Properties

Label 800.6.f.b.49.3
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{93}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(0.236693 + 3.99299i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.b.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.0521 q^{3} -103.624i q^{7} +384.607 q^{9} +740.776i q^{11} +892.067 q^{13} +1138.81i q^{17} +1155.46i q^{19} +2596.00i q^{21} +1602.57i q^{23} -3547.55 q^{27} +2158.47i q^{29} -4955.24 q^{31} -18558.0i q^{33} +4403.89 q^{37} -22348.1 q^{39} +3780.62 q^{41} +13068.3 q^{43} +8000.58i q^{47} +6069.06 q^{49} -28529.6i q^{51} +34313.6 q^{53} -28946.6i q^{57} -22065.0i q^{59} -2822.53i q^{61} -39854.5i q^{63} -54981.5 q^{67} -40147.8i q^{69} -42879.2 q^{71} +20893.2i q^{73} +76762.2 q^{77} +30227.6 q^{79} -4586.03 q^{81} +93949.9 q^{83} -54074.1i q^{87} -1178.06 q^{89} -92439.5i q^{91} +124139. q^{93} +74100.8i q^{97} +284908. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 36 q^{3} + 1620 q^{9} - 11664 q^{27} - 7160 q^{31} - 3608 q^{37} - 44904 q^{39} + 11608 q^{41} + 51772 q^{43} - 18756 q^{49} + 928 q^{53} + 161604 q^{67} + 200312 q^{71} + 26008 q^{77} + 282080 q^{79}+ \cdots + 293472 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −25.0521 −1.60709 −0.803546 0.595243i \(-0.797056\pi\)
−0.803546 + 0.595243i \(0.797056\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 103.624i − 0.799310i −0.916666 0.399655i \(-0.869130\pi\)
0.916666 0.399655i \(-0.130870\pi\)
\(8\) 0 0
\(9\) 384.607 1.58274
\(10\) 0 0
\(11\) 740.776i 1.84589i 0.384935 + 0.922944i \(0.374224\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(12\) 0 0
\(13\) 892.067 1.46399 0.731996 0.681309i \(-0.238589\pi\)
0.731996 + 0.681309i \(0.238589\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1138.81i 0.955717i 0.878437 + 0.477859i \(0.158587\pi\)
−0.878437 + 0.477859i \(0.841413\pi\)
\(18\) 0 0
\(19\) 1155.46i 0.734294i 0.930163 + 0.367147i \(0.119665\pi\)
−0.930163 + 0.367147i \(0.880335\pi\)
\(20\) 0 0
\(21\) 2596.00i 1.28457i
\(22\) 0 0
\(23\) 1602.57i 0.631682i 0.948812 + 0.315841i \(0.102287\pi\)
−0.948812 + 0.315841i \(0.897713\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3547.55 −0.936524
\(28\) 0 0
\(29\) 2158.47i 0.476596i 0.971192 + 0.238298i \(0.0765896\pi\)
−0.971192 + 0.238298i \(0.923410\pi\)
\(30\) 0 0
\(31\) −4955.24 −0.926106 −0.463053 0.886331i \(-0.653246\pi\)
−0.463053 + 0.886331i \(0.653246\pi\)
\(32\) 0 0
\(33\) − 18558.0i − 2.96651i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4403.89 0.528850 0.264425 0.964406i \(-0.414818\pi\)
0.264425 + 0.964406i \(0.414818\pi\)
\(38\) 0 0
\(39\) −22348.1 −2.35277
\(40\) 0 0
\(41\) 3780.62 0.351240 0.175620 0.984458i \(-0.443807\pi\)
0.175620 + 0.984458i \(0.443807\pi\)
\(42\) 0 0
\(43\) 13068.3 1.07783 0.538913 0.842361i \(-0.318835\pi\)
0.538913 + 0.842361i \(0.318835\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8000.58i 0.528296i 0.964482 + 0.264148i \(0.0850907\pi\)
−0.964482 + 0.264148i \(0.914909\pi\)
\(48\) 0 0
\(49\) 6069.06 0.361103
\(50\) 0 0
\(51\) − 28529.6i − 1.53593i
\(52\) 0 0
\(53\) 34313.6 1.67794 0.838971 0.544175i \(-0.183157\pi\)
0.838971 + 0.544175i \(0.183157\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 28946.6i − 1.18008i
\(58\) 0 0
\(59\) − 22065.0i − 0.825227i −0.910906 0.412613i \(-0.864616\pi\)
0.910906 0.412613i \(-0.135384\pi\)
\(60\) 0 0
\(61\) − 2822.53i − 0.0971212i −0.998820 0.0485606i \(-0.984537\pi\)
0.998820 0.0485606i \(-0.0154634\pi\)
\(62\) 0 0
\(63\) − 39854.5i − 1.26510i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −54981.5 −1.49634 −0.748168 0.663509i \(-0.769066\pi\)
−0.748168 + 0.663509i \(0.769066\pi\)
\(68\) 0 0
\(69\) − 40147.8i − 1.01517i
\(70\) 0 0
\(71\) −42879.2 −1.00949 −0.504744 0.863269i \(-0.668413\pi\)
−0.504744 + 0.863269i \(0.668413\pi\)
\(72\) 0 0
\(73\) 20893.2i 0.458879i 0.973323 + 0.229440i \(0.0736894\pi\)
−0.973323 + 0.229440i \(0.926311\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 76762.2 1.47544
\(78\) 0 0
\(79\) 30227.6 0.544925 0.272462 0.962166i \(-0.412162\pi\)
0.272462 + 0.962166i \(0.412162\pi\)
\(80\) 0 0
\(81\) −4586.03 −0.0776648
\(82\) 0 0
\(83\) 93949.9 1.49693 0.748465 0.663175i \(-0.230791\pi\)
