Properties

Label 160.6.d.a.81.14
Level 160160
Weight 66
Character 160.81
Analytic conductor 25.66125.661
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 6 6
Character orbit: [χ][\chi] == 160.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.661411170125.6614111701
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x202x1917x18+78x17+253x16884x15+2396x14+19376x13++1099511627776 x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 29034512 2^{90}\cdot 3^{4}\cdot 5^{12}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 81.14
Root 3.72553+1.45618i3.72553 + 1.45618i of defining polynomial
Character χ\chi == 160.81
Dual form 160.6.d.a.81.7

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+10.8240iq3+25.0000iq5163.706q7+125.841q9+321.520iq11128.246iq13270.600q152110.72q171454.37iq191771.96iq21+1231.18q23625.000q25+3992.34iq274073.19iq29+3956.03q313480.14q334092.65iq3510656.6iq37+1388.13q395907.19q4116439.6iq43+3146.02iq4523238.8q47+9992.68q4922846.5iq5130634.0iq538038.01q55+15742.1q5725262.4iq59+39115.5iq6120600.9q63+3206.14q65+20894.5iq67+13326.3iq6913889.1q7143451.2q736765.01iq7552634.8iq77+12546.4q7912633.8q816680.84iq8352768.0iq85+44088.2q8790400.9q89+20994.6iq91+42820.2iq93+36359.2q95+149616.q97+40460.4iq99+O(q100)q+10.8240i q^{3} +25.0000i q^{5} -163.706 q^{7} +125.841 q^{9} +321.520i q^{11} -128.246i q^{13} -270.600 q^{15} -2110.72 q^{17} -1454.37i q^{19} -1771.96i q^{21} +1231.18 q^{23} -625.000 q^{25} +3992.34i q^{27} -4073.19i q^{29} +3956.03 q^{31} -3480.14 q^{33} -4092.65i q^{35} -10656.6i q^{37} +1388.13 q^{39} -5907.19 q^{41} -16439.6i q^{43} +3146.02i q^{45} -23238.8 q^{47} +9992.68 q^{49} -22846.5i q^{51} -30634.0i q^{53} -8038.01 q^{55} +15742.1 q^{57} -25262.4i q^{59} +39115.5i q^{61} -20600.9 q^{63} +3206.14 q^{65} +20894.5i q^{67} +13326.3i q^{69} -13889.1 q^{71} -43451.2 q^{73} -6765.01i q^{75} -52634.8i q^{77} +12546.4 q^{79} -12633.8 q^{81} -6680.84i q^{83} -52768.0i q^{85} +44088.2 q^{87} -90400.9 q^{89} +20994.6i q^{91} +42820.2i q^{93} +36359.2 q^{95} +149616. q^{97} +40460.4i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+196q71620q9900q15+4676q2312500q257160q31+5672q33+44904q39+11608q4144180q47+18756q49+24200q55+5032q57240620q63++147376q97+O(q100) 20 q + 196 q^{7} - 1620 q^{9} - 900 q^{15} + 4676 q^{23} - 12500 q^{25} - 7160 q^{31} + 5672 q^{33} + 44904 q^{39} + 11608 q^{41} - 44180 q^{47} + 18756 q^{49} + 24200 q^{55} + 5032 q^{57} - 240620 q^{63}+ \cdots + 147376 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 10.8240i 0.694361i 0.937798 + 0.347180i 0.112861π0.112861\pi
−0.937798 + 0.347180i 0.887139π0.887139\pi
44 0 0
55 25.0000i 0.447214i
66 0 0
77 −163.706 −1.26276 −0.631378 0.775475i 0.717510π-0.717510\pi
−0.631378 + 0.775475i 0.717510π0.717510\pi
88 0 0
99 125.841 0.517863
1010 0 0
1111 321.520i 0.801174i 0.916259 + 0.400587i 0.131194π0.131194\pi
−0.916259 + 0.400587i 0.868806π0.868806\pi
1212 0 0
1313 − 128.246i − 0.210467i −0.994448 0.105233i 0.966441π-0.966441\pi
0.994448 0.105233i 0.0335590π-0.0335590\pi
1414 0 0
1515 −270.600 −0.310528
1616 0 0
1717 −2110.72 −1.77137 −0.885683 0.464290i 0.846310π-0.846310\pi
−0.885683 + 0.464290i 0.846310π0.846310\pi
1818 0 0
1919 − 1454.37i − 0.924252i −0.886814 0.462126i 0.847087π-0.847087\pi
0.886814 0.462126i 0.152913π-0.152913\pi
2020 0 0
2121 − 1771.96i − 0.876809i
2222 0 0
2323 1231.18 0.485289 0.242645 0.970115i 0.421985π-0.421985\pi
0.242645 + 0.970115i 0.421985π0.421985\pi
2424 0 0
2525 −625.000 −0.200000
2626 0 0
2727 3992.34i 1.05394i
2828 0 0
2929 − 4073.19i − 0.899372i −0.893187 0.449686i 0.851536π-0.851536\pi
0.893187 0.449686i 0.148464π-0.148464\pi
3030 0 0
3131 3956.03 0.739360 0.369680 0.929159i 0.379467π-0.379467\pi
0.369680 + 0.929159i 0.379467π0.379467\pi
3232 0 0
3333 −3480.14 −0.556304
3434 0 0
3535 − 4092.65i − 0.564722i
3636 0 0
3737 − 10656.6i − 1.27972i −0.768490 0.639861i 0.778992π-0.778992\pi
0.768490 0.639861i 0.221008π-0.221008\pi
3838 0 0
3939 1388.13 0.146140
4040 0 0
4141 −5907.19 −0.548809 −0.274404 0.961614i 0.588481π-0.588481\pi
−0.274404 + 0.961614i 0.588481π0.588481\pi
4242 0 0
4343 − 16439.6i − 1.35588i −0.735119 0.677938i 0.762874π-0.762874\pi
0.735119 0.677938i 0.237126π-0.237126\pi
4444 0 0
4545 3146.02i 0.231595i
4646 0 0
4747 −23238.8 −1.53450 −0.767252 0.641345i 0.778377π-0.778377\pi
−0.767252 + 0.641345i 0.778377π0.778377\pi
4848 0 0
4949 9992.68 0.594555
5050 0 0
5151 − 22846.5i − 1.22997i
5252 0 0
5353 − 30634.0i − 1.49801i −0.662567 0.749003i 0.730533π-0.730533\pi
0.662567 0.749003i 0.269467π-0.269467\pi
5454 0 0
5555 −8038.01 −0.358296
5656 0 0
5757 15742.1 0.641764
