Properties

Label 360.6.k.b.181.3
Level $360$
Weight $6$
Character 360.181
Analytic conductor $57.738$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,6,Mod(181,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.181");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 360.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.7381751327\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{8}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.3
Root \(3.72553 - 1.45618i\) of defining polynomial
Character \(\chi\) \(=\) 360.181
Dual form 360.6.k.b.181.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.18171 - 2.26935i) q^{2} +(21.7001 + 23.5182i) q^{4} -25.0000i q^{5} +163.706 q^{7} +(-59.0729 - 171.109i) q^{8} +(-56.7336 + 129.543i) q^{10} +321.520i q^{11} -128.246i q^{13} +(-848.277 - 371.506i) q^{14} +(-82.2074 + 1020.69i) q^{16} +2110.72 q^{17} +1454.37i q^{19} +(587.954 - 542.504i) q^{20} +(729.641 - 1666.02i) q^{22} +1231.18 q^{23} -625.000 q^{25} +(-291.033 + 664.531i) q^{26} +(3552.45 + 3850.07i) q^{28} +4073.19i q^{29} -3956.03 q^{31} +(2742.28 - 5102.38i) q^{32} +(-10937.1 - 4789.95i) q^{34} -4092.65i q^{35} -10656.6i q^{37} +(3300.46 - 7536.11i) q^{38} +(-4277.73 + 1476.82i) q^{40} +5907.19 q^{41} +16439.6i q^{43} +(-7561.57 + 6977.04i) q^{44} +(-6379.59 - 2793.96i) q^{46} -23238.8 q^{47} +9992.68 q^{49} +(3238.57 + 1418.34i) q^{50} +(3016.10 - 2782.95i) q^{52} +30634.0i q^{53} +8038.01 q^{55} +(-9670.60 - 28011.6i) q^{56} +(9243.47 - 21106.1i) q^{58} -25262.4i q^{59} +39115.5i q^{61} +(20499.0 + 8977.61i) q^{62} +(-25788.8 + 20215.9i) q^{64} -3206.14 q^{65} -20894.5i q^{67} +(45803.0 + 49640.3i) q^{68} +(-9287.64 + 21206.9i) q^{70} -13889.1 q^{71} -43451.2 q^{73} +(-24183.6 + 55219.6i) q^{74} +(-34204.1 + 31560.0i) q^{76} +52634.8i q^{77} -12546.4 q^{79} +(25517.4 + 2055.19i) q^{80} +(-30609.3 - 13405.4i) q^{82} -6680.84i q^{83} -52768.0i q^{85} +(37307.1 - 85185.1i) q^{86} +(55015.1 - 18993.2i) q^{88} +90400.9 q^{89} -20994.6i q^{91} +(26716.7 + 28955.0i) q^{92} +(120416. + 52736.8i) q^{94} +36359.2 q^{95} +149616. q^{97} +(-51779.1 - 22676.8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 32 q^{4} - 196 q^{7} - 248 q^{8} - 50 q^{10} - 2708 q^{14} + 3080 q^{16} + 1900 q^{20} + 13836 q^{22} + 4676 q^{23} - 12500 q^{25} + 8084 q^{26} + 2108 q^{28} + 7160 q^{31} - 6792 q^{32}+ \cdots - 216942 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.18171 2.26935i −0.916005 0.401167i
\(3\) 0 0
\(4\) 21.7001 + 23.5182i 0.678130 + 0.734942i
\(5\) 25.0000i 0.447214i
\(6\) 0 0
\(7\) 163.706 1.26276 0.631378 0.775475i \(-0.282490\pi\)
0.631378 + 0.775475i \(0.282490\pi\)
\(8\) −59.0729 171.109i −0.326335 0.945254i
\(9\) 0 0
\(10\) −56.7336 + 129.543i −0.179407 + 0.409650i
\(11\) 321.520i 0.801174i 0.916259 + 0.400587i \(0.131194\pi\)
−0.916259 + 0.400587i \(0.868806\pi\)
\(12\) 0 0
\(13\) 128.246i 0.210467i −0.994448 0.105233i \(-0.966441\pi\)
0.994448 0.105233i \(-0.0335590\pi\)
\(14\) −848.277 371.506i −1.15669 0.506577i
\(15\) 0 0
\(16\) −82.2074 + 1020.69i −0.0802807 + 0.996772i
\(17\) 2110.72 1.77137 0.885683 0.464290i \(-0.153690\pi\)
0.885683 + 0.464290i \(0.153690\pi\)