0.748465 + 0.663175i \(0.230791\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 54074.1i − 0.765934i
\(88\) 0 0
\(89\) −1178.06 −0.0157650 −0.00788248 0.999969i \(-0.502509\pi\)
−0.00788248 + 0.999969i \(0.502509\pi\)
\(90\) 0 0
\(91\) − 92439.5i − 1.17018i
\(92\) 0 0
\(93\) 124139. 1.48834
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 74100.8i 0.799638i 0.916594 + 0.399819i \(0.130927\pi\)
−0.916594 + 0.399819i \(0.869073\pi\)
\(98\) 0 0
\(99\) 284908.i 2.92157i
\(100\) 0 0
\(101\) − 31104.3i − 0.303401i −0.988427 0.151700i \(-0.951525\pi\)
0.988427 0.151700i \(-0.0484749\pi\)
\(102\) 0 0
\(103\) − 140298.i − 1.30305i −0.758629 0.651523i \(-0.774130\pi\)
0.758629 0.651523i \(-0.225870\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 34792.6 0.293784 0.146892 0.989153i \(-0.453073\pi\)
0.146892 + 0.989153i \(0.453073\pi\)
\(108\) 0 0
\(109\) 83759.2i 0.675252i 0.941280 + 0.337626i \(0.109624\pi\)
−0.941280 + 0.337626i \(0.890376\pi\)
\(110\) 0 0
\(111\) −110327. −0.849910
\(112\) 0 0
\(113\) − 57262.1i − 0.421863i −0.977501 0.210931i \(-0.932350\pi\)
0.977501 0.210931i \(-0.0676497\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 343095. 2.31713
\(118\) 0 0
\(119\) 118008. 0.763914
\(120\) 0 0
\(121\) −387698. −2.40730
\(122\) 0 0
\(123\) −94712.5 −0.564475
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8848.12i 0.0486790i 0.999704 + 0.0243395i \(0.00774827\pi\)
−0.999704 + 0.0243395i \(0.992252\pi\)
\(128\) 0 0
\(129\) −327389. −1.73217
\(130\) 0 0
\(131\) 110458.i 0.562365i 0.959654 + 0.281183i \(0.0907267\pi\)
−0.959654 + 0.281183i \(0.909273\pi\)
\(132\) 0 0
\(133\) 119733. 0.586929
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 304365.i − 1.38546i −0.721199 0.692728i \(-0.756409\pi\)
0.721199 0.692728i \(-0.243591\pi\)
\(138\) 0 0
\(139\) 59379.5i 0.260675i 0.991470 + 0.130338i \(0.0416061\pi\)
−0.991470 + 0.130338i \(0.958394\pi\)
\(140\) 0 0
\(141\) − 200431.i − 0.849020i
\(142\) 0 0
\(143\) 660822.i 2.70237i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −152043. −0.580326
\(148\) 0 0
\(149\) − 233744.i − 0.862529i −0.902225 0.431265i \(-0.858068\pi\)
0.902225 0.431265i \(-0.141932\pi\)
\(150\) 0 0
\(151\) 89068.4 0.317893 0.158947 0.987287i \(-0.449190\pi\)
0.158947 + 0.987287i \(0.449190\pi\)
\(152\) 0 0
\(153\) 437994.i 1.51266i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −608909. −1.97153 −0.985764 0.168132i \(-0.946227\pi\)
−0.985764 + 0.168132i \(0.946227\pi\)
\(158\) 0 0
\(159\) −859628. −2.69661
\(160\) 0 0
\(161\) 166065. 0.504910
\(162\) 0 0
\(163\) −172801. −0.509421 −0.254711 0.967017i \(-0.581980\pi\)
−0.254711 + 0.967017i \(0.581980\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 441506.i − 1.22503i −0.790461 0.612513i \(-0.790159\pi\)
0.790461 0.612513i \(-0.209841\pi\)
\(168\) 0 0
\(169\) 424490. 1.14327
\(170\) 0 0
\(171\) 444397.i 1.16220i
\(172\) 0 0
\(173\) −281414. −0.714874 −0.357437 0.933937i \(-0.616349\pi\)
−0.357437 + 0.933937i \(0.616349\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 552774.i 1.32622i
\(178\) 0 0
\(179\) 805768.i 1.87965i 0.341655 + 0.939825i \(0.389013\pi\)
−0.341655 + 0.939825i \(0.610987\pi\)
\(180\) 0 0
\(181\) 610344.i 1.38477i 0.721528 + 0.692385i \(0.243440\pi\)
−0.721528 + 0.692385i \(0.756560\pi\)
\(182\) 0 0
\(183\) 70710.3i 0.156083i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −843604. −1.76415
\(188\) 0 0
\(189\) 367611.i 0.748573i
\(190\) 0 0
\(191\) 845737. 1.67746 0.838729 0.544549i \(-0.183299\pi\)
0.838729 + 0.544549i \(0.183299\pi\)
\(192\) 0 0
\(193\) 184089.i 0.355742i 0.984054 + 0.177871i \(0.0569210\pi\)
−0.984054 + 0.177871i \(0.943079\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 390522. 0.716935 0.358468 0.933542i \(-0.383299\pi\)
0.358468 + 0.933542i \(0.383299\pi\)
\(198\) 0 0
\(199\) −584263. −1.04587 −0.522933 0.852374i \(-0.675162\pi\)
−0.522933 + 0.852374i \(0.675162\pi\)
\(200\) 0 0
\(201\) 1.37740e6 2.40475
\(202\) 0 0
\(203\) 223669. 0.380948
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 616361.i 0.999791i
\(208\) 0 0
\(209\) −855935. −1.35542
\(210\) 0 0
\(211\) 428258.i 0.662215i 0.943593 + 0.331107i \(0.107422\pi\)
−0.943593 + 0.331107i \(0.892578\pi\)
\(212\) 0 0
\(213\) 1.07421e6 1.62234
