Properties

Label 160.6.d.a.81.14
Level $160$
Weight $6$
Character 160.81
Analytic conductor $25.661$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{90}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 81.14
Root \(3.72553 + 1.45618i\) of defining polynomial
Character \(\chi\) \(=\) 160.81
Dual form 160.6.d.a.81.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.8240i q^{3} +25.0000i q^{5} -163.706 q^{7} +125.841 q^{9} +321.520i q^{11} -128.246i q^{13} -270.600 q^{15} -2110.72 q^{17} -1454.37i q^{19} -1771.96i q^{21} +1231.18 q^{23} -625.000 q^{25} +3992.34i q^{27} -4073.19i q^{29} +3956.03 q^{31} -3480.14 q^{33} -4092.65i q^{35} -10656.6i q^{37} +1388.13 q^{39} -5907.19 q^{41} -16439.6i q^{43} +3146.02i q^{45} -23238.8 q^{47} +9992.68 q^{49} -22846.5i q^{51} -30634.0i q^{53} -8038.01 q^{55} +15742.1 q^{57} -25262.4i q^{59} +39115.5i q^{61} -20600.9 q^{63} +3206.14 q^{65} +20894.5i q^{67} +13326.3i q^{69} -13889.1 q^{71} -43451.2 q^{73} -6765.01i q^{75} -52634.8i q^{77} +12546.4 q^{79} -12633.8 q^{81} -6680.84i q^{83} -52768.0i q^{85} +44088.2 q^{87} -90400.9 q^{89} +20994.6i q^{91} +42820.2i q^{93} +36359.2 q^{95} +149616. q^{97} +40460.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.8240i 0.694361i 0.937798 + 0.347180i \(0.112861\pi\)
−0.937798 + 0.347180i \(0.887139\pi\)
\(4\) 0 0
\(5\) 25.0000i 0.447214i
\(6\) 0 0
\(7\) −163.706 −1.26276 −0.631378 0.775475i \(-0.717510\pi\)
−0.631378 + 0.775475i \(0.717510\pi\)
\(8\) 0 0
\(9\) 125.841 0.517863
\(10\) 0 0
\(11\) 321.520i 0.801174i 0.916259 + 0.400587i \(0.131194\pi\)
−0.916259 + 0.400587i \(0.868806\pi\)
\(12\) 0 0
\(13\) − 128.246i − 0.210467i −0.994448 0.105233i \(-0.966441\pi\)
0.994448 0.105233i \(-0.0335590\pi\)
\(14\) 0 0
\(15\) −270.600 −0.310528
\(16\) 0 0
\(17\) −2110.72 −1.77137 −0.885683 0.464290i \(-0.846310\pi\)
−0.885683 + 0.464290i \(0.846310\pi\)
\(18\) 0 0
\(19\) − 1454.37i − 0.924252i −0.886814 0.462126i \(-0.847087\pi\)
0.886814 0.462126i \(-0.152913\pi\)
\(20\) 0 0
\(21\) − 1771.96i − 0.876809i
\(22\) 0 0
\(23\) 1231.18 0.485289 0.242645 0.970115i \(-0.421985\pi\)
0.242645 + 0.970115i \(0.421985\pi\)
\(24\) 0 0
\(25\) −625.000 −0.200000
\(26\) 0 0
\(27\) 3992.34i 1.05394i
\(28\) 0 0
\(29\) − 4073.19i − 0.899372i −0.893187 0.449686i \(-0.851536\pi\)
0.893187 0.449686i \(-0.148464\pi\)
\(30\) 0 0
\(31\) 3956.03 0.739360 0.369680 0.929159i \(-0.379467\pi\)
0.369680 + 0.929159i \(0.379467\pi\)
\(32\) 0 0
\(33\) −3480.14 −0.556304
\(34\) 0 0
\(35\) − 4092.65i − 0.564722i
\(36\) 0 0
\(37\) − 10656.6i − 1.27972i −0.768490 0.639861i \(-0.778992\pi\)
0.768490 0.639861i \(-0.221008\pi\)
\(38\) 0 0
\(39\) 1388.13 0.146140
\(40\) 0 0
\(41\) −5907.19 −0.548809 −0.274404 0.961614i \(-0.588481\pi\)
−0.274404 + 0.961614i \(0.588481\pi\)
\(42\) 0 0
\(43\) − 16439.6i − 1.35588i −0.735119 0.677938i \(-0.762874\pi\)
0.735119 0.677938i \(-0.237126\pi\)
\(44\) 0 0
\(45\) 3146.02i 0.231595i
\(46\) 0 0
\(47\) −23238.8 −1.53450 −0.767252 0.641345i \(-0.778377\pi\)
−0.767252 + 0.641345i \(0.778377\pi\)
\(48\) 0 0
\(49\) 9992.68 0.594555
\(50\) 0 0
\(51\) − 22846.5i − 1.22997i
\(52\) 0 0
\(53\) − 30634.0i − 1.49801i −0.662567 0.749003i \(-0.730533\pi\)
0.662567 0.749003i \(-0.269467\pi\)
\(54\) 0 0
\(55\) −8038.01 −0.358296
\(56\) 0 0
\(57\) 15742.1 0.641764
\(58\) 0 0
\(59\) − 25262.4i − 0.944810i −0.881382 0.472405i \(-0.843386\pi\)
0.881382 0.472405i \(-0.156614\pi\)
\(60\) 0 0
\(61\) 39115.5i 1.34594i 0.739672 + 0.672968i \(0.234981\pi\)
−0.739672 + 0.672968i \(0.765019\pi\)
\(62\) 0 0
\(63\) −20600.9 −0.653935
\(64\) 0 0
\(65\) 3206.14 0.0941237
\(66\) 0 0
\(67\) 20894.5i 0.568651i 0.958728 + 0.284325i \(0.0917696\pi\)
−0.958728 + 0.284325i \(0.908230\pi\)
\(68\) 0 0
\(69\) 13326.3i 0.336966i
\(70\) 0 0
\(71\) −13889.1 −0.326984 −0.163492 0.986545i \(-0.552276\pi\)
−0.163492 + 0.986545i \(0.552276\pi\)
\(72\) 0 0
\(73\) −43451.2 −0.954321 −0.477161 0.878816i \(-0.658334\pi\)
−0.477161 + 0.878816i \(0.658334\pi\)
\(74\) 0 0
\(75\) − 6765.01i − 0.138872i
\(76\) 0 0
\(77\) − 52634.8i − 1.01169i
\(78\) 0 0
\(79\) 12546.4 0.226179 0.113089 0.993585i \(-0.463925\pi\)
0.113089 + 0.993585i \(0.463925\pi\)
\(80\) 0 0
\(81\) −12633.8 −0.213955
\(82\) 0 0
\(83\) − 6680.84i − 0.106448i −0.998583 0.0532238i \(-0.983050\pi\)
0.998583 0.0532238i \(-0.0169497\pi\)
\(84\) 0 0
\(85\) − 52768.0i − 0.792179i
\(86\) 0 0
\(87\) 44088.2 0.624488