5858 0 0
5959 − 25262.4i − 0.944810i −0.881382 0.472405i 0.843386π-0.843386\pi
0.881382 0.472405i 0.156614π-0.156614\pi
6060 0 0
6161 39115.5i 1.34594i 0.739672 + 0.672968i 0.234981π0.234981\pi
−0.739672 + 0.672968i 0.765019π0.765019\pi
6262 0 0
6363 −20600.9 −0.653935
6464 0 0
6565 3206.14 0.0941237
6666 0 0
6767 20894.5i 0.568651i 0.958728 + 0.284325i 0.0917696π0.0917696\pi
−0.958728 + 0.284325i 0.908230π0.908230\pi
6868 0 0
6969 13326.3i 0.336966i
7070 0 0
7171 −13889.1 −0.326984 −0.163492 0.986545i 0.552276π-0.552276\pi
−0.163492 + 0.986545i 0.552276π0.552276\pi
7272 0 0
7373 −43451.2 −0.954321 −0.477161 0.878816i 0.658334π-0.658334\pi
−0.477161 + 0.878816i 0.658334π0.658334\pi
7474 0 0
7575 − 6765.01i − 0.138872i
7676 0 0
7777 − 52634.8i − 1.01169i
7878 0 0
7979 12546.4 0.226179 0.113089 0.993585i 0.463925π-0.463925\pi
0.113089 + 0.993585i 0.463925π0.463925\pi
8080 0 0
8181 −12633.8 −0.213955
8282 0 0
8383 − 6680.84i − 0.106448i −0.998583 0.0532238i 0.983050π-0.983050\pi
0.998583 0.0532238i 0.0169497π-0.0169497\pi
8484 0 0
8585 − 52768.0i − 0.792179i
8686 0 0
8787 44088.2 0.624488
8888 0 0
8989 −90400.9 −1.20976 −0.604878 0.796318i 0.706778π-0.706778\pi
−0.604878 + 0.796318i 0.706778π0.706778\pi
9090 0 0
9191 20994.6i 0.265769i
9292 0 0
9393 42820.2i 0.513382i
9494 0 0
9595 36359.2 0.413338
9696 0 0
9797 149616. 1.61454 0.807269 0.590184i 0.200945π-0.200945\pi
0.807269 + 0.590184i 0.200945π0.200945\pi
9898 0 0
9999 40460.4i 0.414898i
100100 0 0
101101 114822.i 1.12001i 0.828491 + 0.560003i 0.189200π0.189200\pi
−0.828491 + 0.560003i 0.810800π0.810800\pi
102102 0 0
103103 −38586.9 −0.358382 −0.179191 0.983814i 0.557348π-0.557348\pi
−0.179191 + 0.983814i 0.557348π0.557348\pi
104104 0 0
105105 44298.9 0.392121
106106 0 0
107107 189459.i 1.59976i 0.600158 + 0.799881i 0.295104π0.295104\pi
−0.600158 + 0.799881i 0.704896π0.704896\pi
108108 0 0
109109 24392.6i 0.196649i 0.995154 + 0.0983245i 0.0313483π0.0313483\pi
−0.995154 + 0.0983245i 0.968652π0.968652\pi
110110 0 0
111111 115348. 0.888589
112112 0 0
113113 −52918.6 −0.389863 −0.194932 0.980817i 0.562448π-0.562448\pi
−0.194932 + 0.980817i 0.562448π0.562448\pi
114114 0 0
115115 30779.4i 0.217028i
116116 0 0
117117 − 16138.5i − 0.108993i
118118 0 0
119119 345538. 2.23681
120120 0 0
121121 57675.7 0.358120
122122 0 0
123123 − 63939.5i − 0.381071i
124124 0 0
125125 − 15625.0i − 0.0894427i
126126 0 0
127127 −293650. −1.61555 −0.807777 0.589489i 0.799329π-0.799329\pi
−0.807777 + 0.589489i 0.799329π0.799329\pi
128128 0 0
129129 177942. 0.941467
130130 0 0
131131 317738.i 1.61767i 0.588032 + 0.808837i 0.299903π0.299903\pi
−0.588032 + 0.808837i 0.700097π0.700097\pi
132132 0 0
133133 238089.i 1.16711i
134134 0 0
135135 −99808.4 −0.471338
136136 0 0
137137 −162285. −0.738717 −0.369358 0.929287i 0.620423π-0.620423\pi
−0.369358 + 0.929287i 0.620423π0.620423\pi
138138 0 0
139139 − 306759.i − 1.34667i −0.739338 0.673334i 0.764861π-0.764861\pi
0.739338 0.673334i 0.235139π-0.235139\pi
140140 0 0
141141 − 251537.i − 1.06550i
142142 0 0
143143 41233.5 0.168621
144144 0 0
145145 101830. 0.402211
146146 0 0
147147 108161.i 0.412835i
148148 0 0
149149 368107.i 1.35834i 0.733981 + 0.679170i 0.237660π0.237660\pi
−0.733981 + 0.679170i 0.762340π0.762340\pi
150150 0 0
151151 −336822. −1.20215 −0.601075 0.799193i 0.705261π-0.705261\pi
−0.601075 + 0.799193i 0.705261π0.705261\pi
152152 0 0
153153 −265615. −0.917326
154154 0 0
155155 98900.9i 0.330652i
156156 0 0
157157 271253.i 0.878264i 0.898423 + 0.439132i 0.144714π0.144714\pi
−0.898423 + 0.439132i 0.855286π0.855286\pi
158158 0 0
159159 331582. 1.04016
160160 0 0
161161 −201551. −0.612802
162162 0 0
163163 121354.i 0.357756i 0.983871 + 0.178878i 0.0572467π0.0572467\pi
−0.983871 + 0.178878i 0.942753π0.942753\pi
164164 0 0
165165 − 87003.5i − 0.248787i
166166 0 0
167167 −56095.4 −0.155645 −0.0778227 0.996967i 0.524797π-0.524797\pi
−0.0778227 + 0.996967i 0.524797π0.524797\pi
168168 0 0
169169 354846. 0.955704
170170 0 0
171171 − 183019.i − 0.478636i
172172 0 0
173173 167666.i 0.425921i 0.977061 + 0.212960i 0.0683105π0.0683105\pi
−0.977061 + 0.212960i 0.931689π0.931689\pi
174174 0 0
175175 102316. 0.252551
176176 0 0
177177 273440. 0.656039
178178 0 0
179179 − 535921.i − 1.25017i −0.780558 0.625083i 0.785065π-0.785065\pi
0.780558 0.625083i 0.214935π-0.214935\pi
180180 0 0
181181 − 113446.i − 0.257391i −0.991684 0.128696i 0.958921π-0.958921\pi
0.991684 0.128696i 0.0410790π-0.0410790\pi
182182 0 0
183183 −423387. −0.934565
184184 0 0
185185 266416. 0.572309
186186 0 0
187187 − 678640.i − 1.41917i
188188 0 0
189189 − 653570.i − 1.33088i
190190 0 0