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 513482.i 0.740246i
\(218\) 0 0
\(219\) − 523419.i − 0.737461i
\(220\) 0 0
\(221\) 1.01590e6i 1.39916i
\(222\) 0 0
\(223\) 955618.i 1.28683i 0.765517 + 0.643416i \(0.222484\pi\)
−0.765517 + 0.643416i \(0.777516\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 866233. 1.11576 0.557879 0.829922i \(-0.311615\pi\)
0.557879 + 0.829922i \(0.311615\pi\)
\(228\) 0 0
\(229\) 654035.i 0.824161i 0.911147 + 0.412080i \(0.135198\pi\)
−0.911147 + 0.412080i \(0.864802\pi\)
\(230\) 0 0
\(231\) −1.92305e6 −2.37116
\(232\) 0 0
\(233\) 820513.i 0.990138i 0.868854 + 0.495069i \(0.164857\pi\)
−0.868854 + 0.495069i \(0.835143\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −757265. −0.875744
\(238\) 0 0
\(239\) 867314. 0.982159 0.491079 0.871115i \(-0.336603\pi\)
0.491079 + 0.871115i \(0.336603\pi\)
\(240\) 0 0
\(241\) −1.65377e6 −1.83414 −0.917072 0.398722i \(-0.869454\pi\)
−0.917072 + 0.398722i \(0.869454\pi\)
\(242\) 0 0
\(243\) 976943. 1.06134
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.03075e6i 1.07500i
\(248\) 0 0
\(249\) −2.35364e6 −2.40570
\(250\) 0 0
\(251\) 860879.i 0.862497i 0.902233 + 0.431249i \(0.141927\pi\)
−0.902233 + 0.431249i \(0.858073\pi\)
\(252\) 0 0
\(253\) −1.18715e6 −1.16601
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 765335.i − 0.722801i −0.932411 0.361401i \(-0.882299\pi\)
0.932411 0.361401i \(-0.117701\pi\)
\(258\) 0 0
\(259\) − 456349.i − 0.422715i
\(260\) 0 0
\(261\) 830162.i 0.754330i
\(262\) 0 0
\(263\) 260746.i 0.232449i 0.993223 + 0.116225i \(0.0370792\pi\)
−0.993223 + 0.116225i \(0.962921\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 29512.9 0.0253357
\(268\) 0 0
\(269\) 1.12412e6i 0.947175i 0.880747 + 0.473587i \(0.157041\pi\)
−0.880747 + 0.473587i \(0.842959\pi\)
\(270\) 0 0
\(271\) 1.07277e6 0.887330 0.443665 0.896193i \(-0.353678\pi\)
0.443665 + 0.896193i \(0.353678\pi\)
\(272\) 0 0
\(273\) 2.31580e6i 1.88059i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −615080. −0.481651 −0.240825 0.970568i \(-0.577418\pi\)
−0.240825 + 0.970568i \(0.577418\pi\)
\(278\) 0 0
\(279\) −1.90582e6 −1.46579
\(280\) 0 0
\(281\) −652198. −0.492736 −0.246368 0.969176i \(-0.579237\pi\)
−0.246368 + 0.969176i \(0.579237\pi\)
\(282\) 0 0
\(283\) 908596. 0.674380 0.337190 0.941437i \(-0.390524\pi\)
0.337190 + 0.941437i \(0.390524\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 391763.i − 0.280750i
\(288\) 0 0
\(289\) 122967. 0.0866050
\(290\) 0 0
\(291\) − 1.85638e6i − 1.28509i
\(292\) 0 0
\(293\) 514047. 0.349811 0.174906 0.984585i \(-0.444038\pi\)
0.174906 + 0.984585i \(0.444038\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.62794e6i − 1.72872i
\(298\) 0 0
\(299\) 1.42960e6i 0.924778i
\(300\) 0 0
\(301\) − 1.35419e6i − 0.861517i
\(302\) 0 0
\(303\) 779227.i 0.487593i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.46693e6 0.888309 0.444155 0.895950i \(-0.353504\pi\)
0.444155 + 0.895950i \(0.353504\pi\)
\(308\) 0 0
\(309\) 3.51477e6i 2.09411i
\(310\) 0 0
\(311\) −547919. −0.321229 −0.160615 0.987017i \(-0.551348\pi\)
−0.160615 + 0.987017i \(0.551348\pi\)
\(312\) 0 0
\(313\) − 1.70857e6i − 0.985762i −0.870097 0.492881i \(-0.835944\pi\)
0.870097 0.492881i \(-0.164056\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 978608. 0.546966 0.273483 0.961877i \(-0.411824\pi\)
0.273483 + 0.961877i \(0.411824\pi\)
\(318\) 0 0
\(319\) −1.59894e6 −0.879743
\(320\) 0 0
\(321\) −871627. −0.472137
\(322\) 0 0
\(323\) −1.31585e6 −0.701777
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 2.09834e6i − 1.08519i
\(328\) 0 0
\(329\) 829053. 0.422272
\(330\) 0 0
\(331\) − 345907.i − 0.173536i −0.996229 0.0867679i \(-0.972346\pi\)
0.996229 0.0867679i \(-0.0276539\pi\)
\(332\) 0 0
\(333\) 1.69377e6 0.837034
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 376513.i 0.180595i 0.995915 + 0.0902975i \(0.0287818\pi\)
−0.995915 + 0.0902975i \(0.971218\pi\)
\(338\) 0 0
\(339\) 1.43454e6i 0.677972i
\(340\) 0 0
\(341\) − 3.67073e6i − 1.70949i
\(342\) 0 0
\(343\) − 2.37051e6i − 1.08794i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 164656. 0.0734099 0.0367049 0.999326i \(-0.488314\pi\)
0.0367049 + 0.999326i \(0.488314\pi\)
\(348\) 0 0
\(349\) 35942.6i 0.0157959i 0.999969 + 0.00789797i \(0.00251403\pi\)