\(88\) 0 0
\(89\) −90400.9 −1.20976 −0.604878 0.796318i \(-0.706778\pi\)
−0.604878 + 0.796318i \(0.706778\pi\)
\(90\) 0 0
\(91\) 20994.6i 0.265769i
\(92\) 0 0
\(93\) 42820.2i 0.513382i
\(94\) 0 0
\(95\) 36359.2 0.413338
\(96\) 0 0
\(97\) 149616. 1.61454 0.807269 0.590184i \(-0.200945\pi\)
0.807269 + 0.590184i \(0.200945\pi\)
\(98\) 0 0
\(99\) 40460.4i 0.414898i
\(100\) 0 0
\(101\) 114822.i 1.12001i 0.828491 + 0.560003i \(0.189200\pi\)
−0.828491 + 0.560003i \(0.810800\pi\)
\(102\) 0 0
\(103\) −38586.9 −0.358382 −0.179191 0.983814i \(-0.557348\pi\)
−0.179191 + 0.983814i \(0.557348\pi\)
\(104\) 0 0
\(105\) 44298.9 0.392121
\(106\) 0 0
\(107\) 189459.i 1.59976i 0.600158 + 0.799881i \(0.295104\pi\)
−0.600158 + 0.799881i \(0.704896\pi\)
\(108\) 0 0
\(109\) 24392.6i 0.196649i 0.995154 + 0.0983245i \(0.0313483\pi\)
−0.995154 + 0.0983245i \(0.968652\pi\)
\(110\) 0 0
\(111\) 115348. 0.888589
\(112\) 0 0
\(113\) −52918.6 −0.389863 −0.194932 0.980817i \(-0.562448\pi\)
−0.194932 + 0.980817i \(0.562448\pi\)
\(114\) 0 0
\(115\) 30779.4i 0.217028i
\(116\) 0 0
\(117\) − 16138.5i − 0.108993i
\(118\) 0 0
\(119\) 345538. 2.23681
\(120\) 0 0
\(121\) 57675.7 0.358120
\(122\) 0 0
\(123\) − 63939.5i − 0.381071i
\(124\) 0 0
\(125\) − 15625.0i − 0.0894427i
\(126\) 0 0
\(127\) −293650. −1.61555 −0.807777 0.589489i \(-0.799329\pi\)
−0.807777 + 0.589489i \(0.799329\pi\)
\(128\) 0 0
\(129\) 177942. 0.941467
\(130\) 0 0
\(131\) 317738.i 1.61767i 0.588032 + 0.808837i \(0.299903\pi\)
−0.588032 + 0.808837i \(0.700097\pi\)
\(132\) 0 0
\(133\) 238089.i 1.16711i
\(134\) 0 0
\(135\) −99808.4 −0.471338
\(136\) 0 0
\(137\) −162285. −0.738717 −0.369358 0.929287i \(-0.620423\pi\)
−0.369358 + 0.929287i \(0.620423\pi\)
\(138\) 0 0
\(139\) − 306759.i − 1.34667i −0.739338 0.673334i \(-0.764861\pi\)
0.739338 0.673334i \(-0.235139\pi\)
\(140\) 0 0
\(141\) − 251537.i − 1.06550i
\(142\) 0 0
\(143\) 41233.5 0.168621
\(144\) 0 0
\(145\) 101830. 0.402211
\(146\) 0 0
\(147\) 108161.i 0.412835i
\(148\) 0 0
\(149\) 368107.i 1.35834i 0.733981 + 0.679170i \(0.237660\pi\)
−0.733981 + 0.679170i \(0.762340\pi\)
\(150\) 0 0
\(151\) −336822. −1.20215 −0.601075 0.799193i \(-0.705261\pi\)
−0.601075 + 0.799193i \(0.705261\pi\)
\(152\) 0 0
\(153\) −265615. −0.917326
\(154\) 0 0
\(155\) 98900.9i 0.330652i
\(156\) 0 0
\(157\) 271253.i 0.878264i 0.898423 + 0.439132i \(0.144714\pi\)
−0.898423 + 0.439132i \(0.855286\pi\)
\(158\) 0 0
\(159\) 331582. 1.04016
\(160\) 0 0
\(161\) −201551. −0.612802
\(162\) 0 0
\(163\) 121354.i 0.357756i 0.983871 + 0.178878i \(0.0572467\pi\)
−0.983871 + 0.178878i \(0.942753\pi\)
\(164\) 0 0
\(165\) − 87003.5i − 0.248787i
\(166\) 0 0
\(167\) −56095.4 −0.155645 −0.0778227 0.996967i \(-0.524797\pi\)
−0.0778227 + 0.996967i \(0.524797\pi\)
\(168\) 0 0
\(169\) 354846. 0.955704
\(170\) 0 0
\(171\) − 183019.i − 0.478636i
\(172\) 0 0
\(173\) 167666.i 0.425921i 0.977061 + 0.212960i \(0.0683105\pi\)
−0.977061 + 0.212960i \(0.931689\pi\)
\(174\) 0 0
\(175\) 102316. 0.252551
\(176\) 0 0
\(177\) 273440. 0.656039
\(178\) 0 0
\(179\) − 535921.i − 1.25017i −0.780558 0.625083i \(-0.785065\pi\)
0.780558 0.625083i \(-0.214935\pi\)
\(180\) 0 0
\(181\) − 113446.i − 0.257391i −0.991684 0.128696i \(-0.958921\pi\)
0.991684 0.128696i \(-0.0410790\pi\)
\(182\) 0 0
\(183\) −423387. −0.934565
\(184\) 0 0
\(185\) 266416. 0.572309
\(186\) 0 0
\(187\) − 678640.i − 1.41917i
\(188\) 0 0
\(189\) − 653570.i − 1.33088i
\(190\) 0 0
\(191\) −391808. −0.777124 −0.388562 0.921423i \(-0.627028\pi\)
−0.388562 + 0.921423i \(0.627028\pi\)
\(192\) 0 0
\(193\) −261513. −0.505359 −0.252680 0.967550i \(-0.581312\pi\)
−0.252680 + 0.967550i \(0.581312\pi\)
\(194\) 0 0
\(195\) 34703.3i 0.0653558i
\(196\) 0 0
\(197\) − 898947.i − 1.65032i −0.564898 0.825161i \(-0.691084\pi\)
0.564898 0.825161i \(-0.308916\pi\)
\(198\) 0 0
\(199\) 83719.3 0.149862 0.0749312 0.997189i \(-0.476126\pi\)
0.0749312 + 0.997189i \(0.476126\pi\)
\(200\) 0 0
\(201\) −226163. −0.394849
\(202\) 0 0
\(203\) 666805.i 1.13569i
\(204\) 0 0
\(205\) − 147680.i − 0.245435i
\(206\) 0 0
\(207\) 154932. 0.251313
\(208\) 0 0
\(209\) 467609. 0.740487
\(210\) 0 0
\(211\) − 553641.i − 0.856095i −0.903756 0.428047i \(-0.859202\pi\)
0.903756 0.428047i \(-0.140798\pi\)
\(212\) 0 0
\(213\) − 150335.i − 0.227045i
\(214\) 0 0
\(215\) 410990. 0.606366
\(216\) 0 0
\(217\) −647627. −0.933632
\(218\) 0 0