191191 −391808. −0.777124 −0.388562 0.921423i 0.627028π-0.627028\pi
−0.388562 + 0.921423i 0.627028π0.627028\pi
192192 0 0
193193 −261513. −0.505359 −0.252680 0.967550i 0.581312π-0.581312\pi
−0.252680 + 0.967550i 0.581312π0.581312\pi
194194 0 0
195195 34703.3i 0.0653558i
196196 0 0
197197 − 898947.i − 1.65032i −0.564898 0.825161i 0.691084π-0.691084\pi
0.564898 0.825161i 0.308916π-0.308916\pi
198198 0 0
199199 83719.3 0.149862 0.0749312 0.997189i 0.476126π-0.476126\pi
0.0749312 + 0.997189i 0.476126π0.476126\pi
200200 0 0
201201 −226163. −0.394849
202202 0 0
203203 666805.i 1.13569i
204204 0 0
205205 − 147680.i − 0.245435i
206206 0 0
207207 154932. 0.251313
208208 0 0
209209 467609. 0.740487
210210 0 0
211211 − 553641.i − 0.856095i −0.903756 0.428047i 0.859202π-0.859202\pi
0.903756 0.428047i 0.140798π-0.140798\pi
212212 0 0
213213 − 150335.i − 0.227045i
214214 0 0
215215 410990. 0.606366
216216 0 0
217217 −647627. −0.933632
218218 0 0
219219 − 470316.i − 0.662643i
220220 0 0
221221 270691.i 0.372814i
222222 0 0
223223 −279400. −0.376239 −0.188120 0.982146i 0.560239π-0.560239\pi
−0.188120 + 0.982146i 0.560239π0.560239\pi
224224 0 0
225225 −78650.5 −0.103573
226226 0 0
227227 593068.i 0.763905i 0.924182 + 0.381953i 0.124748π0.124748\pi
−0.924182 + 0.381953i 0.875252π0.875252\pi
228228 0 0
229229 − 927873.i − 1.16923i −0.811311 0.584615i 0.801246π-0.801246\pi
0.811311 0.584615i 0.198754π-0.198754\pi
230230 0 0
231231 569720. 0.702476
232232 0 0
233233 −1.09279e6 −1.31871 −0.659353 0.751833i 0.729170π-0.729170\pi
−0.659353 + 0.751833i 0.729170π0.729170\pi
234234 0 0
235235 − 580969.i − 0.686251i
236236 0 0
237237 135803.i 0.157050i
238238 0 0
239239 797967. 0.903630 0.451815 0.892112i 0.350777π-0.350777\pi
0.451815 + 0.892112i 0.350777π0.350777\pi
240240 0 0
241241 −1.61861e6 −1.79515 −0.897573 0.440865i 0.854672π-0.854672\pi
−0.897573 + 0.440865i 0.854672π0.854672\pi
242242 0 0
243243 833389.i 0.905383i
244244 0 0
245245 249817.i 0.265893i
246246 0 0
247247 −186516. −0.194525
248248 0 0
249249 72313.5 0.0739130
250250 0 0
251251 − 449688.i − 0.450533i −0.974297 0.225266i 0.927675π-0.927675\pi
0.974297 0.225266i 0.0723253π-0.0723253\pi
252252 0 0
253253 395848.i 0.388801i
254254 0 0
255255 571162. 0.550058
256256 0 0
257257 396434. 0.374402 0.187201 0.982322i 0.440058π-0.440058\pi
0.187201 + 0.982322i 0.440058π0.440058\pi
258258 0 0
259259 1.74456e6i 1.61598i
260260 0 0
261261 − 512573.i − 0.465752i
262262 0 0
263263 −1.93423e6 −1.72432 −0.862160 0.506635i 0.830889π-0.830889\pi
−0.862160 + 0.506635i 0.830889π0.830889\pi
264264 0 0
265265 765849. 0.669928
266266 0 0
267267 − 978500.i − 0.840007i
268268 0 0
269269 − 670016.i − 0.564553i −0.959333 0.282276i 0.908910π-0.908910\pi
0.959333 0.282276i 0.0910895π-0.0910895\pi
270270 0 0
271271 −2.08940e6 −1.72822 −0.864109 0.503305i 0.832117π-0.832117\pi
−0.864109 + 0.503305i 0.832117π0.832117\pi
272272 0 0
273273 −227246. −0.184539
274274 0 0
275275 − 200950.i − 0.160235i
276276 0 0
277277 828834.i 0.649035i 0.945880 + 0.324517i 0.105202π0.105202\pi
−0.945880 + 0.324517i 0.894798π0.894798\pi
278278 0 0
279279 497830. 0.382887
280280 0 0
281281 2.39932e6 1.81268 0.906342 0.422545i 0.138863π-0.138863\pi
0.906342 + 0.422545i 0.138863π0.138863\pi
282282 0 0
283283 − 2.00868e6i − 1.49089i −0.666568 0.745444i 0.732237π-0.732237\pi
0.666568 0.745444i 0.267763π-0.267763\pi
284284 0 0
285285 393553.i 0.287006i
286286 0 0
287287 967042. 0.693012
288288 0 0
289289 3.03529e6 2.13774
290290 0 0
291291 1.61944e6i 1.12107i
292292 0 0
293293 1.74203e6i 1.18546i 0.805402 + 0.592729i 0.201950π0.201950\pi
−0.805402 + 0.592729i 0.798050π0.798050\pi
294294 0 0
295295 631560. 0.422532
296296 0 0
297297 −1.28362e6 −0.844393
298298 0 0
299299 − 157893.i − 0.102137i
300300 0 0
301301 2.69126e6i 1.71214i
302302 0 0
303303 −1.24283e6 −0.777688
304304 0 0
305305 −977887. −0.601921
306306 0 0
307307 978690.i 0.592651i 0.955087 + 0.296326i 0.0957614π0.0957614\pi
−0.955087 + 0.296326i 0.904239π0.904239\pi
308308 0 0
309309 − 417665.i − 0.248847i
310310 0 0
311311 1.57652e6 0.924268 0.462134 0.886810i 0.347084π-0.347084\pi
0.462134 + 0.886810i 0.347084π0.347084\pi
312312 0 0
313313 1.60962e6 0.928670 0.464335 0.885660i 0.346293π-0.346293\pi
0.464335 + 0.885660i 0.346293π0.346293\pi
314314 0 0
315315 − 515022.i − 0.292449i
316316 0 0
317317 1.50670e6i 0.842130i 0.907030 + 0.421065i 0.138344π0.138344\pi
−0.907030 + 0.421065i 0.861656π0.861656\pi
318318 0 0
319319 1.30961e6 0.720553
320320 0 0
321321 −2.05070e6 −1.11081
322322 0 0
323323 3.06977e6i 1.63719i
324324 0 0
325325 80153.5i 0.0420934i
326326 0 0
327327 −264026. −0.136545