−0.999969 + 0.00789797i \(0.997486\pi\)
\(350\) 0 0
\(351\) −3.16465e6 −1.37106
\(352\) 0 0
\(353\) − 1.39430e6i − 0.595550i −0.954636 0.297775i \(-0.903756\pi\)
0.954636 0.297775i \(-0.0962445\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.95635e6 −1.22768
\(358\) 0 0
\(359\) 3.50589e6 1.43569 0.717847 0.696201i \(-0.245128\pi\)
0.717847 + 0.696201i \(0.245128\pi\)
\(360\) 0 0
\(361\) 1.14102e6 0.460812
\(362\) 0 0
\(363\) 9.71265e6 3.86875
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 3.64440e6i − 1.41241i −0.708007 0.706206i \(-0.750405\pi\)
0.708007 0.706206i \(-0.249595\pi\)
\(368\) 0 0
\(369\) 1.45405e6 0.555923
\(370\) 0 0
\(371\) − 3.55572e6i − 1.34120i
\(372\) 0 0
\(373\) 4.19252e6 1.56028 0.780142 0.625603i \(-0.215147\pi\)
0.780142 + 0.625603i \(0.215147\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.92550e6i 0.697734i
\(378\) 0 0
\(379\) − 2.31089e6i − 0.826384i −0.910644 0.413192i \(-0.864414\pi\)
0.910644 0.413192i \(-0.135586\pi\)
\(380\) 0 0
\(381\) − 221664.i − 0.0782316i
\(382\) 0 0
\(383\) 1.18240e6i 0.411876i 0.978565 + 0.205938i \(0.0660245\pi\)
−0.978565 + 0.205938i \(0.933976\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.02617e6 1.70592
\(388\) 0 0
\(389\) 5.09219e6i 1.70620i 0.521745 + 0.853102i \(0.325281\pi\)
−0.521745 + 0.853102i \(0.674719\pi\)
\(390\) 0 0
\(391\) −1.82503e6 −0.603709
\(392\) 0 0
\(393\) − 2.76720e6i − 0.903773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 63006.9 0.0200637 0.0100319 0.999950i \(-0.496807\pi\)
0.0100319 + 0.999950i \(0.496807\pi\)
\(398\) 0 0
\(399\) −2.99957e6 −0.943248
\(400\) 0 0
\(401\) −4.48960e6 −1.39427 −0.697135 0.716940i \(-0.745542\pi\)
−0.697135 + 0.716940i \(0.745542\pi\)
\(402\) 0 0
\(403\) −4.42041e6 −1.35581
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.26230e6i 0.976197i
\(408\) 0 0
\(409\) −2.03416e6 −0.601281 −0.300641 0.953738i \(-0.597200\pi\)
−0.300641 + 0.953738i \(0.597200\pi\)
\(410\) 0 0
\(411\) 7.62497e6i 2.22656i
\(412\) 0 0
\(413\) −2.28646e6 −0.659612
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.48758e6i − 0.418929i
\(418\) 0 0
\(419\) 1.53143e6i 0.426150i 0.977036 + 0.213075i \(0.0683479\pi\)
−0.977036 + 0.213075i \(0.931652\pi\)
\(420\) 0 0
\(421\) 4.86857e6i 1.33874i 0.742929 + 0.669370i \(0.233436\pi\)
−0.742929 + 0.669370i \(0.766564\pi\)
\(422\) 0 0
\(423\) 3.07708e6i 0.836157i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −292482. −0.0776300
\(428\) 0 0
\(429\) − 1.65550e7i − 4.34295i
\(430\) 0 0
\(431\) −537754. −0.139441 −0.0697204 0.997567i \(-0.522211\pi\)
−0.0697204 + 0.997567i \(0.522211\pi\)
\(432\) 0 0
\(433\) − 1.48235e6i − 0.379954i −0.981789 0.189977i \(-0.939159\pi\)
0.981789 0.189977i \(-0.0608414\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.85171e6 −0.463840
\(438\) 0 0
\(439\) −2.49966e6 −0.619041 −0.309520 0.950893i \(-0.600168\pi\)
−0.309520 + 0.950893i \(0.600168\pi\)
\(440\) 0 0
\(441\) 2.33420e6 0.571534
\(442\) 0 0
\(443\) −5.00804e6 −1.21244 −0.606218 0.795299i \(-0.707314\pi\)
−0.606218 + 0.795299i \(0.707314\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.85576e6i 1.38616i
\(448\) 0 0
\(449\) −3.04025e6 −0.711694 −0.355847 0.934544i \(-0.615808\pi\)
−0.355847 + 0.934544i \(0.615808\pi\)
\(450\) 0 0
\(451\) 2.80059e6i 0.648349i
\(452\) 0 0
\(453\) −2.23135e6 −0.510884
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.20014e6i 1.61269i 0.591446 + 0.806345i \(0.298557\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(458\) 0 0
\(459\) − 4.03999e6i − 0.895052i
\(460\) 0 0
\(461\) − 7.87732e6i − 1.72634i −0.504914 0.863170i \(-0.668476\pi\)
0.504914 0.863170i \(-0.331524\pi\)
\(462\) 0 0
\(463\) − 6.18812e6i − 1.34155i −0.741662 0.670774i \(-0.765962\pi\)
0.741662 0.670774i \(-0.234038\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.21143e6 −1.53013 −0.765066 0.643952i \(-0.777294\pi\)
−0.765066 + 0.643952i \(0.777294\pi\)
\(468\) 0 0
\(469\) 5.69740e6i 1.19604i
\(470\) 0 0
\(471\) 1.52544e7 3.16843
\(472\) 0 0
\(473\) 9.68070e6i 1.98955i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.31973e7 2.65575
\(478\) 0 0
\(479\) 4.05783e6 0.808081 0.404040 0.914741i \(-0.367605\pi\)
0.404040 + 0.914741i \(0.367605\pi\)