\(219\) − 470316.i − 0.662643i
\(220\) 0 0
\(221\) 270691.i 0.372814i
\(222\) 0 0
\(223\) −279400. −0.376239 −0.188120 0.982146i \(-0.560239\pi\)
−0.188120 + 0.982146i \(0.560239\pi\)
\(224\) 0 0
\(225\) −78650.5 −0.103573
\(226\) 0 0
\(227\) 593068.i 0.763905i 0.924182 + 0.381953i \(0.124748\pi\)
−0.924182 + 0.381953i \(0.875252\pi\)
\(228\) 0 0
\(229\) − 927873.i − 1.16923i −0.811311 0.584615i \(-0.801246\pi\)
0.811311 0.584615i \(-0.198754\pi\)
\(230\) 0 0
\(231\) 569720. 0.702476
\(232\) 0 0
\(233\) −1.09279e6 −1.31871 −0.659353 0.751833i \(-0.729170\pi\)
−0.659353 + 0.751833i \(0.729170\pi\)
\(234\) 0 0
\(235\) − 580969.i − 0.686251i
\(236\) 0 0
\(237\) 135803.i 0.157050i
\(238\) 0 0
\(239\) 797967. 0.903630 0.451815 0.892112i \(-0.350777\pi\)
0.451815 + 0.892112i \(0.350777\pi\)
\(240\) 0 0
\(241\) −1.61861e6 −1.79515 −0.897573 0.440865i \(-0.854672\pi\)
−0.897573 + 0.440865i \(0.854672\pi\)
\(242\) 0 0
\(243\) 833389.i 0.905383i
\(244\) 0 0
\(245\) 249817.i 0.265893i
\(246\) 0 0
\(247\) −186516. −0.194525
\(248\) 0 0
\(249\) 72313.5 0.0739130
\(250\) 0 0
\(251\) − 449688.i − 0.450533i −0.974297 0.225266i \(-0.927675\pi\)
0.974297 0.225266i \(-0.0723253\pi\)
\(252\) 0 0
\(253\) 395848.i 0.388801i
\(254\) 0 0
\(255\) 571162. 0.550058
\(256\) 0 0
\(257\) 396434. 0.374402 0.187201 0.982322i \(-0.440058\pi\)
0.187201 + 0.982322i \(0.440058\pi\)
\(258\) 0 0
\(259\) 1.74456e6i 1.61598i
\(260\) 0 0
\(261\) − 512573.i − 0.465752i
\(262\) 0 0
\(263\) −1.93423e6 −1.72432 −0.862160 0.506635i \(-0.830889\pi\)
−0.862160 + 0.506635i \(0.830889\pi\)
\(264\) 0 0
\(265\) 765849. 0.669928
\(266\) 0 0
\(267\) − 978500.i − 0.840007i
\(268\) 0 0
\(269\) − 670016.i − 0.564553i −0.959333 0.282276i \(-0.908910\pi\)
0.959333 0.282276i \(-0.0910895\pi\)
\(270\) 0 0
\(271\) −2.08940e6 −1.72822 −0.864109 0.503305i \(-0.832117\pi\)
−0.864109 + 0.503305i \(0.832117\pi\)
\(272\) 0 0
\(273\) −227246. −0.184539
\(274\) 0 0
\(275\) − 200950.i − 0.160235i
\(276\) 0 0
\(277\) 828834.i 0.649035i 0.945880 + 0.324517i \(0.105202\pi\)
−0.945880 + 0.324517i \(0.894798\pi\)
\(278\) 0 0
\(279\) 497830. 0.382887
\(280\) 0 0
\(281\) 2.39932e6 1.81268 0.906342 0.422545i \(-0.138863\pi\)
0.906342 + 0.422545i \(0.138863\pi\)
\(282\) 0 0
\(283\) − 2.00868e6i − 1.49089i −0.666568 0.745444i \(-0.732237\pi\)
0.666568 0.745444i \(-0.267763\pi\)
\(284\) 0 0
\(285\) 393553.i 0.287006i
\(286\) 0 0
\(287\) 967042. 0.693012
\(288\) 0 0
\(289\) 3.03529e6 2.13774
\(290\) 0 0
\(291\) 1.61944e6i 1.12107i
\(292\) 0 0
\(293\) 1.74203e6i 1.18546i 0.805402 + 0.592729i \(0.201950\pi\)
−0.805402 + 0.592729i \(0.798050\pi\)
\(294\) 0 0
\(295\) 631560. 0.422532
\(296\) 0 0
\(297\) −1.28362e6 −0.844393
\(298\) 0 0
\(299\) − 157893.i − 0.102137i
\(300\) 0 0
\(301\) 2.69126e6i 1.71214i
\(302\) 0 0
\(303\) −1.24283e6 −0.777688
\(304\) 0 0
\(305\) −977887. −0.601921
\(306\) 0 0
\(307\) 978690.i 0.592651i 0.955087 + 0.296326i \(0.0957614\pi\)
−0.955087 + 0.296326i \(0.904239\pi\)
\(308\) 0 0
\(309\) − 417665.i − 0.248847i
\(310\) 0 0
\(311\) 1.57652e6 0.924268 0.462134 0.886810i \(-0.347084\pi\)
0.462134 + 0.886810i \(0.347084\pi\)
\(312\) 0 0
\(313\) 1.60962e6 0.928670 0.464335 0.885660i \(-0.346293\pi\)
0.464335 + 0.885660i \(0.346293\pi\)
\(314\) 0 0
\(315\) − 515022.i − 0.292449i
\(316\) 0 0
\(317\) 1.50670e6i 0.842130i 0.907030 + 0.421065i \(0.138344\pi\)
−0.907030 + 0.421065i \(0.861656\pi\)
\(318\) 0 0
\(319\) 1.30961e6 0.720553
\(320\) 0 0
\(321\) −2.05070e6 −1.11081
\(322\) 0 0
\(323\) 3.06977e6i 1.63719i
\(324\) 0 0
\(325\) 80153.5i 0.0420934i
\(326\) 0 0
\(327\) −264026. −0.136545
\(328\) 0 0
\(329\) 3.80433e6 1.93771
\(330\) 0 0
\(331\) − 394453.i − 0.197891i −0.995093 0.0989454i \(-0.968453\pi\)
0.995093 0.0989454i \(-0.0315469\pi\)
\(332\) 0 0
\(333\) − 1.34104e6i − 0.662721i
\(334\) 0 0
\(335\) −522363. −0.254308
\(336\) 0 0
\(337\) −1.36879e6 −0.656543 −0.328272 0.944583i \(-0.606466\pi\)
−0.328272 + 0.944583i \(0.606466\pi\)
\(338\) 0 0
\(339\) − 572791.i − 0.270706i
\(340\) 0 0
\(341\) 1.27195e6i 0.592356i
\(342\) 0 0
\(343\) 1.11555e6 0.511979
\(344\) 0 0
\(345\) −333157. −0.150696
\(346\) 0 0
\(347\) 569376.i 0.253849i 0.991912 + 0.126925i \(0.0405106\pi\)
−0.991912 + 0.126925i \(0.959489\pi\)
\(348\) 0 0
\(349\) − 2.20053e6i − 0.967081i −0.875322 0.483541i \(-0.839351\pi\)
0.875322 0.483541i \(-0.160649\pi\)
\(350\) 0 0
\(351\) 511999. 0.221820