328328 0 0
329329 3.80433e6 1.93771
330330 0 0
331331 − 394453.i − 0.197891i −0.995093 0.0989454i 0.968453π-0.968453\pi
0.995093 0.0989454i 0.0315469π-0.0315469\pi
332332 0 0
333333 − 1.34104e6i − 0.662721i
334334 0 0
335335 −522363. −0.254308
336336 0 0
337337 −1.36879e6 −0.656543 −0.328272 0.944583i 0.606466π-0.606466\pi
−0.328272 + 0.944583i 0.606466π0.606466\pi
338338 0 0
339339 − 572791.i − 0.270706i
340340 0 0
341341 1.27195e6i 0.592356i
342342 0 0
343343 1.11555e6 0.511979
344344 0 0
345345 −333157. −0.150696
346346 0 0
347347 569376.i 0.253849i 0.991912 + 0.126925i 0.0405106π0.0405106\pi
−0.991912 + 0.126925i 0.959489π0.959489\pi
348348 0 0
349349 − 2.20053e6i − 0.967081i −0.875322 0.483541i 0.839351π-0.839351\pi
0.875322 0.483541i 0.160649π-0.160649\pi
350350 0 0
351351 511999. 0.221820
352352 0 0
353353 −2.51557e6 −1.07448 −0.537242 0.843428i 0.680534π-0.680534\pi
−0.537242 + 0.843428i 0.680534π0.680534\pi
354354 0 0
355355 − 347226.i − 0.146232i
356356 0 0
357357 3.74011e6i 1.55315i
358358 0 0
359359 794808. 0.325481 0.162741 0.986669i 0.447967π-0.447967\pi
0.162741 + 0.986669i 0.447967π0.447967\pi
360360 0 0
361361 360911. 0.145758
362362 0 0
363363 624282.i 0.248665i
364364 0 0
365365 − 1.08628e6i − 0.426785i
366366 0 0
367367 874302. 0.338841 0.169421 0.985544i 0.445810π-0.445810\pi
0.169421 + 0.985544i 0.445810π0.445810\pi
368368 0 0
369369 −743365. −0.284208
370370 0 0
371371 5.01497e6i 1.89162i
372372 0 0
373373 − 4.86205e6i − 1.80945i −0.425994 0.904726i 0.640076π-0.640076\pi
0.425994 0.904726i 0.359924π-0.359924\pi
374374 0 0
375375 169125. 0.0621055
376376 0 0
377377 −522368. −0.189288
378378 0 0
379379 − 1.24150e6i − 0.443964i −0.975051 0.221982i 0.928747π-0.928747\pi
0.975051 0.221982i 0.0712527π-0.0712527\pi
380380 0 0
381381 − 3.17848e6i − 1.12178i
382382 0 0
383383 30969.9 0.0107880 0.00539402 0.999985i 0.498283π-0.498283\pi
0.00539402 + 0.999985i 0.498283π0.498283\pi
384384 0 0
385385 1.31587e6 0.452440
386386 0 0
387387 − 2.06877e6i − 0.702158i
388388 0 0
389389 4.27860e6i 1.43360i 0.697279 + 0.716800i 0.254394π0.254394\pi
−0.697279 + 0.716800i 0.745606π0.745606\pi
390390 0 0
391391 −2.59867e6 −0.859626
392392 0 0
393393 −3.43920e6 −1.12325
394394 0 0
395395 313660.i 0.101150i
396396 0 0
397397 − 2.31119e6i − 0.735968i −0.929832 0.367984i 0.880048π-0.880048\pi
0.929832 0.367984i 0.119952π-0.119952\pi
398398 0 0
399399 −2.57708e6 −0.810392
400400 0 0
401401 996347. 0.309421 0.154710 0.987960i 0.450556π-0.450556\pi
0.154710 + 0.987960i 0.450556π0.450556\pi
402402 0 0
403403 − 507344.i − 0.155611i
404404 0 0
405405 − 315845.i − 0.0956834i
406406 0 0
407407 3.42633e6 1.02528
408408 0 0
409409 −5.17948e6 −1.53101 −0.765505 0.643430i 0.777511π-0.777511\pi
−0.765505 + 0.643430i 0.777511π0.777511\pi
410410 0 0
411411 − 1.75658e6i − 0.512936i
412412 0 0
413413 4.13561e6i 1.19306i
414414 0 0
415415 167021. 0.0476048
416416 0 0
417417 3.32037e6 0.935074
418418 0 0
419419 3.57698e6i 0.995363i 0.867360 + 0.497682i 0.165815π0.165815\pi
−0.867360 + 0.497682i 0.834185π0.834185\pi
420420 0 0
421421 − 2.15848e6i − 0.593531i −0.954950 0.296765i 0.904092π-0.904092\pi
0.954950 0.296765i 0.0959080π-0.0959080\pi
422422 0 0
423423 −2.92438e6 −0.794664
424424 0 0
425425 1.31920e6 0.354273
426426 0 0
427427 − 6.40344e6i − 1.69959i
428428 0 0
429429 446312.i 0.117084i
430430 0 0
431431 1.80890e6 0.469052 0.234526 0.972110i 0.424646π-0.424646\pi
0.234526 + 0.972110i 0.424646π0.424646\pi
432432 0 0
433433 1.28911e6 0.330423 0.165211 0.986258i 0.447169π-0.447169\pi
0.165211 + 0.986258i 0.447169π0.447169\pi
434434 0 0
435435 1.10221e6i 0.279280i
436436 0 0
437437 − 1.79058e6i − 0.448530i
438438 0 0
439439 −1.89694e6 −0.469777 −0.234889 0.972022i 0.575473π-0.575473\pi
−0.234889 + 0.972022i 0.575473π0.575473\pi
440440 0 0
441441 1.25749e6 0.307898
442442 0 0
443443 − 6.01979e6i − 1.45738i −0.684845 0.728689i 0.740130π-0.740130\pi
0.684845 0.728689i 0.259870π-0.259870\pi
444444 0 0
445445 − 2.26002e6i − 0.541019i
446446 0 0
447447 −3.98440e6 −0.943178
448448 0 0
449449 −2.40081e6 −0.562007 −0.281003 0.959707i 0.590667π-0.590667\pi
−0.281003 + 0.959707i 0.590667π0.590667\pi
450450 0 0
451451 − 1.89928e6i − 0.439691i
452452 0 0
453453 − 3.64577e6i − 0.834726i
454454 0 0
455455 −524864. −0.118855
456456 0 0
457457 −858952. −0.192388 −0.0961941 0.995363i 0.530667π-0.530667\pi
−0.0961941 + 0.995363i 0.530667π0.530667\pi
458458 0 0
459459 − 8.42671e6i − 1.86692i
460460 0 0
461461 − 2.33481e6i − 0.511680i −0.966719 0.255840i 0.917648π-0.917648\pi
0.966719 0.255840i 0.0823521π-0.0823521\pi
462462 0 0