\(480\) 0 0
\(481\) 3.92856e6 0.774232
\(482\) 0 0
\(483\) −4.16028e6 −0.811437
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 121792.i − 0.0232700i −0.999932 0.0116350i \(-0.996296\pi\)
0.999932 0.0116350i \(-0.00370361\pi\)
\(488\) 0 0
\(489\) 4.32902e6 0.818687
\(490\) 0 0
\(491\) − 2.80649e6i − 0.525363i −0.964883 0.262682i \(-0.915393\pi\)
0.964883 0.262682i \(-0.0846069\pi\)
\(492\) 0 0
\(493\) −2.45809e6 −0.455491
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.44332e6i 0.806894i
\(498\) 0 0
\(499\) 2.59476e6i 0.466494i 0.972418 + 0.233247i \(0.0749351\pi\)
−0.972418 + 0.233247i \(0.925065\pi\)
\(500\) 0 0
\(501\) 1.10606e7i 1.96873i
\(502\) 0 0
\(503\) 1.04638e6i 0.184404i 0.995740 + 0.0922021i \(0.0293906\pi\)
−0.995740 + 0.0922021i \(0.970609\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.06344e7 −1.83735
\(508\) 0 0
\(509\) − 8.38369e6i − 1.43430i −0.696918 0.717151i \(-0.745446\pi\)
0.696918 0.717151i \(-0.254554\pi\)
\(510\) 0 0
\(511\) 2.16504e6 0.366787
\(512\) 0 0
\(513\) − 4.09904e6i − 0.687684i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −5.92664e6 −0.975174
\(518\) 0 0
\(519\) 7.05000e6 1.14887
\(520\) 0 0
\(521\) −4.38397e6 −0.707577 −0.353788 0.935325i \(-0.615107\pi\)
−0.353788 + 0.935325i \(0.615107\pi\)
\(522\) 0 0
\(523\) −915789. −0.146400 −0.0732000 0.997317i \(-0.523321\pi\)
−0.0732000 + 0.997317i \(0.523321\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 5.64309e6i − 0.885096i
\(528\) 0 0
\(529\) 3.86810e6 0.600978
\(530\) 0 0
\(531\) − 8.48634e6i − 1.30612i
\(532\) 0 0
\(533\) 3.37257e6 0.514212
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 2.01862e7i − 3.02077i
\(538\) 0 0
\(539\) 4.49581e6i 0.666556i
\(540\) 0 0
\(541\) 6.98594e6i 1.02620i 0.858329 + 0.513100i \(0.171503\pi\)
−0.858329 + 0.513100i \(0.828497\pi\)
\(542\) 0 0
\(543\) − 1.52904e7i − 2.22545i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.72947e6 −0.675841 −0.337920 0.941175i \(-0.609723\pi\)
−0.337920 + 0.941175i \(0.609723\pi\)
\(548\) 0 0
\(549\) − 1.08556e6i − 0.153718i
\(550\) 0 0
\(551\) −2.49402e6 −0.349962
\(552\) 0 0
\(553\) − 3.13231e6i − 0.435564i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.26312e6 −0.445651 −0.222825 0.974858i \(-0.571528\pi\)
−0.222825 + 0.974858i \(0.571528\pi\)
\(558\) 0 0
\(559\) 1.16578e7 1.57793
\(560\) 0 0
\(561\) 2.11340e7 2.83514
\(562\) 0 0
\(563\) −5.81898e6 −0.773706 −0.386853 0.922141i \(-0.626438\pi\)
−0.386853 + 0.922141i \(0.626438\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 475223.i 0.0620782i
\(568\) 0 0
\(569\) 9.08770e6 1.17672 0.588360 0.808599i \(-0.299774\pi\)
0.588360 + 0.808599i \(0.299774\pi\)
\(570\) 0 0
\(571\) − 258870.i − 0.0332270i −0.999862 0.0166135i \(-0.994712\pi\)
0.999862 0.0166135i \(-0.00528849\pi\)
\(572\) 0 0
\(573\) −2.11875e7 −2.69583
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.45070e6i 0.306444i 0.988192 + 0.153222i \(0.0489650\pi\)
−0.988192 + 0.153222i \(0.951035\pi\)
\(578\) 0 0
\(579\) − 4.61182e6i − 0.571710i
\(580\) 0 0
\(581\) − 9.73547e6i − 1.19651i
\(582\) 0 0
\(583\) 2.54187e7i 3.09729i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.61982e6 −0.433602 −0.216801 0.976216i \(-0.569562\pi\)
−0.216801 + 0.976216i \(0.569562\pi\)
\(588\) 0 0
\(589\) − 5.72557e6i − 0.680034i
\(590\) 0 0
\(591\) −9.78339e6 −1.15218
\(592\) 0 0
\(593\) 7.07347e6i 0.826030i 0.910724 + 0.413015i \(0.135524\pi\)
−0.910724 + 0.413015i \(0.864476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.46370e7 1.68080
\(598\) 0 0
\(599\) −2.71813e6 −0.309530 −0.154765 0.987951i \(-0.549462\pi\)
−0.154765 + 0.987951i \(0.549462\pi\)
\(600\) 0 0
\(601\) 1.67171e6 0.188788 0.0943942 0.995535i \(-0.469909\pi\)
0.0943942 + 0.995535i \(0.469909\pi\)
\(602\) 0 0
\(603\) −2.11462e7 −2.36832
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.35562e6i 0.259498i 0.991547 + 0.129749i \(0.0414171\pi\)
−0.991547 + 0.129749i \(0.958583\pi\)
\(608\) 0 0
\(609\) −5.60338e6 −0.612219
\(610\) 0 0
\(611\) 7.13705e6i 0.773421i
\(612\) 0 0
\(613\) 1.88749e6 0.202877 0.101439 0.994842i \(-0.467655\pi\)
0.101439 + 0.994842i \(0.467655\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.45446e7i 1.53812i 0.639178 + 0.769058i \(0.279275\pi\)