\(352\) 0 0
\(353\) −2.51557e6 −1.07448 −0.537242 0.843428i \(-0.680534\pi\)
−0.537242 + 0.843428i \(0.680534\pi\)
\(354\) 0 0
\(355\) − 347226.i − 0.146232i
\(356\) 0 0
\(357\) 3.74011e6i 1.55315i
\(358\) 0 0
\(359\) 794808. 0.325481 0.162741 0.986669i \(-0.447967\pi\)
0.162741 + 0.986669i \(0.447967\pi\)
\(360\) 0 0
\(361\) 360911. 0.145758
\(362\) 0 0
\(363\) 624282.i 0.248665i
\(364\) 0 0
\(365\) − 1.08628e6i − 0.426785i
\(366\) 0 0
\(367\) 874302. 0.338841 0.169421 0.985544i \(-0.445810\pi\)
0.169421 + 0.985544i \(0.445810\pi\)
\(368\) 0 0
\(369\) −743365. −0.284208
\(370\) 0 0
\(371\) 5.01497e6i 1.89162i
\(372\) 0 0
\(373\) − 4.86205e6i − 1.80945i −0.425994 0.904726i \(-0.640076\pi\)
0.425994 0.904726i \(-0.359924\pi\)
\(374\) 0 0
\(375\) 169125. 0.0621055
\(376\) 0 0
\(377\) −522368. −0.189288
\(378\) 0 0
\(379\) − 1.24150e6i − 0.443964i −0.975051 0.221982i \(-0.928747\pi\)
0.975051 0.221982i \(-0.0712527\pi\)
\(380\) 0 0
\(381\) − 3.17848e6i − 1.12178i
\(382\) 0 0
\(383\) 30969.9 0.0107880 0.00539402 0.999985i \(-0.498283\pi\)
0.00539402 + 0.999985i \(0.498283\pi\)
\(384\) 0 0
\(385\) 1.31587e6 0.452440
\(386\) 0 0
\(387\) − 2.06877e6i − 0.702158i
\(388\) 0 0
\(389\) 4.27860e6i 1.43360i 0.697279 + 0.716800i \(0.254394\pi\)
−0.697279 + 0.716800i \(0.745606\pi\)
\(390\) 0 0
\(391\) −2.59867e6 −0.859626
\(392\) 0 0
\(393\) −3.43920e6 −1.12325
\(394\) 0 0
\(395\) 313660.i 0.101150i
\(396\) 0 0
\(397\) − 2.31119e6i − 0.735968i −0.929832 0.367984i \(-0.880048\pi\)
0.929832 0.367984i \(-0.119952\pi\)
\(398\) 0 0
\(399\) −2.57708e6 −0.810392
\(400\) 0 0
\(401\) 996347. 0.309421 0.154710 0.987960i \(-0.450556\pi\)
0.154710 + 0.987960i \(0.450556\pi\)
\(402\) 0 0
\(403\) − 507344.i − 0.155611i
\(404\) 0 0
\(405\) − 315845.i − 0.0956834i
\(406\) 0 0
\(407\) 3.42633e6 1.02528
\(408\) 0 0
\(409\) −5.17948e6 −1.53101 −0.765505 0.643430i \(-0.777511\pi\)
−0.765505 + 0.643430i \(0.777511\pi\)
\(410\) 0 0
\(411\) − 1.75658e6i − 0.512936i
\(412\) 0 0
\(413\) 4.13561e6i 1.19306i
\(414\) 0 0
\(415\) 167021. 0.0476048
\(416\) 0 0
\(417\) 3.32037e6 0.935074
\(418\) 0 0
\(419\) 3.57698e6i 0.995363i 0.867360 + 0.497682i \(0.165815\pi\)
−0.867360 + 0.497682i \(0.834185\pi\)
\(420\) 0 0
\(421\) − 2.15848e6i − 0.593531i −0.954950 0.296765i \(-0.904092\pi\)
0.954950 0.296765i \(-0.0959080\pi\)
\(422\) 0 0
\(423\) −2.92438e6 −0.794664
\(424\) 0 0
\(425\) 1.31920e6 0.354273
\(426\) 0 0
\(427\) − 6.40344e6i − 1.69959i
\(428\) 0 0
\(429\) 446312.i 0.117084i
\(430\) 0 0
\(431\) 1.80890e6 0.469052 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(432\) 0 0
\(433\) 1.28911e6 0.330423 0.165211 0.986258i \(-0.447169\pi\)
0.165211 + 0.986258i \(0.447169\pi\)
\(434\) 0 0
\(435\) 1.10221e6i 0.279280i
\(436\) 0 0
\(437\) − 1.79058e6i − 0.448530i
\(438\) 0 0
\(439\) −1.89694e6 −0.469777 −0.234889 0.972022i \(-0.575473\pi\)
−0.234889 + 0.972022i \(0.575473\pi\)
\(440\) 0 0
\(441\) 1.25749e6 0.307898
\(442\) 0 0
\(443\) − 6.01979e6i − 1.45738i −0.684845 0.728689i \(-0.740130\pi\)
0.684845 0.728689i \(-0.259870\pi\)
\(444\) 0 0
\(445\) − 2.26002e6i − 0.541019i
\(446\) 0 0
\(447\) −3.98440e6 −0.943178
\(448\) 0 0
\(449\) −2.40081e6 −0.562007 −0.281003 0.959707i \(-0.590667\pi\)
−0.281003 + 0.959707i \(0.590667\pi\)
\(450\) 0 0
\(451\) − 1.89928e6i − 0.439691i
\(452\) 0 0
\(453\) − 3.64577e6i − 0.834726i
\(454\) 0 0
\(455\) −524864. −0.118855
\(456\) 0 0
\(457\) −858952. −0.192388 −0.0961941 0.995363i \(-0.530667\pi\)
−0.0961941 + 0.995363i \(0.530667\pi\)
\(458\) 0 0
\(459\) − 8.42671e6i − 1.86692i
\(460\) 0 0
\(461\) − 2.33481e6i − 0.511680i −0.966719 0.255840i \(-0.917648\pi\)
0.966719 0.255840i \(-0.0823521\pi\)
\(462\) 0 0
\(463\) 1.35195e6 0.293096 0.146548 0.989204i \(-0.453184\pi\)
0.146548 + 0.989204i \(0.453184\pi\)
\(464\) 0 0
\(465\) −1.07050e6 −0.229592
\(466\) 0 0
\(467\) 6.44013e6i 1.36648i 0.730195 + 0.683239i \(0.239429\pi\)
−0.730195 + 0.683239i \(0.760571\pi\)
\(468\) 0 0
\(469\) − 3.42056e6i − 0.718068i
\(470\) 0 0
\(471\) −2.93604e6 −0.609832
\(472\) 0 0
\(473\) 5.28566e6 1.08629
\(474\) 0 0
\(475\) 908980.i 0.184850i
\(476\) 0 0
\(477\) − 3.85500e6i − 0.775762i
\(478\) 0 0
\(479\) 1.85358e6 0.369124 0.184562 0.982821i \(-0.440913\pi\)
0.184562 + 0.982821i \(0.440913\pi\)
\(480\) 0 0
\(481\) −1.36667e6 −0.269339
\(482\) 0 0
\(483\) − 2.18159e6i − 0.425506i
\(484\) 0 0
\(485\) 3.74040e6i 0.722043i