\(18\) 0 0
\(19\) 1454.37i 0.924252i 0.886814 + 0.462126i \(0.152913\pi\)
−0.886814 + 0.462126i \(0.847087\pi\)
\(20\) 587.954 542.504i 0.328676 0.303269i
\(21\) 0 0
\(22\) 729.641 1666.02i 0.321405 0.733879i
\(23\) 1231.18 0.485289 0.242645 0.970115i \(-0.421985\pi\)
0.242645 + 0.970115i \(0.421985\pi\)
\(24\) 0 0
\(25\) −625.000 −0.200000
\(26\) −291.033 + 664.531i −0.0844325 + 0.192789i
\(27\) 0 0
\(28\) 3552.45 + 3850.07i 0.856313 + 0.928053i
\(29\) 4073.19i 0.899372i 0.893187 + 0.449686i \(0.148464\pi\)
−0.893187 + 0.449686i \(0.851536\pi\)
\(30\) 0 0
\(31\) −3956.03 −0.739360 −0.369680 0.929159i \(-0.620533\pi\)
−0.369680 + 0.929159i \(0.620533\pi\)
\(32\) 2742.28 5102.38i 0.473410 0.880842i
\(33\) 0 0
\(34\) −10937.1 4789.95i −1.62258 0.710615i
\(35\) 4092.65i 0.564722i
\(36\) 0 0
\(37\) 10656.6i 1.27972i −0.768490 0.639861i \(-0.778992\pi\)
0.768490 0.639861i \(-0.221008\pi\)
\(38\) 3300.46 7536.11i 0.370780 0.846620i
\(39\) 0 0
\(40\) −4277.73 + 1476.82i −0.422731 + 0.145941i
\(41\) 5907.19 0.548809 0.274404 0.961614i \(-0.411519\pi\)
0.274404 + 0.961614i \(0.411519\pi\)
\(42\) 0 0
\(43\) 16439.6i 1.35588i 0.735119 + 0.677938i \(0.237126\pi\)
−0.735119 + 0.677938i \(0.762874\pi\)
\(44\) −7561.57 + 6977.04i −0.588817 + 0.543300i
\(45\) 0 0
\(46\) −6379.59 2793.96i −0.444527 0.194682i
\(47\) −23238.8 −1.53450 −0.767252 0.641345i \(-0.778377\pi\)
−0.767252 + 0.641345i \(0.778377\pi\)
\(48\) 0 0
\(49\) 9992.68 0.594555
\(50\) 3238.57 + 1418.34i 0.183201 + 0.0802335i
\(51\) 0 0
\(52\) 3016.10 2782.95i 0.154681 0.142724i
\(53\) 30634.0i 1.49801i 0.662567 + 0.749003i \(0.269467\pi\)
−0.662567 + 0.749003i \(0.730533\pi\)
\(54\) 0 0
\(55\) 8038.01 0.358296
\(56\) −9670.60 28011.6i −0.412082 1.19363i
\(57\) 0 0
\(58\) 9243.47 21106.1i 0.360799 0.823829i
\(59\) 25262.4i 0.944810i −0.881382 0.472405i \(-0.843386\pi\)
0.881382 0.472405i \(-0.156614\pi\)
\(60\) 0 0
\(61\) 39115.5i 1.34594i 0.739672 + 0.672968i \(0.234981\pi\)
−0.739672 + 0.672968i \(0.765019\pi\)
\(62\) 20499.0 + 8977.61i 0.677257 + 0.296607i
\(63\) 0 0
\(64\) −25788.8 + 20215.9i −0.787011 + 0.616939i
\(65\) −3206.14 −0.0941237
\(66\) 0 0
\(67\) 20894.5i 0.568651i −0.958728 0.284325i \(-0.908230\pi\)
0.958728 0.284325i \(-0.0917696\pi\)
\(68\) 45803.0 + 49640.3i 1.20122 + 1.30185i
\(69\) 0 0
\(70\) −9287.64 + 21206.9i −0.226548 + 0.517288i
\(71\) −13889.1 −0.326984 −0.163492 0.986545i \(-0.552276\pi\)
−0.163492 + 0.986545i \(0.552276\pi\)
\(72\) 0 0
\(73\) −43451.2 −0.954321 −0.477161 0.878816i \(-0.658334\pi\)
−0.477161 + 0.878816i \(0.658334\pi\)
\(74\) −24183.6 + 55219.6i −0.513383 + 1.17223i
\(75\) 0 0
\(76\) −34204.1 + 31560.0i −0.679272 + 0.626763i
\(77\) 52634.8i 1.01169i
\(78\) 0 0
\(79\) −12546.4 −0.226179 −0.113089 0.993585i \(-0.536075\pi\)
−0.113089 + 0.993585i \(0.536075\pi\)
\(80\) 25517.4 + 2055.19i 0.445770 + 0.0359026i
\(81\) 0 0
\(82\) −30609.3 13405.4i −0.502711 0.220164i
\(83\) 6680.84i 0.106448i −0.998583 0.0532238i \(-0.983050\pi\)
0.998583 0.0532238i \(-0.0169497\pi\)
\(84\) 0 0
\(85\) 52768.0i 0.792179i
\(86\) 37307.1 85185.1i 0.543933 1.24199i
\(87\) 0 0
\(88\) 55015.1 18993.2i 0.757313 0.261451i