−0.639178 + 0.769058i \(0.720725\pi\)
\(618\) 0 0
\(619\) − 1.08497e7i − 1.13813i −0.822292 0.569066i \(-0.807305\pi\)
0.822292 0.569066i \(-0.192695\pi\)
\(620\) 0 0
\(621\) − 5.68521e6i − 0.591585i
\(622\) 0 0
\(623\) 122075.i 0.0126011i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.14430e7 2.17829
\(628\) 0 0
\(629\) 5.01520e6i 0.505431i
\(630\) 0 0
\(631\) −3.76561e6 −0.376497 −0.188249 0.982121i \(-0.560281\pi\)
−0.188249 + 0.982121i \(0.560281\pi\)
\(632\) 0 0
\(633\) − 1.07287e7i − 1.06424i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.41400e6 0.528652
\(638\) 0 0
\(639\) −1.64917e7 −1.59776
\(640\) 0 0
\(641\) −223711. −0.0215052 −0.0107526 0.999942i \(-0.503423\pi\)
−0.0107526 + 0.999942i \(0.503423\pi\)
\(642\) 0 0
\(643\) −2.53011e6 −0.241330 −0.120665 0.992693i \(-0.538503\pi\)
−0.120665 + 0.992693i \(0.538503\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.44825e6i 0.793425i 0.917943 + 0.396713i \(0.129849\pi\)
−0.917943 + 0.396713i \(0.870151\pi\)
\(648\) 0 0
\(649\) 1.63452e7 1.52328
\(650\) 0 0
\(651\) − 1.28638e7i − 1.18964i
\(652\) 0 0
\(653\) −1.72303e7 −1.58128 −0.790641 0.612280i \(-0.790253\pi\)
−0.790641 + 0.612280i \(0.790253\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.03568e6i 0.726289i
\(658\) 0 0
\(659\) 5.43243e6i 0.487282i 0.969865 + 0.243641i \(0.0783419\pi\)
−0.969865 + 0.243641i \(0.921658\pi\)
\(660\) 0 0
\(661\) 1.12770e7i 1.00390i 0.864897 + 0.501949i \(0.167384\pi\)
−0.864897 + 0.501949i \(0.832616\pi\)
\(662\) 0 0
\(663\) − 2.54503e7i − 2.24858i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.45911e6 −0.301057
\(668\) 0 0
\(669\) − 2.39402e7i − 2.06806i
\(670\) 0 0
\(671\) 2.09086e6 0.179275
\(672\) 0 0
\(673\) − 1.15475e7i − 0.982769i −0.870943 0.491384i \(-0.836491\pi\)
0.870943 0.491384i \(-0.163509\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.72804e6 0.731889 0.365944 0.930637i \(-0.380746\pi\)
0.365944 + 0.930637i \(0.380746\pi\)
\(678\) 0 0
\(679\) 7.67862e6 0.639159
\(680\) 0 0
\(681\) −2.17009e7 −1.79313
\(682\) 0 0
\(683\) 5.37492e6 0.440880 0.220440 0.975401i \(-0.429251\pi\)
0.220440 + 0.975401i \(0.429251\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.63849e7i − 1.32450i
\(688\) 0 0
\(689\) 3.06101e7 2.45650
\(690\) 0 0
\(691\) − 1.03106e7i − 0.821467i −0.911756 0.410733i \(-0.865273\pi\)
0.911756 0.410733i \(-0.134727\pi\)
\(692\) 0 0
\(693\) 2.95233e7 2.33524
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.30541e6i 0.335686i
\(698\) 0 0
\(699\) − 2.05556e7i − 1.59124i
\(700\) 0 0
\(701\) − 7.87993e6i − 0.605658i −0.953045 0.302829i \(-0.902069\pi\)
0.953045 0.302829i \(-0.0979311\pi\)
\(702\) 0 0
\(703\) 5.08851e6i 0.388331i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.22315e6 −0.242511
\(708\) 0 0
\(709\) 2.06172e7i 1.54033i 0.637846 + 0.770164i \(0.279826\pi\)
−0.637846 + 0.770164i \(0.720174\pi\)
\(710\) 0 0
\(711\) 1.16258e7 0.862476
\(712\) 0 0
\(713\) − 7.94115e6i − 0.585005i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −2.17280e7 −1.57842
\(718\) 0 0
\(719\) 1.37162e7 0.989490 0.494745 0.869038i \(-0.335262\pi\)
0.494745 + 0.869038i \(0.335262\pi\)
\(720\) 0 0
\(721\) −1.45383e7 −1.04154
\(722\) 0 0
\(723\) 4.14305e7 2.94764
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.33681e7i 1.63979i 0.572514 + 0.819895i \(0.305968\pi\)
−0.572514 + 0.819895i \(0.694032\pi\)
\(728\) 0 0
\(729\) −2.33601e7 −1.62800
\(730\) 0 0
\(731\) 1.48823e7i 1.03010i
\(732\) 0 0
\(733\) 2.94411e6 0.202392 0.101196 0.994866i \(-0.467733\pi\)
0.101196 + 0.994866i \(0.467733\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.07289e7i − 2.76207i
\(738\) 0 0
\(739\) 3.66027e6i 0.246548i 0.992373 + 0.123274i \(0.0393395\pi\)
−0.992373 + 0.123274i \(0.960661\pi\)
\(740\) 0 0
\(741\) − 2.58223e7i − 1.72763i
\(742\) 0 0
\(743\) − 2.60824e7i − 1.73331i −0.498912 0.866653i \(-0.666267\pi\)
0.498912 0.866653i \(-0.333733\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.61338e7 2.36926
\(748\) 0 0
\(749\) − 3.60535e6i − 0.234824i
\(750\) 0 0
\(751\) 1.03196e7 0.667673 0.333836 0.942631i \(-0.391657\pi\)
0.333836 + 0.942631i \(0.391657\pi\)
\(752\) 0 0
\(753\) − 2.15668e7i − 1.38611i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.70313e7 −1.71446 −0.857228 0.514936i \(-0.827816\pi\)