\(486\) 0 0
\(487\) −2.51668e6 −0.480846 −0.240423 0.970668i \(-0.577286\pi\)
−0.240423 + 0.970668i \(0.577286\pi\)
\(488\) 0 0
\(489\) −1.31354e6 −0.248412
\(490\) 0 0
\(491\) − 5.39115e6i − 1.00920i −0.863353 0.504601i \(-0.831640\pi\)
0.863353 0.504601i \(-0.168360\pi\)
\(492\) 0 0
\(493\) 8.59736e6i 1.59312i
\(494\) 0 0
\(495\) −1.01151e6 −0.185548
\(496\) 0 0
\(497\) 2.27372e6 0.412902
\(498\) 0 0
\(499\) 3.18358e6i 0.572353i 0.958177 + 0.286177i \(0.0923844\pi\)
−0.958177 + 0.286177i \(0.907616\pi\)
\(500\) 0 0
\(501\) − 607177.i − 0.108074i
\(502\) 0 0
\(503\) 8.99291e6 1.58482 0.792410 0.609989i \(-0.208826\pi\)
0.792410 + 0.609989i \(0.208826\pi\)
\(504\) 0 0
\(505\) −2.87054e6 −0.500882
\(506\) 0 0
\(507\) 3.84086e6i 0.663603i
\(508\) 0 0
\(509\) 5.35388e6i 0.915956i 0.888964 + 0.457978i \(0.151426\pi\)
−0.888964 + 0.457978i \(0.848574\pi\)
\(510\) 0 0
\(511\) 7.11322e6 1.20508
\(512\) 0 0
\(513\) 5.80633e6 0.974111
\(514\) 0 0
\(515\) − 964672.i − 0.160273i
\(516\) 0 0
\(517\) − 7.47173e6i − 1.22941i
\(518\) 0 0
\(519\) −1.81481e6 −0.295743
\(520\) 0 0
\(521\) −2.62401e6 −0.423518 −0.211759 0.977322i \(-0.567919\pi\)
−0.211759 + 0.977322i \(0.567919\pi\)
\(522\) 0 0
\(523\) − 1.31228e6i − 0.209784i −0.994484 0.104892i \(-0.966550\pi\)
0.994484 0.104892i \(-0.0334497\pi\)
\(524\) 0 0
\(525\) 1.10747e6i 0.175362i
\(526\) 0 0
\(527\) −8.35008e6 −1.30968
\(528\) 0 0
\(529\) −4.92055e6 −0.764494
\(530\) 0 0
\(531\) − 3.17904e6i − 0.489282i
\(532\) 0 0
\(533\) 757570.i 0.115506i
\(534\) 0 0
\(535\) −4.73647e6 −0.715435
\(536\) 0 0
\(537\) 5.80081e6 0.868067
\(538\) 0 0
\(539\) 3.21285e6i 0.476342i
\(540\) 0 0
\(541\) 6.84935e6i 1.00613i 0.864247 + 0.503067i \(0.167795\pi\)
−0.864247 + 0.503067i \(0.832205\pi\)
\(542\) 0 0
\(543\) 1.22794e6 0.178722
\(544\) 0 0
\(545\) −609815. −0.0879441
\(546\) 0 0
\(547\) 6.39084e6i 0.913251i 0.889659 + 0.456625i \(0.150942\pi\)
−0.889659 + 0.456625i \(0.849058\pi\)
\(548\) 0 0
\(549\) 4.92232e6i 0.697010i
\(550\) 0 0
\(551\) −5.92391e6 −0.831246
\(552\) 0 0
\(553\) −2.05392e6 −0.285609
\(554\) 0 0
\(555\) 2.88369e6i 0.397389i
\(556\) 0 0
\(557\) 463389.i 0.0632861i 0.999499 + 0.0316430i \(0.0100740\pi\)
−0.999499 + 0.0316430i \(0.989926\pi\)
\(558\) 0 0
\(559\) −2.10830e6 −0.285367
\(560\) 0 0
\(561\) 7.34561e6 0.985418
\(562\) 0 0
\(563\) 1.07609e7i 1.43080i 0.698715 + 0.715400i \(0.253756\pi\)
−0.698715 + 0.715400i \(0.746244\pi\)
\(564\) 0 0
\(565\) − 1.32296e6i − 0.174352i
\(566\) 0 0
\(567\) 2.06823e6 0.270173
\(568\) 0 0
\(569\) −1.04253e7 −1.34992 −0.674961 0.737853i \(-0.735840\pi\)
−0.674961 + 0.737853i \(0.735840\pi\)
\(570\) 0 0
\(571\) − 1.58675e6i − 0.203666i −0.994802 0.101833i \(-0.967529\pi\)
0.994802 0.101833i \(-0.0324707\pi\)
\(572\) 0 0
\(573\) − 4.24094e6i − 0.539605i
\(574\) 0 0
\(575\) −769485. −0.0970579
\(576\) 0 0
\(577\) −2.79056e6 −0.348941 −0.174471 0.984662i \(-0.555821\pi\)
−0.174471 + 0.984662i \(0.555821\pi\)
\(578\) 0 0
\(579\) − 2.83062e6i − 0.350901i
\(580\) 0 0
\(581\) 1.09369e6i 0.134417i
\(582\) 0 0
\(583\) 9.84944e6 1.20016
\(584\) 0 0
\(585\) 403463. 0.0487432
\(586\) 0 0
\(587\) 1.94272e6i 0.232710i 0.993208 + 0.116355i \(0.0371210\pi\)
−0.993208 + 0.116355i \(0.962879\pi\)
\(588\) 0 0
\(589\) − 5.75353e6i − 0.683355i
\(590\) 0 0
\(591\) 9.73022e6 1.14592
\(592\) 0 0
\(593\) 8.14862e6 0.951584 0.475792 0.879558i \(-0.342161\pi\)
0.475792 + 0.879558i \(0.342161\pi\)
\(594\) 0 0
\(595\) 8.63845e6i 1.00033i
\(596\) 0 0
\(597\) 906179.i 0.104059i
\(598\) 0 0
\(599\) −1.49677e6 −0.170447 −0.0852234 0.996362i \(-0.527160\pi\)
−0.0852234 + 0.996362i \(0.527160\pi\)
\(600\) 0 0
\(601\) −9.04082e6 −1.02099 −0.510495 0.859881i \(-0.670538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(602\) 0 0
\(603\) 2.62938e6i 0.294483i
\(604\) 0 0
\(605\) 1.44189e6i 0.160156i
\(606\) 0 0
\(607\) 3.63200e6 0.400105 0.200052 0.979785i \(-0.435889\pi\)
0.200052 + 0.979785i \(0.435889\pi\)
\(608\) 0 0
\(609\) −7.21751e6 −0.788577
\(610\) 0 0
\(611\) 2.98027e6i 0.322962i
\(612\) 0 0
\(613\) − 1.89937e6i − 0.204154i −0.994776 0.102077i \(-0.967451\pi\)
0.994776 0.102077i \(-0.0325488\pi\)
\(614\) 0 0
\(615\) 1.59849e6 0.170420
\(616\) 0 0
\(617\) 5.96746e6 0.631069 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(618\) 0 0
\(619\) 1.46307e7i 1.53475i 0.641196 + 0.767377i \(0.278439\pi\)
−0.641196 + 0.767377i \(0.721561\pi\)