463463 1.35195e6 0.293096 0.146548 0.989204i 0.453184π-0.453184\pi
0.146548 + 0.989204i 0.453184π0.453184\pi
464464 0 0
465465 −1.07050e6 −0.229592
466466 0 0
467467 6.44013e6i 1.36648i 0.730195 + 0.683239i 0.239429π0.239429\pi
−0.730195 + 0.683239i 0.760571π0.760571\pi
468468 0 0
469469 − 3.42056e6i − 0.718068i
470470 0 0
471471 −2.93604e6 −0.609832
472472 0 0
473473 5.28566e6 1.08629
474474 0 0
475475 908980.i 0.184850i
476476 0 0
477477 − 3.85500e6i − 0.775762i
478478 0 0
479479 1.85358e6 0.369124 0.184562 0.982821i 0.440913π-0.440913\pi
0.184562 + 0.982821i 0.440913π0.440913\pi
480480 0 0
481481 −1.36667e6 −0.269339
482482 0 0
483483 − 2.18159e6i − 0.425506i
484484 0 0
485485 3.74040e6i 0.722043i
486486 0 0
487487 −2.51668e6 −0.480846 −0.240423 0.970668i 0.577286π-0.577286\pi
−0.240423 + 0.970668i 0.577286π0.577286\pi
488488 0 0
489489 −1.31354e6 −0.248412
490490 0 0
491491 − 5.39115e6i − 1.00920i −0.863353 0.504601i 0.831640π-0.831640\pi
0.863353 0.504601i 0.168360π-0.168360\pi
492492 0 0
493493 8.59736e6i 1.59312i
494494 0 0
495495 −1.01151e6 −0.185548
496496 0 0
497497 2.27372e6 0.412902
498498 0 0
499499 3.18358e6i 0.572353i 0.958177 + 0.286177i 0.0923844π0.0923844\pi
−0.958177 + 0.286177i 0.907616π0.907616\pi
500500 0 0
501501 − 607177.i − 0.108074i
502502 0 0
503503 8.99291e6 1.58482 0.792410 0.609989i 0.208826π-0.208826\pi
0.792410 + 0.609989i 0.208826π0.208826\pi
504504 0 0
505505 −2.87054e6 −0.500882
506506 0 0
507507 3.84086e6i 0.663603i
508508 0 0
509509 5.35388e6i 0.915956i 0.888964 + 0.457978i 0.151426π0.151426\pi
−0.888964 + 0.457978i 0.848574π0.848574\pi
510510 0 0
511511 7.11322e6 1.20508
512512 0 0
513513 5.80633e6 0.974111
514514 0 0
515515 − 964672.i − 0.160273i
516516 0 0
517517 − 7.47173e6i − 1.22941i
518518 0 0
519519 −1.81481e6 −0.295743
520520 0 0
521521 −2.62401e6 −0.423518 −0.211759 0.977322i 0.567919π-0.567919\pi
−0.211759 + 0.977322i 0.567919π0.567919\pi
522522 0 0
523523 − 1.31228e6i − 0.209784i −0.994484 0.104892i 0.966550π-0.966550\pi
0.994484 0.104892i 0.0334497π-0.0334497\pi
524524 0 0
525525 1.10747e6i 0.175362i
526526 0 0
527527 −8.35008e6 −1.30968
528528 0 0
529529 −4.92055e6 −0.764494
530530 0 0
531531 − 3.17904e6i − 0.489282i
532532 0 0
533533 757570.i 0.115506i
534534 0 0
535535 −4.73647e6 −0.715435
536536 0 0
537537 5.80081e6 0.868067
538538 0 0
539539 3.21285e6i 0.476342i
540540 0 0
541541 6.84935e6i 1.00613i 0.864247 + 0.503067i 0.167795π0.167795\pi
−0.864247 + 0.503067i 0.832205π0.832205\pi
542542 0 0
543543 1.22794e6 0.178722
544544 0 0
545545 −609815. −0.0879441
546546 0 0
547547 6.39084e6i 0.913251i 0.889659 + 0.456625i 0.150942π0.150942\pi
−0.889659 + 0.456625i 0.849058π0.849058\pi
548548 0 0
549549 4.92232e6i 0.697010i
550550 0 0
551551 −5.92391e6 −0.831246
552552 0 0
553553 −2.05392e6 −0.285609
554554 0 0
555555 2.88369e6i 0.397389i
556556 0 0
557557 463389.i 0.0632861i 0.999499 + 0.0316430i 0.0100740π0.0100740\pi
−0.999499 + 0.0316430i 0.989926π0.989926\pi
558558 0 0
559559 −2.10830e6 −0.285367
560560 0 0
561561 7.34561e6 0.985418
562562 0 0
563563 1.07609e7i 1.43080i 0.698715 + 0.715400i 0.253756π0.253756\pi
−0.698715 + 0.715400i 0.746244π0.746244\pi
564564 0 0
565565 − 1.32296e6i − 0.174352i
566566 0 0
567567 2.06823e6 0.270173
568568 0 0
569569 −1.04253e7 −1.34992 −0.674961 0.737853i 0.735840π-0.735840\pi
−0.674961 + 0.737853i 0.735840π0.735840\pi
570570 0 0
571571 − 1.58675e6i − 0.203666i −0.994802 0.101833i 0.967529π-0.967529\pi
0.994802 0.101833i 0.0324707π-0.0324707\pi
572572 0 0
573573 − 4.24094e6i − 0.539605i
574574 0 0
575575 −769485. −0.0970579
576576 0 0
577577 −2.79056e6 −0.348941 −0.174471 0.984662i 0.555821π-0.555821\pi
−0.174471 + 0.984662i 0.555821π0.555821\pi
578578 0 0
579579 − 2.83062e6i − 0.350901i
580580 0 0
581581 1.09369e6i 0.134417i
582582 0 0
583583 9.84944e6 1.20016
584584 0 0
585585 403463. 0.0487432
586586 0 0
587587 1.94272e6i 0.232710i 0.993208 + 0.116355i 0.0371210π0.0371210\pi
−0.993208 + 0.116355i 0.962879π0.962879\pi
588588 0 0
589589 − 5.75353e6i − 0.683355i
590590 0 0
591591 9.73022e6 1.14592
592592 0 0
593593 8.14862e6 0.951584 0.475792 0.879558i 0.342161π-0.342161\pi
0.475792 + 0.879558i 0.342161π0.342161\pi
594594 0 0
595595 8.63845e6i 1.00033i
596596 0 0
597597 906179.i 0.104059i
598598 0 0
599599 −1.49677e6 −0.170447 −0.0852234 0.996362i 0.527160π-0.527160\pi
−0.0852234 + 0.996362i 0.527160π0.527160\pi
600600 0 0
601601 −9.04082e6 −1.02099 −0.510495 0.859881i 0.670538π-0.670538\pi
−0.510495 + 0.859881i 0.670538π0.670538\pi
602602 0 0
603603 2.62938e6i 0.294483i
604604 0 0
605605 1.44189e6i 0.160156i
606606 0 0
607607 3.63200e6 0.400105 0.200052 0.979785i 0.435889π-0.435889\pi