−0.857228 + 0.514936i \(0.827816\pi\)
\(758\) 0 0
\(759\) 2.97405e7 1.87389
\(760\) 0 0
\(761\) 1.29548e7 0.810905 0.405452 0.914116i \(-0.367114\pi\)
0.405452 + 0.914116i \(0.367114\pi\)
\(762\) 0 0
\(763\) 8.67946e6 0.539736
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.96834e7i − 1.20813i
\(768\) 0 0
\(769\) −8.35551e6 −0.509515 −0.254757 0.967005i \(-0.581996\pi\)
−0.254757 + 0.967005i \(0.581996\pi\)
\(770\) 0 0
\(771\) 1.91732e7i 1.16161i
\(772\) 0 0
\(773\) 3.12215e7 1.87934 0.939668 0.342087i \(-0.111134\pi\)
0.939668 + 0.342087i \(0.111134\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.14325e7i 0.679342i
\(778\) 0 0
\(779\) 4.36835e6i 0.257913i
\(780\) 0 0
\(781\) − 3.17639e7i − 1.86340i
\(782\) 0 0
\(783\) − 7.65727e6i − 0.446344i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.14664e7 −0.659920 −0.329960 0.943995i \(-0.607035\pi\)
−0.329960 + 0.943995i \(0.607035\pi\)
\(788\) 0 0
\(789\) − 6.53222e6i − 0.373567i
\(790\) 0 0
\(791\) −5.93373e6 −0.337199
\(792\) 0 0
\(793\) − 2.51789e6i − 0.142185i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.28998e7 −1.27699 −0.638493 0.769628i \(-0.720442\pi\)
−0.638493 + 0.769628i \(0.720442\pi\)
\(798\) 0 0
\(799\) −9.11115e6 −0.504901
\(800\) 0 0
\(801\) −453090. −0.0249519
\(802\) 0 0
\(803\) −1.54772e7 −0.847040
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.81614e7i − 1.52220i
\(808\) 0 0
\(809\) −2.82761e7 −1.51896 −0.759482 0.650528i \(-0.774548\pi\)
−0.759482 + 0.650528i \(0.774548\pi\)
\(810\) 0 0
\(811\) − 2.97657e7i − 1.58915i −0.607167 0.794574i \(-0.707694\pi\)
0.607167 0.794574i \(-0.292306\pi\)
\(812\) 0 0
\(813\) −2.68752e7 −1.42602
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.50999e7i 0.791441i
\(818\) 0 0
\(819\) − 3.55529e7i − 1.85210i
\(820\) 0 0
\(821\) 2.33663e7i 1.20985i 0.796282 + 0.604926i \(0.206797\pi\)
−0.796282 + 0.604926i \(0.793203\pi\)
\(822\) 0 0
\(823\) − 3.90864e6i − 0.201153i −0.994929 0.100576i \(-0.967931\pi\)
0.994929 0.100576i \(-0.0320687\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.34407e7 0.683371 0.341686 0.939814i \(-0.389002\pi\)
0.341686 + 0.939814i \(0.389002\pi\)
\(828\) 0 0
\(829\) 2.39273e7i 1.20923i 0.796519 + 0.604613i \(0.206672\pi\)
−0.796519 + 0.604613i \(0.793328\pi\)
\(830\) 0 0
\(831\) 1.54090e7 0.774057
\(832\) 0 0
\(833\) 6.91151e6i 0.345112i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.75790e7 0.867320
\(838\) 0 0
\(839\) −4.44572e6 −0.218041 −0.109020 0.994040i \(-0.534771\pi\)
−0.109020 + 0.994040i \(0.534771\pi\)
\(840\) 0 0
\(841\) 1.58522e7 0.772856
\(842\) 0 0
\(843\) 1.63389e7 0.791871
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.01748e7i 1.92418i
\(848\) 0 0
\(849\) −2.27622e7 −1.08379
\(850\) 0 0
\(851\) 7.05756e6i 0.334065i
\(852\) 0 0
\(853\) −2.57954e7 −1.21386 −0.606931 0.794754i \(-0.707600\pi\)
−0.606931 + 0.794754i \(0.707600\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.79012e7i 0.832590i 0.909230 + 0.416295i \(0.136672\pi\)
−0.909230 + 0.416295i \(0.863328\pi\)
\(858\) 0 0
\(859\) 2.50747e7i 1.15945i 0.814811 + 0.579727i \(0.196841\pi\)
−0.814811 + 0.579727i \(0.803159\pi\)
\(860\) 0 0
\(861\) 9.81449e6i 0.451190i
\(862\) 0 0
\(863\) 8.98511e6i 0.410673i 0.978691 + 0.205337i \(0.0658289\pi\)
−0.978691 + 0.205337i \(0.934171\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.08057e6 −0.139182
\(868\) 0 0
\(869\) 2.23919e7i 1.00587i
\(870\) 0 0
\(871\) −4.90471e7 −2.19063
\(872\) 0 0
\(873\) 2.84997e7i 1.26562i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.08381e7 −0.475834 −0.237917 0.971286i \(-0.576465\pi\)
−0.237917 + 0.971286i \(0.576465\pi\)
\(878\) 0 0
\(879\) −1.28780e7 −0.562179
\(880\) 0 0
\(881\) −816876. −0.0354582 −0.0177291 0.999843i \(-0.505644\pi\)
−0.0177291 + 0.999843i \(0.505644\pi\)
\(882\) 0 0
\(883\) −2.50842e6 −0.108268 −0.0541339 0.998534i \(-0.517240\pi\)
−0.0541339 + 0.998534i \(0.517240\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.58294e7i 0.675545i 0.941228 + 0.337773i \(0.109673\pi\)
−0.941228 + 0.337773i \(0.890327\pi\)
\(888\) 0 0
\(889\) 916878. 0.0389096
\(890\) 0 0
\(891\) − 3.39722e6i − 0.143360i
\(892\) 0 0
\(893\) −9.24434e6 −0.387924