\(620\) 0 0
\(621\) 4.91527e6i 0.511468i
\(622\) 0 0
\(623\) 1.47992e7 1.52763
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 5.06141e6i 0.514165i
\(628\) 0 0
\(629\) 2.24932e7i 2.26686i
\(630\) 0 0
\(631\) 1.47747e7 1.47722 0.738609 0.674134i \(-0.235483\pi\)
0.738609 + 0.674134i \(0.235483\pi\)
\(632\) 0 0
\(633\) 5.99261e6 0.594438
\(634\) 0 0
\(635\) − 7.34126e6i − 0.722497i
\(636\) 0 0
\(637\) − 1.28152e6i − 0.125134i
\(638\) 0 0
\(639\) −1.74781e6 −0.169333
\(640\) 0 0
\(641\) 1.81017e7 1.74010 0.870050 0.492964i \(-0.164087\pi\)
0.870050 + 0.492964i \(0.164087\pi\)
\(642\) 0 0
\(643\) − 7.21849e6i − 0.688524i −0.938874 0.344262i \(-0.888129\pi\)
0.938874 0.344262i \(-0.111871\pi\)
\(644\) 0 0
\(645\) 4.44856e6i 0.421037i
\(646\) 0 0
\(647\) −2.44672e6 −0.229786 −0.114893 0.993378i \(-0.536653\pi\)
−0.114893 + 0.993378i \(0.536653\pi\)
\(648\) 0 0
\(649\) 8.12237e6 0.756957
\(650\) 0 0
\(651\) − 7.00992e6i − 0.648277i
\(652\) 0 0
\(653\) − 5.92231e6i − 0.543511i −0.962366 0.271755i \(-0.912396\pi\)
0.962366 0.271755i \(-0.0876041\pi\)
\(654\) 0 0
\(655\) −7.94346e6 −0.723446
\(656\) 0 0
\(657\) −5.46793e6 −0.494208
\(658\) 0 0
\(659\) 2.68146e6i 0.240523i 0.992742 + 0.120262i \(0.0383734\pi\)
−0.992742 + 0.120262i \(0.961627\pi\)
\(660\) 0 0
\(661\) − 1.14098e7i − 1.01572i −0.861440 0.507859i \(-0.830437\pi\)
0.861440 0.507859i \(-0.169563\pi\)
\(662\) 0 0
\(663\) −2.92996e6 −0.258868
\(664\) 0 0
\(665\) −5.95223e6 −0.521946
\(666\) 0 0
\(667\) − 5.01481e6i − 0.436456i
\(668\) 0 0
\(669\) − 3.02423e6i − 0.261246i
\(670\) 0 0
\(671\) −1.25764e7 −1.07833
\(672\) 0 0
\(673\) −5.13646e6 −0.437146 −0.218573 0.975821i \(-0.570140\pi\)
−0.218573 + 0.975821i \(0.570140\pi\)
\(674\) 0 0
\(675\) − 2.49521e6i − 0.210789i
\(676\) 0 0
\(677\) 4.91407e6i 0.412068i 0.978545 + 0.206034i \(0.0660558\pi\)
−0.978545 + 0.206034i \(0.933944\pi\)
\(678\) 0 0
\(679\) −2.44930e7 −2.03877
\(680\) 0 0
\(681\) −6.41937e6 −0.530426
\(682\) 0 0
\(683\) − 4.30841e6i − 0.353399i −0.984265 0.176700i \(-0.943458\pi\)
0.984265 0.176700i \(-0.0565421\pi\)
\(684\) 0 0
\(685\) − 4.05713e6i − 0.330364i
\(686\) 0 0
\(687\) 1.00433e7 0.811868
\(688\) 0 0
\(689\) −3.92867e6 −0.315281
\(690\) 0 0
\(691\) − 2.17672e6i − 0.173423i −0.996233 0.0867116i \(-0.972364\pi\)
0.996233 0.0867116i \(-0.0276359\pi\)
\(692\) 0 0
\(693\) − 6.62361e6i − 0.523916i
\(694\) 0 0
\(695\) 7.66898e6 0.602249
\(696\) 0 0
\(697\) 1.24684e7 0.972142
\(698\) 0 0
\(699\) − 1.18284e7i − 0.915658i
\(700\) 0 0
\(701\) − 1.31991e6i − 0.101450i −0.998713 0.0507248i \(-0.983847\pi\)
0.998713 0.0507248i \(-0.0161531\pi\)
\(702\) 0 0
\(703\) −1.54987e7 −1.18279
\(704\) 0 0
\(705\) 6.28842e6 0.476506
\(706\) 0 0
\(707\) − 1.87970e7i − 1.41429i
\(708\) 0 0
\(709\) 1.33410e7i 0.996721i 0.866970 + 0.498360i \(0.166064\pi\)
−0.866970 + 0.498360i \(0.833936\pi\)
\(710\) 0 0
\(711\) 1.57885e6 0.117130
\(712\) 0 0
\(713\) 4.87058e6 0.358803
\(714\) 0 0
\(715\) 1.03084e6i 0.0754094i
\(716\) 0 0
\(717\) 8.63721e6i 0.627445i
\(718\) 0 0
\(719\) −2.25289e7 −1.62524 −0.812620 0.582794i \(-0.801960\pi\)
−0.812620 + 0.582794i \(0.801960\pi\)
\(720\) 0 0
\(721\) 6.31691e6 0.452550
\(722\) 0 0
\(723\) − 1.75199e7i − 1.24648i
\(724\) 0 0
\(725\) 2.54574e6i 0.179874i
\(726\) 0 0
\(727\) 1.49088e7 1.04618 0.523091 0.852277i \(-0.324779\pi\)
0.523091 + 0.852277i \(0.324779\pi\)
\(728\) 0 0
\(729\) −1.20906e7 −0.842617
\(730\) 0 0
\(731\) 3.46994e7i 2.40175i
\(732\) 0 0
\(733\) 7.98329e6i 0.548810i 0.961614 + 0.274405i \(0.0884809\pi\)
−0.961614 + 0.274405i \(0.911519\pi\)
\(734\) 0 0
\(735\) −2.70402e6 −0.184626
\(736\) 0 0
\(737\) −6.71802e6 −0.455588
\(738\) 0 0
\(739\) 3.81018e6i 0.256646i 0.991732 + 0.128323i \(0.0409594\pi\)
−0.991732 + 0.128323i \(0.959041\pi\)
\(740\) 0 0
\(741\) − 2.01885e6i − 0.135070i
\(742\) 0 0
\(743\) −8.99457e6 −0.597734 −0.298867 0.954295i \(-0.596609\pi\)
−0.298867 + 0.954295i \(0.596609\pi\)
\(744\) 0 0
\(745\) −9.20268e6 −0.607468
\(746\) 0 0
\(747\) − 840722.i − 0.0551253i
\(748\) 0 0
\(749\) − 3.10156e7i − 2.02011i
\(750\) 0 0
\(751\) −1.18325e7 −0.765559 −0.382779 0.923840i \(-0.625033\pi\)
−0.382779 + 0.923840i \(0.625033\pi\)
\(752\) 0 0
\(753\) 4.86742e6 0.312832
\(754\) 0 0
\(755\) − 8.42056e6i − 0.537618i
\(756\) 0 0
\(757\) − 5.14086e6i − 0.326059i −0.986621 0.163030i \(-0.947873\pi\)
0.986621 0.163030i \(-0.0521266\pi\)