0.200052 + 0.979785i 0.435889π0.435889\pi
608608 0 0
609609 −7.21751e6 −0.788577
610610 0 0
611611 2.98027e6i 0.322962i
612612 0 0
613613 − 1.89937e6i − 0.204154i −0.994776 0.102077i 0.967451π-0.967451\pi
0.994776 0.102077i 0.0325488π-0.0325488\pi
614614 0 0
615615 1.59849e6 0.170420
616616 0 0
617617 5.96746e6 0.631069 0.315534 0.948914i 0.397816π-0.397816\pi
0.315534 + 0.948914i 0.397816π0.397816\pi
618618 0 0
619619 1.46307e7i 1.53475i 0.641196 + 0.767377i 0.278439π0.278439\pi
−0.641196 + 0.767377i 0.721561π0.721561\pi
620620 0 0
621621 4.91527e6i 0.511468i
622622 0 0
623623 1.47992e7 1.52763
624624 0 0
625625 390625. 0.0400000
626626 0 0
627627 5.06141e6i 0.514165i
628628 0 0
629629 2.24932e7i 2.26686i
630630 0 0
631631 1.47747e7 1.47722 0.738609 0.674134i 0.235483π-0.235483\pi
0.738609 + 0.674134i 0.235483π0.235483\pi
632632 0 0
633633 5.99261e6 0.594438
634634 0 0
635635 − 7.34126e6i − 0.722497i
636636 0 0
637637 − 1.28152e6i − 0.125134i
638638 0 0
639639 −1.74781e6 −0.169333
640640 0 0
641641 1.81017e7 1.74010 0.870050 0.492964i 0.164087π-0.164087\pi
0.870050 + 0.492964i 0.164087π0.164087\pi
642642 0 0
643643 − 7.21849e6i − 0.688524i −0.938874 0.344262i 0.888129π-0.888129\pi
0.938874 0.344262i 0.111871π-0.111871\pi
644644 0 0
645645 4.44856e6i 0.421037i
646646 0 0
647647 −2.44672e6 −0.229786 −0.114893 0.993378i 0.536653π-0.536653\pi
−0.114893 + 0.993378i 0.536653π0.536653\pi
648648 0 0
649649 8.12237e6 0.756957
650650 0 0
651651 − 7.00992e6i − 0.648277i
652652 0 0
653653 − 5.92231e6i − 0.543511i −0.962366 0.271755i 0.912396π-0.912396\pi
0.962366 0.271755i 0.0876041π-0.0876041\pi
654654 0 0
655655 −7.94346e6 −0.723446
656656 0 0
657657 −5.46793e6 −0.494208
658658 0 0
659659 2.68146e6i 0.240523i 0.992742 + 0.120262i 0.0383734π0.0383734\pi
−0.992742 + 0.120262i 0.961627π0.961627\pi
660660 0 0
661661 − 1.14098e7i − 1.01572i −0.861440 0.507859i 0.830437π-0.830437\pi
0.861440 0.507859i 0.169563π-0.169563\pi
662662 0 0
663663 −2.92996e6 −0.258868
664664 0 0
665665 −5.95223e6 −0.521946
666666 0 0
667667 − 5.01481e6i − 0.436456i
668668 0 0
669669 − 3.02423e6i − 0.261246i
670670 0 0
671671 −1.25764e7 −1.07833
672672 0 0
673673 −5.13646e6 −0.437146 −0.218573 0.975821i 0.570140π-0.570140\pi
−0.218573 + 0.975821i 0.570140π0.570140\pi
674674 0 0
675675 − 2.49521e6i − 0.210789i
676676 0 0
677677 4.91407e6i 0.412068i 0.978545 + 0.206034i 0.0660558π0.0660558\pi
−0.978545 + 0.206034i 0.933944π0.933944\pi
678678 0 0
679679 −2.44930e7 −2.03877
680680 0 0
681681 −6.41937e6 −0.530426
682682 0 0
683683 − 4.30841e6i − 0.353399i −0.984265 0.176700i 0.943458π-0.943458\pi
0.984265 0.176700i 0.0565421π-0.0565421\pi
684684 0 0
685685 − 4.05713e6i − 0.330364i
686686 0 0
687687 1.00433e7 0.811868
688688 0 0
689689 −3.92867e6 −0.315281
690690 0 0
691691 − 2.17672e6i − 0.173423i −0.996233 0.0867116i 0.972364π-0.972364\pi
0.996233 0.0867116i 0.0276359π-0.0276359\pi
692692 0 0
693693 − 6.62361e6i − 0.523916i
694694 0 0
695695 7.66898e6 0.602249
696696 0 0
697697 1.24684e7 0.972142
698698 0 0
699699 − 1.18284e7i − 0.915658i
700700 0 0
701701 − 1.31991e6i − 0.101450i −0.998713 0.0507248i 0.983847π-0.983847\pi
0.998713 0.0507248i 0.0161531π-0.0161531\pi
702702 0 0
703703 −1.54987e7 −1.18279
704704 0 0
705705 6.28842e6 0.476506
706706 0 0
707707 − 1.87970e7i − 1.41429i
708708 0 0
709709 1.33410e7i 0.996721i 0.866970 + 0.498360i 0.166064π0.166064\pi
−0.866970 + 0.498360i 0.833936π0.833936\pi
710710 0 0
711711 1.57885e6 0.117130
712712 0 0
713713 4.87058e6 0.358803
714714 0 0
715715 1.03084e6i 0.0754094i
716716 0 0
717717 8.63721e6i 0.627445i
718718 0 0
719719 −2.25289e7 −1.62524 −0.812620 0.582794i 0.801960π-0.801960\pi
−0.812620 + 0.582794i 0.801960π0.801960\pi
720720 0 0
721721 6.31691e6 0.452550
722722 0 0
723723 − 1.75199e7i − 1.24648i
724724 0 0
725725 2.54574e6i 0.179874i
726726 0 0
727727 1.49088e7 1.04618 0.523091 0.852277i 0.324779π-0.324779\pi
0.523091 + 0.852277i 0.324779π0.324779\pi
728728 0 0
729729 −1.20906e7 −0.842617
730730 0 0
731731 3.46994e7i 2.40175i
732732 0 0
733733 7.98329e6i 0.548810i 0.961614 + 0.274405i 0.0884809π0.0884809\pi
−0.961614 + 0.274405i 0.911519π0.911519\pi
734734 0 0
735735 −2.70402e6 −0.184626
736736 0 0
737737 −6.71802e6 −0.455588
738738 0 0
739739 3.81018e6i 0.256646i 0.991732 + 0.128323i 0.0409594π0.0409594\pi
−0.991732 + 0.128323i 0.959041π0.959041\pi
740740 0 0
741741 − 2.01885e6i − 0.135070i
742742 0 0
743743 −8.99457e6 −0.597734 −0.298867 0.954295i 0.596609π-0.596609\pi
−0.298867 + 0.954295i 0.596609π0.596609\pi
744744 0 0
745745 −9.20268e6 −0.607468
746746 0 0
747747 − 840722.i − 0.0551253i