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.58145e7i − 1.48620i
\(898\) 0 0
\(899\) − 1.06957e7i − 0.441379i
\(900\) 0 0
\(901\) 3.90768e7i 1.60364i
\(902\) 0 0
\(903\) 3.39253e7i 1.38454i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.36328e7 0.953887 0.476944 0.878934i \(-0.341745\pi\)
0.476944 + 0.878934i \(0.341745\pi\)
\(908\) 0 0
\(909\) − 1.19629e7i − 0.480206i
\(910\) 0 0
\(911\) 9.17484e6 0.366271 0.183136 0.983088i \(-0.441375\pi\)
0.183136 + 0.983088i \(0.441375\pi\)
\(912\) 0 0
\(913\) 6.95959e7i 2.76316i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.14461e7 0.449504
\(918\) 0 0
\(919\) −3.58059e7 −1.39851 −0.699255 0.714872i \(-0.746485\pi\)
−0.699255 + 0.714872i \(0.746485\pi\)
\(920\) 0 0
\(921\) −3.67497e7 −1.42759
\(922\) 0 0
\(923\) −3.82511e7 −1.47788
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 5.39597e7i − 2.06239i
\(928\) 0 0
\(929\) 2.41031e7 0.916291 0.458146 0.888877i \(-0.348514\pi\)
0.458146 + 0.888877i \(0.348514\pi\)
\(930\) 0 0
\(931\) 7.01254e6i 0.265156i
\(932\) 0 0
\(933\) 1.37265e7 0.516245
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 1.84615e7i − 0.686938i −0.939164 0.343469i \(-0.888398\pi\)
0.939164 0.343469i \(-0.111602\pi\)
\(938\) 0 0
\(939\) 4.28032e7i 1.58421i
\(940\) 0 0
\(941\) 3.10319e6i 0.114244i 0.998367 + 0.0571220i \(0.0181924\pi\)
−0.998367 + 0.0571220i \(0.981808\pi\)
\(942\) 0 0
\(943\) 6.05873e6i 0.221872i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.89572e7 −1.77395 −0.886975 0.461817i \(-0.847198\pi\)
−0.886975 + 0.461817i \(0.847198\pi\)
\(948\) 0 0
\(949\) 1.86382e7i 0.671796i
\(950\) 0 0
\(951\) −2.45162e7 −0.879025
\(952\) 0 0
\(953\) − 3.94753e7i − 1.40797i −0.710216 0.703984i \(-0.751403\pi\)
0.710216 0.703984i \(-0.248597\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.00568e7 1.41383
\(958\) 0 0
\(959\) −3.15395e7 −1.10741
\(960\) 0 0
\(961\) −4.07470e6 −0.142327
\(962\) 0 0
\(963\) 1.33815e7 0.464984
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.23447e7i 0.768438i 0.923242 + 0.384219i \(0.125529\pi\)
−0.923242 + 0.384219i \(0.874471\pi\)
\(968\) 0 0
\(969\) 3.29647e7 1.12782
\(970\) 0 0
\(971\) 2.63033e7i 0.895288i 0.894212 + 0.447644i \(0.147737\pi\)
−0.894212 + 0.447644i \(0.852263\pi\)
\(972\) 0 0
\(973\) 6.15315e6 0.208360
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.78338e7i 1.60324i 0.597835 + 0.801619i \(0.296028\pi\)
−0.597835 + 0.801619i \(0.703972\pi\)
\(978\) 0 0
\(979\) − 872679.i − 0.0291003i
\(980\) 0 0
\(981\) 3.22144e7i 1.06875i
\(982\) 0 0
\(983\) 4.88361e7i 1.61197i 0.591935 + 0.805986i \(0.298364\pi\)
−0.591935 + 0.805986i \(0.701636\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.07695e7 −0.678630
\(988\) 0 0
\(989\) 2.09429e7i 0.680843i
\(990\) 0 0
\(991\) −7.49231e6 −0.242344 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(992\) 0 0
\(993\) 8.66569e6i 0.278888i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.46209e7 0.465841 0.232920 0.972496i \(-0.425172\pi\)
0.232920 + 0.972496i \(0.425172\pi\)
\(998\) 0 0
\(999\) −1.56230e7 −0.495280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.b.49.3 20
4.3 odd 2 200.6.f.c.149.6 20
5.2 odd 4 800.6.d.c.401.18 20
5.3 odd 4 160.6.d.a.81.3 20
5.4 even 2 800.6.f.c.49.18 20
8.3 odd 2 200.6.f.b.149.16 20
8.5 even 2 800.6.f.c.49.17 20
20.3 even 4 40.6.d.a.21.16 yes 20
20.7 even 4 200.6.d.b.101.5 20
20.19 odd 2 200.6.f.b.149.15 20
40.3 even 4 40.6.d.a.21.15 20
40.13 odd 4 160.6.d.a.81.18 20
40.19 odd 2 200.6.f.c.149.5 20
40.27 even 4 200.6.d.b.101.6 20
40.29 even 2 inner 800.6.f.b.49.4 20
40.37 odd 4 800.6.d.c.401.3 20
60.23 odd 4 360.6.k.b.181.5 20
120.83 odd 4 360.6.k.b.181.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.15 20 40.3 even 4
40.6.d.a.21.16 yes 20 20.3 even 4
160.6.d.a.81.3 20 5.3 odd 4
160.6.d.a.81.18 20 40.13 odd 4
200.6.d.b.101.5 20 20.7 even 4
200.6.d.b.101.6 20 40.27 even 4
200.6.f.b.149.15 20 20.19 odd 2
200.6.f.b.149.16 20 8.3 odd 2
200.6.f.c.149.5 20 40.19 odd 2
200.6.f.c.149.6 20 4.3 odd 2
360.6.k.b.181.5 20 60.23 odd 4
360.6.k.b.181.6 20 120.83 odd 4
800.6.d.c.401.3 20 40.37 odd 4
800.6.d.c.401.18 20 5.2 odd 4
800.6.f.b.49.3 20 1.1 even 1 trivial
800.6.f.b.49.4 20 40.29 even 2 inner
800.6.f.c.49.17 20 8.5 even 2
800.6.f.c.49.18 20 5.4 even 2