\(758\) 0 0
\(759\) −4.28467e6 −0.269968
\(760\) 0 0
\(761\) 8.21979e6 0.514516 0.257258 0.966343i \(-0.417181\pi\)
0.257258 + 0.966343i \(0.417181\pi\)
\(762\) 0 0
\(763\) − 3.99322e6i − 0.248320i
\(764\) 0 0
\(765\) − 6.64037e6i − 0.410241i
\(766\) 0 0
\(767\) −3.23979e6 −0.198851
\(768\) 0 0
\(769\) −1.11390e7 −0.679251 −0.339626 0.940561i \(-0.610300\pi\)
−0.339626 + 0.940561i \(0.610300\pi\)
\(770\) 0 0
\(771\) 4.29101e6i 0.259970i
\(772\) 0 0
\(773\) − 5.63671e6i − 0.339294i −0.985505 0.169647i \(-0.945737\pi\)
0.985505 0.169647i \(-0.0542628\pi\)
\(774\) 0 0
\(775\) −2.47252e6 −0.147872
\(776\) 0 0
\(777\) −1.88831e7 −1.12207
\(778\) 0 0
\(779\) 8.59123e6i 0.507238i
\(780\) 0 0
\(781\) − 4.46561e6i − 0.261971i
\(782\) 0 0
\(783\) 1.62615e7 0.947888
\(784\) 0 0
\(785\) −6.78132e6 −0.392771
\(786\) 0 0
\(787\) − 3.07197e7i − 1.76799i −0.467495 0.883996i \(-0.654843\pi\)
0.467495 0.883996i \(-0.345157\pi\)
\(788\) 0 0
\(789\) − 2.09361e7i − 1.19730i
\(790\) 0 0
\(791\) 8.66309e6 0.492302
\(792\) 0 0
\(793\) 5.01639e6 0.283275
\(794\) 0 0
\(795\) 8.28956e6i 0.465172i
\(796\) 0 0
\(797\) 2.22339e7i 1.23985i 0.784660 + 0.619926i \(0.212837\pi\)
−0.784660 + 0.619926i \(0.787163\pi\)
\(798\) 0 0
\(799\) 4.90505e7 2.71817
\(800\) 0 0
\(801\) −1.13761e7 −0.626488
\(802\) 0 0
\(803\) − 1.39704e7i − 0.764577i
\(804\) 0 0
\(805\) − 5.03878e6i − 0.274054i
\(806\) 0 0
\(807\) 7.25226e6 0.392003
\(808\) 0 0
\(809\) 1.51247e7 0.812484 0.406242 0.913765i \(-0.366839\pi\)
0.406242 + 0.913765i \(0.366839\pi\)
\(810\) 0 0
\(811\) − 1.35982e7i − 0.725990i −0.931791 0.362995i \(-0.881754\pi\)
0.931791 0.362995i \(-0.118246\pi\)
\(812\) 0 0
\(813\) − 2.26157e7i − 1.20001i
\(814\) 0 0
\(815\) −3.03386e6 −0.159993
\(816\) 0 0
\(817\) −2.39092e7 −1.25317
\(818\) 0 0
\(819\) 2.64197e6i 0.137632i
\(820\) 0 0
\(821\) − 2.56951e7i − 1.33043i −0.746651 0.665216i \(-0.768340\pi\)
0.746651 0.665216i \(-0.231660\pi\)
\(822\) 0 0
\(823\) −8.73184e6 −0.449372 −0.224686 0.974431i \(-0.572136\pi\)
−0.224686 + 0.974431i \(0.572136\pi\)
\(824\) 0 0
\(825\) 2.17509e6 0.111261
\(826\) 0 0
\(827\) − 1.46565e6i − 0.0745191i −0.999306 0.0372596i \(-0.988137\pi\)
0.999306 0.0372596i \(-0.0118628\pi\)
\(828\) 0 0
\(829\) − 4.49887e6i − 0.227362i −0.993517 0.113681i \(-0.963736\pi\)
0.993517 0.113681i \(-0.0362641\pi\)
\(830\) 0 0
\(831\) −8.97130e6 −0.450664
\(832\) 0 0
\(833\) −2.10918e7 −1.05317
\(834\) 0 0
\(835\) − 1.40239e6i − 0.0696067i
\(836\) 0 0
\(837\) 1.57938e7i 0.779244i
\(838\) 0 0
\(839\) 1.43801e7 0.705273 0.352636 0.935760i \(-0.385285\pi\)
0.352636 + 0.935760i \(0.385285\pi\)
\(840\) 0 0
\(841\) 3.92030e6 0.191130
\(842\) 0 0
\(843\) 2.59702e7i 1.25866i
\(844\) 0 0
\(845\) 8.87115e6i 0.427404i
\(846\) 0 0
\(847\) −9.44185e6 −0.452219
\(848\) 0 0
\(849\) 2.17420e7 1.03521
\(850\) 0 0
\(851\) − 1.31202e7i − 0.621036i
\(852\) 0 0
\(853\) − 2.62365e7i − 1.23462i −0.786720 0.617310i \(-0.788222\pi\)
0.786720 0.617310i \(-0.211778\pi\)
\(854\) 0 0
\(855\) 4.57547e6 0.214053
\(856\) 0 0
\(857\) −6.34066e6 −0.294905 −0.147453 0.989069i \(-0.547107\pi\)
−0.147453 + 0.989069i \(0.547107\pi\)
\(858\) 0 0
\(859\) 1.09488e7i 0.506273i 0.967431 + 0.253137i \(0.0814622\pi\)
−0.967431 + 0.253137i \(0.918538\pi\)
\(860\) 0 0
\(861\) 1.04673e7i 0.481200i
\(862\) 0 0
\(863\) 3.28604e6 0.150192 0.0750958 0.997176i \(-0.476074\pi\)
0.0750958 + 0.997176i \(0.476074\pi\)
\(864\) 0 0
\(865\) −4.19164e6 −0.190478
\(866\) 0 0
\(867\) 3.28540e7i 1.48436i
\(868\) 0 0
\(869\) 4.03393e6i 0.181209i
\(870\) 0 0
\(871\) 2.67963e6 0.119682
\(872\) 0 0
\(873\) 1.88278e7 0.836110
\(874\) 0 0
\(875\) 2.55791e6i 0.112944i
\(876\) 0 0
\(877\) 7.75326e6i 0.340397i 0.985410 + 0.170198i \(0.0544409\pi\)
−0.985410 + 0.170198i \(0.945559\pi\)
\(878\) 0 0
\(879\) −1.88557e7 −0.823136
\(880\) 0 0
\(881\) −449453. −0.0195094 −0.00975471 0.999952i \(-0.503105\pi\)
−0.00975471 + 0.999952i \(0.503105\pi\)
\(882\) 0 0
\(883\) 2.42001e7i 1.04452i 0.852787 + 0.522259i \(0.174911\pi\)
−0.852787 + 0.522259i \(0.825089\pi\)
\(884\) 0 0
\(885\) 6.83601e6i 0.293389i
\(886\) 0 0
\(887\) −8.80204e6 −0.375642 −0.187821 0.982203i \(-0.560143\pi\)
−0.187821 + 0.982203i \(0.560143\pi\)
\(888\) 0 0
\(889\) 4.80724e7 2.04005
\(890\) 0 0
\(891\) − 4.06203e6i − 0.171415i
\(892\) 0 0
\(893\) 3.37977e7i 1.41827i
\(894\) 0 0
\(895\) 1.33980e7 0.559091
\(896\) 0 0