748748 0 0
749749 − 3.10156e7i − 2.02011i
750750 0 0
751751 −1.18325e7 −0.765559 −0.382779 0.923840i 0.625033π-0.625033\pi
−0.382779 + 0.923840i 0.625033π0.625033\pi
752752 0 0
753753 4.86742e6 0.312832
754754 0 0
755755 − 8.42056e6i − 0.537618i
756756 0 0
757757 − 5.14086e6i − 0.326059i −0.986621 0.163030i 0.947873π-0.947873\pi
0.986621 0.163030i 0.0521266π-0.0521266\pi
758758 0 0
759759 −4.28467e6 −0.269968
760760 0 0
761761 8.21979e6 0.514516 0.257258 0.966343i 0.417181π-0.417181\pi
0.257258 + 0.966343i 0.417181π0.417181\pi
762762 0 0
763763 − 3.99322e6i − 0.248320i
764764 0 0
765765 − 6.64037e6i − 0.410241i
766766 0 0
767767 −3.23979e6 −0.198851
768768 0 0
769769 −1.11390e7 −0.679251 −0.339626 0.940561i 0.610300π-0.610300\pi
−0.339626 + 0.940561i 0.610300π0.610300\pi
770770 0 0
771771 4.29101e6i 0.259970i
772772 0 0
773773 − 5.63671e6i − 0.339294i −0.985505 0.169647i 0.945737π-0.945737\pi
0.985505 0.169647i 0.0542628π-0.0542628\pi
774774 0 0
775775 −2.47252e6 −0.147872
776776 0 0
777777 −1.88831e7 −1.12207
778778 0 0
779779 8.59123e6i 0.507238i
780780 0 0
781781 − 4.46561e6i − 0.261971i
782782 0 0
783783 1.62615e7 0.947888
784784 0 0
785785 −6.78132e6 −0.392771
786786 0 0
787787 − 3.07197e7i − 1.76799i −0.467495 0.883996i 0.654843π-0.654843\pi
0.467495 0.883996i 0.345157π-0.345157\pi
788788 0 0
789789 − 2.09361e7i − 1.19730i
790790 0 0
791791 8.66309e6 0.492302
792792 0 0
793793 5.01639e6 0.283275
794794 0 0
795795 8.28956e6i 0.465172i
796796 0 0
797797 2.22339e7i 1.23985i 0.784660 + 0.619926i 0.212837π0.212837\pi
−0.784660 + 0.619926i 0.787163π0.787163\pi
798798 0 0
799799 4.90505e7 2.71817
800800 0 0
801801 −1.13761e7 −0.626488
802802 0 0
803803 − 1.39704e7i − 0.764577i
804804 0 0
805805 − 5.03878e6i − 0.274054i
806806 0 0
807807 7.25226e6 0.392003
808808 0 0
809809 1.51247e7 0.812484 0.406242 0.913765i 0.366839π-0.366839\pi
0.406242 + 0.913765i 0.366839π0.366839\pi
810810 0 0
811811 − 1.35982e7i − 0.725990i −0.931791 0.362995i 0.881754π-0.881754\pi
0.931791 0.362995i 0.118246π-0.118246\pi
812812 0 0
813813 − 2.26157e7i − 1.20001i
814814 0 0
815815 −3.03386e6 −0.159993
816816 0 0
817817 −2.39092e7 −1.25317
818818 0 0
819819 2.64197e6i 0.137632i
820820 0 0
821821 − 2.56951e7i − 1.33043i −0.746651 0.665216i 0.768340π-0.768340\pi
0.746651 0.665216i 0.231660π-0.231660\pi
822822 0 0
823823 −8.73184e6 −0.449372 −0.224686 0.974431i 0.572136π-0.572136\pi
−0.224686 + 0.974431i 0.572136π0.572136\pi
824824 0 0
825825 2.17509e6 0.111261
826826 0 0
827827 − 1.46565e6i − 0.0745191i −0.999306 0.0372596i 0.988137π-0.988137\pi
0.999306 0.0372596i 0.0118628π-0.0118628\pi
828828 0 0
829829 − 4.49887e6i − 0.227362i −0.993517 0.113681i 0.963736π-0.963736\pi
0.993517 0.113681i 0.0362641π-0.0362641\pi
830830 0 0
831831 −8.97130e6 −0.450664
832832 0 0
833833 −2.10918e7 −1.05317
834834 0 0
835835 − 1.40239e6i − 0.0696067i
836836 0 0
837837 1.57938e7i 0.779244i
838838 0 0
839839 1.43801e7 0.705273 0.352636 0.935760i 0.385285π-0.385285\pi
0.352636 + 0.935760i 0.385285π0.385285\pi
840840 0 0
841841 3.92030e6 0.191130
842842 0 0
843843 2.59702e7i 1.25866i
844844 0 0
845845 8.87115e6i 0.427404i
846846 0 0
847847 −9.44185e6 −0.452219
848848 0 0
849849 2.17420e7 1.03521
850850 0 0
851851 − 1.31202e7i − 0.621036i
852852 0 0
853853 − 2.62365e7i − 1.23462i −0.786720 0.617310i 0.788222π-0.788222\pi
0.786720 0.617310i 0.211778π-0.211778\pi
854854 0 0
855855 4.57547e6 0.214053
856856 0 0
857857 −6.34066e6 −0.294905 −0.147453 0.989069i 0.547107π-0.547107\pi
−0.147453 + 0.989069i 0.547107π0.547107\pi
858858 0 0
859859 1.09488e7i 0.506273i 0.967431 + 0.253137i 0.0814622π0.0814622\pi
−0.967431 + 0.253137i 0.918538π0.918538\pi
860860 0 0
861861 1.04673e7i 0.481200i
862862 0 0
863863 3.28604e6 0.150192 0.0750958 0.997176i 0.476074π-0.476074\pi
0.0750958 + 0.997176i 0.476074π0.476074\pi
864864 0 0
865865 −4.19164e6 −0.190478
866866 0 0
867867 3.28540e7i 1.48436i
868868 0 0
869869 4.03393e6i 0.181209i
870870 0 0
871871 2.67963e6 0.119682
872872 0 0
873873 1.88278e7 0.836110
874874 0 0
875875 2.55791e6i 0.112944i
876876 0 0
877877 7.75326e6i 0.340397i 0.985410 + 0.170198i 0.0544409π0.0544409\pi
−0.985410 + 0.170198i 0.945559π0.945559\pi
878878 0 0
879879 −1.88557e7 −0.823136
880880 0 0
881881 −449453. −0.0195094 −0.00975471 0.999952i 0.503105π-0.503105\pi
−0.00975471 + 0.999952i 0.503105π0.503105\pi
882882 0 0
883883 2.42001e7i 1.04452i 0.852787 + 0.522259i 0.174911π0.174911\pi
−0.852787 + 0.522259i 0.825089π0.825089\pi
884884 0 0
885885 6.83601e6i 0.293389i
886886 0 0
887887 −8.80204e6 −0.375642 −0.187821 0.982203i 0.560143π-0.560143\pi
