L(s) = 1 | + (−3.75 − 4.22i)2-s + 25.0·3-s + (−3.78 + 31.7i)4-s + (−94.1 − 105. i)6-s − 103. i·7-s + (148. − 103. i)8-s + 384.·9-s + 740. i·11-s + (−94.7 + 796. i)12-s + 892.·13-s + (−438. + 389. i)14-s + (−995. − 240. i)16-s − 1.13e3i·17-s + (−1.44e3 − 1.62e3i)18-s + 1.15e3i·19-s + ⋯ |
L(s) = 1 | + (−0.664 − 0.747i)2-s + 1.60·3-s + (−0.118 + 0.992i)4-s + (−1.06 − 1.20i)6-s − 0.799i·7-s + (0.820 − 0.571i)8-s + 1.58·9-s + 1.84i·11-s + (−0.189 + 1.59i)12-s + 1.46·13-s + (−0.597 + 0.530i)14-s + (−0.972 − 0.234i)16-s − 0.955i·17-s + (−1.05 − 1.18i)18-s + 0.734i·19-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(0.877+0.478i)Λ(6−s)
Λ(s)=(=(200s/2ΓC(s+5/2)L(s)(0.877+0.478i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
0.877+0.478i
|
Analytic conductor: |
32.0767 |
Root analytic conductor: |
5.66363 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 200, ( :5/2), 0.877+0.478i)
|
Particular Values
L(3) |
≈ |
2.733457433 |
L(21) |
≈ |
2.733457433 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.75+4.22i)T |
| 5 | 1 |
good | 3 | 1−25.0T+243T2 |
| 7 | 1+103.iT−1.68e4T2 |
| 11 | 1−740.iT−1.61e5T2 |
| 13 | 1−892.T+3.71e5T2 |
| 17 | 1+1.13e3iT−1.41e6T2 |
| 19 | 1−1.15e3iT−2.47e6T2 |
| 23 | 1−1.60e3iT−6.43e6T2 |
| 29 | 1+2.15e3iT−2.05e7T2 |
| 31 | 1−4.95e3T+2.86e7T2 |
| 37 | 1−4.40e3T+6.93e7T2 |
| 41 | 1−3.78e3T+1.15e8T2 |
| 43 | 1+1.30e4T+1.47e8T2 |
| 47 | 1−8.00e3iT−2.29e8T2 |
| 53 | 1−3.43e4T+4.18e8T2 |
| 59 | 1+2.20e4iT−7.14e8T2 |
| 61 | 1−2.82e3iT−8.44e8T2 |
| 67 | 1−5.49e4T+1.35e9T2 |
| 71 | 1−4.28e4T+1.80e9T2 |
| 73 | 1+2.08e4iT−2.07e9T2 |
| 79 | 1+3.02e4T+3.07e9T2 |
| 83 | 1+9.39e4T+3.93e9T2 |
| 89 | 1+1.17e3T+5.58e9T2 |
| 97 | 1+7.41e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38507466963049082752801211809, −10.06040779764080395934479630238, −9.667672272185071130212273909565, −8.578294608770426196125314651624, −7.74114271277496879280170273779, −6.98954755075212374936151715629, −4.36740576079605754911539238250, −3.56450683729495510949285530676, −2.30714960413351034597310421570, −1.23548968953120441800403208342,
1.06278345544151081211379090368, 2.56764840532515714929686137937, 3.81772987291375554962085126437, 5.66657848889535128818380000120, 6.62043604608160208352930742141, 8.225749393206241914144000861472, 8.505734170732484514363380865924, 9.077800331427824563861996548547, 10.39296963616183586975303034477, 11.36348172837691930440623195170