\(897\) 1.70903e6 0.0709202
\(898\) 0 0
\(899\) − 1.61137e7i − 0.664959i
\(900\) 0 0
\(901\) 6.46597e7i 2.65352i
\(902\) 0 0
\(903\) −2.91302e7 −1.18884
\(904\) 0 0
\(905\) 2.83616e6 0.115109
\(906\) 0 0
\(907\) 1.35035e7i 0.545040i 0.962150 + 0.272520i \(0.0878571\pi\)
−0.962150 + 0.272520i \(0.912143\pi\)
\(908\) 0 0
\(909\) 1.44492e7i 0.580010i
\(910\) 0 0
\(911\) 1.74802e7 0.697831 0.348915 0.937154i \(-0.386550\pi\)
0.348915 + 0.937154i \(0.386550\pi\)
\(912\) 0 0
\(913\) 2.14803e6 0.0852830
\(914\) 0 0
\(915\) − 1.05847e7i − 0.417950i
\(916\) 0 0
\(917\) − 5.20157e7i − 2.04273i
\(918\) 0 0
\(919\) −3.84416e7 −1.50146 −0.750728 0.660612i \(-0.770297\pi\)
−0.750728 + 0.660612i \(0.770297\pi\)
\(920\) 0 0
\(921\) −1.05934e7 −0.411514
\(922\) 0 0
\(923\) 1.78121e6i 0.0688194i
\(924\) 0 0
\(925\) 6.66040e6i 0.255945i
\(926\) 0 0
\(927\) −4.85580e6 −0.185593
\(928\) 0 0
\(929\) −694053. −0.0263848 −0.0131924 0.999913i \(-0.504199\pi\)
−0.0131924 + 0.999913i \(0.504199\pi\)
\(930\) 0 0
\(931\) − 1.45330e7i − 0.549518i
\(932\) 0 0
\(933\) 1.70643e7i 0.641776i
\(934\) 0 0
\(935\) 1.69660e7 0.634673
\(936\) 0 0
\(937\) 4.08849e7 1.52130 0.760648 0.649165i \(-0.224881\pi\)
0.760648 + 0.649165i \(0.224881\pi\)
\(938\) 0 0
\(939\) 1.74225e7i 0.644832i
\(940\) 0 0
\(941\) − 1.21324e7i − 0.446655i −0.974743 0.223328i \(-0.928308\pi\)
0.974743 0.223328i \(-0.0716920\pi\)
\(942\) 0 0
\(943\) −7.27279e6 −0.266331
\(944\) 0 0
\(945\) 1.63392e7 0.595186
\(946\) 0 0
\(947\) − 3.38948e7i − 1.22817i −0.789241 0.614084i \(-0.789526\pi\)
0.789241 0.614084i \(-0.210474\pi\)
\(948\) 0 0
\(949\) 5.57242e6i 0.200853i
\(950\) 0 0
\(951\) −1.63086e7 −0.584742
\(952\) 0 0
\(953\) −5.18152e7 −1.84810 −0.924049 0.382274i \(-0.875141\pi\)
−0.924049 + 0.382274i \(0.875141\pi\)
\(954\) 0 0
\(955\) − 9.79521e6i − 0.347541i
\(956\) 0 0
\(957\) 1.41753e7i 0.500324i
\(958\) 0 0
\(959\) 2.65671e7 0.932819
\(960\) 0 0
\(961\) −1.29789e7 −0.453347
\(962\) 0 0
\(963\) 2.38416e7i 0.828458i
\(964\) 0 0
\(965\) − 6.53783e6i − 0.226003i
\(966\) 0 0
\(967\) 4.41440e7 1.51812 0.759058 0.651023i \(-0.225660\pi\)
0.759058 + 0.651023i \(0.225660\pi\)
\(968\) 0 0
\(969\) −3.32272e7 −1.13680
\(970\) 0 0
\(971\) 2.25369e7i 0.767091i 0.923522 + 0.383546i \(0.125297\pi\)
−0.923522 + 0.383546i \(0.874703\pi\)
\(972\) 0 0
\(973\) 5.02184e7i 1.70052i
\(974\) 0 0
\(975\) −867582. −0.0292280
\(976\) 0 0
\(977\) −508955. −0.0170586 −0.00852929 0.999964i \(-0.502715\pi\)
−0.00852929 + 0.999964i \(0.502715\pi\)
\(978\) 0 0
\(979\) − 2.90657e7i − 0.969224i
\(980\) 0 0
\(981\) 3.06958e6i 0.101837i
\(982\) 0 0
\(983\) 1.38312e7 0.456536 0.228268 0.973598i \(-0.426694\pi\)
0.228268 + 0.973598i \(0.426694\pi\)
\(984\) 0 0
\(985\) 2.24737e7 0.738046
\(986\) 0 0
\(987\) 4.11781e7i 1.34547i
\(988\) 0 0
\(989\) − 2.02400e7i − 0.657992i
\(990\) 0 0
\(991\) −1.13368e7 −0.366696 −0.183348 0.983048i \(-0.558693\pi\)
−0.183348 + 0.983048i \(0.558693\pi\)
\(992\) 0 0
\(993\) 4.26957e6 0.137408
\(994\) 0 0
\(995\) 2.09298e6i 0.0670205i
\(996\) 0 0
\(997\) 3.66390e7i 1.16736i 0.811983 + 0.583681i \(0.198388\pi\)
−0.811983 + 0.583681i \(0.801612\pi\)
\(998\) 0 0
\(999\) 4.25449e7 1.34876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.d.a.81.14 20
4.3 odd 2 40.6.d.a.21.18 yes 20
5.2 odd 4 800.6.f.c.49.13 20
5.3 odd 4 800.6.f.b.49.8 20
5.4 even 2 800.6.d.c.401.7 20
8.3 odd 2 40.6.d.a.21.17 20
8.5 even 2 inner 160.6.d.a.81.7 20
12.11 even 2 360.6.k.b.181.3 20
20.3 even 4 200.6.f.c.149.13 20
20.7 even 4 200.6.f.b.149.8 20
20.19 odd 2 200.6.d.b.101.3 20
24.11 even 2 360.6.k.b.181.4 20
40.3 even 4 200.6.f.b.149.7 20
40.13 odd 4 800.6.f.c.49.14 20
40.19 odd 2 200.6.d.b.101.4 20
40.27 even 4 200.6.f.c.149.14 20
40.29 even 2 800.6.d.c.401.14 20
40.37 odd 4 800.6.f.b.49.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.17 20 8.3 odd 2
40.6.d.a.21.18 yes 20 4.3 odd 2
160.6.d.a.81.7 20 8.5 even 2 inner
160.6.d.a.81.14 20 1.1 even 1 trivial
200.6.d.b.101.3 20 20.19 odd 2
200.6.d.b.101.4 20 40.19 odd 2
200.6.f.b.149.7 20 40.3 even 4
200.6.f.b.149.8 20 20.7 even 4
200.6.f.c.149.13 20 20.3 even 4
200.6.f.c.149.14 20 40.27 even 4
360.6.k.b.181.3 20 12.11 even 2
360.6.k.b.181.4 20 24.11 even 2
800.6.d.c.401.7 20 5.4 even 2
800.6.d.c.401.14 20 40.29 even 2
800.6.f.b.49.7 20 40.37 odd 4
800.6.f.b.49.8 20 5.3 odd 4
800.6.f.c.49.13 20 5.2 odd 4
800.6.f.c.49.14 20 40.13 odd 4