−0.187821 + 0.982203i 0.560143π0.560143\pi
888888 0 0
889889 4.80724e7 2.04005
890890 0 0
891891 − 4.06203e6i − 0.171415i
892892 0 0
893893 3.37977e7i 1.41827i
894894 0 0
895895 1.33980e7 0.559091
896896 0 0
897897 1.70903e6 0.0709202
898898 0 0
899899 − 1.61137e7i − 0.664959i
900900 0 0
901901 6.46597e7i 2.65352i
902902 0 0
903903 −2.91302e7 −1.18884
904904 0 0
905905 2.83616e6 0.115109
906906 0 0
907907 1.35035e7i 0.545040i 0.962150 + 0.272520i 0.0878571π0.0878571\pi
−0.962150 + 0.272520i 0.912143π0.912143\pi
908908 0 0
909909 1.44492e7i 0.580010i
910910 0 0
911911 1.74802e7 0.697831 0.348915 0.937154i 0.386550π-0.386550\pi
0.348915 + 0.937154i 0.386550π0.386550\pi
912912 0 0
913913 2.14803e6 0.0852830
914914 0 0
915915 − 1.05847e7i − 0.417950i
916916 0 0
917917 − 5.20157e7i − 2.04273i
918918 0 0
919919 −3.84416e7 −1.50146 −0.750728 0.660612i 0.770297π-0.770297\pi
−0.750728 + 0.660612i 0.770297π0.770297\pi
920920 0 0
921921 −1.05934e7 −0.411514
922922 0 0
923923 1.78121e6i 0.0688194i
924924 0 0
925925 6.66040e6i 0.255945i
926926 0 0
927927 −4.85580e6 −0.185593
928928 0 0
929929 −694053. −0.0263848 −0.0131924 0.999913i 0.504199π-0.504199\pi
−0.0131924 + 0.999913i 0.504199π0.504199\pi
930930 0 0
931931 − 1.45330e7i − 0.549518i
932932 0 0
933933 1.70643e7i 0.641776i
934934 0 0
935935 1.69660e7 0.634673
936936 0 0
937937 4.08849e7 1.52130 0.760648 0.649165i 0.224881π-0.224881\pi
0.760648 + 0.649165i 0.224881π0.224881\pi
938938 0 0
939939 1.74225e7i 0.644832i
940940 0 0
941941 − 1.21324e7i − 0.446655i −0.974743 0.223328i 0.928308π-0.928308\pi
0.974743 0.223328i 0.0716920π-0.0716920\pi
942942 0 0
943943 −7.27279e6 −0.266331
944944 0 0
945945 1.63392e7 0.595186
946946 0 0
947947 − 3.38948e7i − 1.22817i −0.789241 0.614084i 0.789526π-0.789526\pi
0.789241 0.614084i 0.210474π-0.210474\pi
948948 0 0
949949 5.57242e6i 0.200853i
950950 0 0
951951 −1.63086e7 −0.584742
952952 0 0
953953 −5.18152e7 −1.84810 −0.924049 0.382274i 0.875141π-0.875141\pi
−0.924049 + 0.382274i 0.875141π0.875141\pi
954954 0 0
955955 − 9.79521e6i − 0.347541i
956956 0 0
957957 1.41753e7i 0.500324i
958958 0 0
959959 2.65671e7 0.932819
960960 0 0
961961 −1.29789e7 −0.453347
962962 0 0
963963 2.38416e7i 0.828458i
964964 0 0
965965 − 6.53783e6i − 0.226003i
966966 0 0
967967 4.41440e7 1.51812 0.759058 0.651023i 0.225660π-0.225660\pi
0.759058 + 0.651023i 0.225660π0.225660\pi
968968 0 0
969969 −3.32272e7 −1.13680
970970 0 0
971971 2.25369e7i 0.767091i 0.923522 + 0.383546i 0.125297π0.125297\pi
−0.923522 + 0.383546i 0.874703π0.874703\pi
972972 0 0
973973 5.02184e7i 1.70052i
974974 0 0
975975 −867582. −0.0292280
976976 0 0
977977 −508955. −0.0170586 −0.00852929 0.999964i 0.502715π-0.502715\pi
−0.00852929 + 0.999964i 0.502715π0.502715\pi
978978 0 0
979979 − 2.90657e7i − 0.969224i
980980 0 0
981981 3.06958e6i 0.101837i
982982 0 0
983983 1.38312e7 0.456536 0.228268 0.973598i 0.426694π-0.426694\pi
0.228268 + 0.973598i 0.426694π0.426694\pi
984984 0 0
985985 2.24737e7 0.738046
986986 0 0
987987 4.11781e7i 1.34547i
988988 0 0
989989 − 2.02400e7i − 0.657992i
990990 0 0
991991 −1.13368e7 −0.366696 −0.183348 0.983048i 0.558693π-0.558693\pi
−0.183348 + 0.983048i 0.558693π0.558693\pi
992992 0 0
993993 4.26957e6 0.137408
994994 0 0
995995 2.09298e6i 0.0670205i
996996 0 0
997997 3.66390e7i 1.16736i 0.811983 + 0.583681i 0.198388π0.198388\pi
−0.811983 + 0.583681i 0.801612π0.801612\pi
998998 0 0
999999 4.25449e7 1.34876
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.d.a.81.14 20
4.3 odd 2 40.6.d.a.21.18 yes 20
5.2 odd 4 800.6.f.c.49.13 20
5.3 odd 4 800.6.f.b.49.8 20
5.4 even 2 800.6.d.c.401.7 20
8.3 odd 2 40.6.d.a.21.17 20
8.5 even 2 inner 160.6.d.a.81.7 20
12.11 even 2 360.6.k.b.181.3 20
20.3 even 4 200.6.f.c.149.13 20
20.7 even 4 200.6.f.b.149.8 20
20.19 odd 2 200.6.d.b.101.3 20
24.11 even 2 360.6.k.b.181.4 20
40.3 even 4 200.6.f.b.149.7 20
40.13 odd 4 800.6.f.c.49.14 20
40.19 odd 2 200.6.d.b.101.4 20
40.27 even 4 200.6.f.c.149.14 20
40.29 even 2 800.6.d.c.401.14 20
40.37 odd 4 800.6.f.b.49.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.17 20 8.3 odd 2
40.6.d.a.21.18 yes 20 4.3 odd 2
160.6.d.a.81.7 20 8.5 even 2 inner
160.6.d.a.81.14 20 1.1 even 1 trivial
200.6.d.b.101.3 20 20.19 odd 2
200.6.d.b.101.4 20 40.19 odd 2
200.6.f.b.149.7 20 40.3 even 4
200.6.f.b.149.8 20 20.7 even 4
200.6.f.c.149.13 20 20.3 even 4
200.6.f.c.149.14 20 40.27 even 4
360.6.k.b.181.3 20 12.11 even 2
360.6.k.b.181.4 20 24.11 even 2
800.6.d.c.401.7 20 5.4 even 2
800.6.d.c.401.14 20 40.29 even 2
800.6.f.b.49.7 20 40.37 odd 4
800.6.f.b.49.8 20 5.3 odd 4
800.6.f.c.49.13 20 5.2 odd 4
800.6.f.c.49.14 20 40.13 odd 4