0.0181924\pi\)
\(942\) 5.73002e7 + 6.45214e7i 2.10392 + 2.36906i
\(943\) 6.05873e6i 0.221872i
\(944\) −5.30120e6 + 2.19638e7i −0.193617 + 0.802192i
\(945\) 0 0
\(946\) −4.09463e7 + 3.63636e7i −1.48760 + 1.32111i
\(947\) 4.89572e7 1.77395 0.886975 0.461817i \(-0.152802\pi\)
0.886975 + 0.461817i \(0.152802\pi\)
\(948\) 2.86280e6 2.40628e7i 0.103459 0.869611i
\(949\) 1.86382e7i 0.671796i
\(950\) 0 0
\(951\) 2.45162e7 0.879025
\(952\) −1.75363e7 + 1.21985e7i −0.627113 + 0.436227i
\(953\) 3.94753e7i 1.40797i 0.710216 + 0.703984i \(0.248597\pi\)
−0.710216 + 0.703984i \(0.751403\pi\)
\(954\) −4.95729e7 5.58203e7i −1.76349 1.98573i
\(955\) 0 0
\(956\) 3.27883e6 2.75597e7i 0.116031 0.975281i
\(957\) 4.00568e7 1.41383
\(958\) 1.52424e7 + 1.71633e7i 0.536587 + 0.604210i
\(959\) 3.15395e7 1.10741
\(960\) 0 0
\(961\) −4.07470e6 −0.142327
\(962\) −1.47569e7 1.66166e7i −0.514110 0.578901i
\(963\) −1.33815e7 −0.464984
\(964\) 6.25200e6 5.25501e7i 0.216684 1.82130i
\(965\) 0 0
\(966\) −1.56272e7 1.75967e7i −0.538815 0.606719i
\(967\) 2.23447e7i 0.768438i 0.923242 + 0.384219i \(0.125529\pi\)
−0.923242 + 0.384219i \(0.874471\pi\)
\(968\) −5.76129e7 + 4.00762e7i −1.97620 + 1.37467i
\(969\) 3.29647e7 1.12782
\(970\) 0 0
\(971\) 2.63033e7i 0.895288i 0.894212 + 0.447644i \(0.147737\pi\)
−0.894212 + 0.447644i \(0.852263\pi\)
\(972\) 3.69328e6 3.10433e7i 0.125385 1.05391i
\(973\) 6.15315e6 0.208360
\(974\) −515141. + 457486.i −0.0173992 + 0.0154519i
\(975\) 0 0
\(976\) 678125. 2.80959e6i 0.0227869 0.0944102i
\(977\) 4.78338e7i 1.60324i −0.597835 0.801619i \(-0.703972\pi\)
0.597835 0.801619i \(-0.296028\pi\)
\(978\) −1.62611e7 1.83104e7i −0.543629 0.612140i
\(979\) 872679.i 0.0291003i
\(980\) 0 0
\(981\) 3.22144e7i 1.06875i
\(982\) −1.18706e7 + 1.05420e7i −0.392819 + 0.348855i
\(983\) 4.88361e7i 1.61197i 0.591935 + 0.805986i \(0.298364\pi\)
−0.591935 + 0.805986i \(0.701636\pi\)
\(984\) 1.40745e7 9.79040e6i 0.463389 0.322339i
\(985\) 0 0
\(986\) 9.23331e6 + 1.03969e7i 0.302458 + 0.340575i
\(987\) 2.07695e7 0.678630
\(988\) −3.27529e7 3.89668e6i −1.06747 0.126999i
\(989\) 2.09429e7i 0.680843i
\(990\) 0 0
\(991\) 7.49231e6 0.242344 0.121172 0.992632i \(-0.461335\pi\)
0.121172 + 0.992632i \(0.461335\pi\)
\(992\) 1.34925e7 + 2.53350e7i 0.435326 + 0.817413i
\(993\) 8.66569e6i 0.278888i
\(994\) −1.87938e7 + 1.66904e7i −0.603323 + 0.535799i
\(995\) 0 0
\(996\) 8.89781e6 7.47891e7i 0.284207 2.38886i
\(997\) 1.46209e7 0.465841 0.232920 0.972496i \(-0.425172\pi\)
0.232920 + 0.972496i \(0.425172\pi\)
\(998\) 1.09750e7 9.74670e6i 0.348802 0.309764i
\(999\) 1.56230e7 0.495280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.f.c.149.5 20
4.3 odd 2 800.6.f.b.49.4 20
5.2 odd 4 40.6.d.a.21.15 20
5.3 odd 4 200.6.d.b.101.6 20
5.4 even 2 200.6.f.b.149.16 20
8.3 odd 2 800.6.f.c.49.18 20
8.5 even 2 200.6.f.b.149.15 20
15.2 even 4 360.6.k.b.181.6 20
20.3 even 4 800.6.d.c.401.3 20
20.7 even 4 160.6.d.a.81.18 20
20.19 odd 2 800.6.f.c.49.17 20
40.3 even 4 800.6.d.c.401.18 20
40.13 odd 4 200.6.d.b.101.5 20
40.19 odd 2 800.6.f.b.49.3 20
40.27 even 4 160.6.d.a.81.3 20
40.29 even 2 inner 200.6.f.c.149.6 20
40.37 odd 4 40.6.d.a.21.16 yes 20
120.77 even 4 360.6.k.b.181.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.15 20 5.2 odd 4
40.6.d.a.21.16 yes 20 40.37 odd 4
160.6.d.a.81.3 20 40.27 even 4
160.6.d.a.81.18 20 20.7 even 4
200.6.d.b.101.5 20 40.13 odd 4
200.6.d.b.101.6 20 5.3 odd 4
200.6.f.b.149.15 20 8.5 even 2
200.6.f.b.149.16 20 5.4 even 2
200.6.f.c.149.5 20 1.1 even 1 trivial
200.6.f.c.149.6 20 40.29 even 2 inner
360.6.k.b.181.5 20 120.77 even 4
360.6.k.b.181.6 20 15.2 even 4
800.6.d.c.401.3 20 20.3 even 4
800.6.d.c.401.18 20 40.3 even 4
800.6.f.b.49.3 20 40.19 odd 2
800.6.f.b.49.4 20 4.3 odd 2
800.6.f.c.49.17 20 20.19 odd 2
800.6.f.c.49.18 20 8.3 odd 2