\(89\) 90400.9 1.20976 0.604878 0.796318i \(-0.293222\pi\)
0.604878 + 0.796318i \(0.293222\pi\)
\(90\) 0 0
\(91\) 20994.6i 0.265769i
\(92\) 26716.7 + 28955.0i 0.329089 + 0.356660i
\(93\) 0 0
\(94\) 120416. + 52736.8i 1.40561 + 0.615593i
\(95\) 36359.2 0.413338
\(96\) 0 0
\(97\) 149616. 1.61454 0.807269 0.590184i \(-0.200945\pi\)
0.807269 + 0.590184i \(0.200945\pi\)
\(98\) −51779.1 22676.8i −0.544615 0.238516i
\(99\) 0 0
\(100\) −13562.6 14698.8i −0.135626 0.146988i
\(101\) 114822.i 1.12001i −0.828491 0.560003i \(-0.810800\pi\)
0.828491 0.560003i \(-0.189200\pi\)
\(102\) 0 0
\(103\) 38586.9 0.358382 0.179191 0.983814i \(-0.442652\pi\)
0.179191 + 0.983814i \(0.442652\pi\)
\(104\) −21944.0 + 7575.84i −0.198945 + 0.0686827i
\(105\) 0 0
\(106\) 69519.0 158736.i 0.600951 1.37218i
\(107\) 189459.i 1.59976i 0.600158 + 0.799881i \(0.295104\pi\)
−0.600158 + 0.799881i \(0.704896\pi\)
\(108\) 0 0
\(109\) 24392.6i 0.196649i 0.995154 + 0.0983245i \(0.0313483\pi\)
−0.995154 + 0.0983245i \(0.968652\pi\)
\(110\) −41650.6 18241.0i −0.328201 0.143737i
\(111\) 0 0
\(112\) −13457.9 + 167094.i −0.101375 + 1.25868i
\(113\) 52918.6 0.389863 0.194932 0.980817i \(-0.437552\pi\)
0.194932 + 0.980817i \(0.437552\pi\)
\(114\) 0 0
\(115\) 30779.4i 0.217028i
\(116\) −95793.8 + 88388.7i −0.660987 + 0.609891i
\(117\) 0 0
\(118\) −57329.1 + 130902.i −0.379027 + 0.865450i
\(119\) 345538. 2.23681
\(120\) 0 0
\(121\) 57675.7 0.358120
\(122\) 88766.6 202685.i 0.539945 1.23288i
\(123\) 0 0
\(124\) −85846.5 93038.6i −0.501382 0.543387i
\(125\) 15625.0i 0.0894427i
\(126\) 0 0
\(127\) 293650. 1.61555 0.807777 0.589489i \(-0.200671\pi\)
0.807777 + 0.589489i \(0.200671\pi\)
\(128\) 179507. 46229.0i 0.968402 0.249396i
\(129\) 0 0
\(130\) 16613.3 + 7275.83i 0.0862177 + 0.0377593i
\(131\) 317738.i 1.61767i 0.588032 + 0.808837i \(0.299903\pi\)
−0.588032 + 0.808837i \(0.700097\pi\)
\(132\) 0 0
\(133\) 238089.i 1.16711i
\(134\) −47416.9 + 108269.i −0.228124 + 0.520887i
\(135\) 0 0
\(136\) −124687. 361164.i −0.578059 1.67439i
\(137\) 162285. 0.738717 0.369358 0.929287i \(-0.379577\pi\)
0.369358 + 0.929287i \(0.379577\pi\)
\(138\) 0 0
\(139\) 306759.i 1.34667i 0.739338 + 0.673334i \(0.235139\pi\)
−0.739338 + 0.673334i \(0.764861\pi\)
\(140\) 96251.6 88811.1i 0.415038 0.382955i
\(141\) 0 0
\(142\) 71969.0 + 31519.1i 0.299519 + 0.131175i
\(143\) 41233.5 0.168621
\(144\) 0 0
\(145\) 101830. 0.402211
\(146\) 225151. + 98605.8i 0.874163 + 0.382842i
\(147\) 0 0
\(148\) 250625. 231251.i 0.940523 0.867818i
\(149\) 368107.i 1.35834i −0.733981 0.679170i \(-0.762340\pi\)
0.733981 0.679170i \(-0.237660\pi\)
\(150\) 0 0
\(151\) 336822. 1.20215 0.601075 0.799193i \(-0.294739\pi\)
0.601075 + 0.799193i \(0.294739\pi\)
\(152\) 248856. 85913.8i 0.873653 0.301616i
\(153\) 0 0
\(154\) 119447. 272738.i 0.405856 0.926711i
\(155\) 98900.9i 0.330652i
\(156\) 0 0
\(157\) 271253.i 0.878264i 0.898423 + 0.439132i \(0.144714\pi\)
−0.898423 + 0.439132i \(0.855286\pi\)
\(158\) 65011.8 + 28472.1i 0.207181 + 0.0907356i
\(159\) 0 0
\(160\) −127560. 68557.1i −0.393925 0.211715i
\(161\) 201551. 0.612802
\(162\) 0 0
\(163\) 121354.i 0.357756i −0.983871 0.178878i \(-0.942753\pi\)
0.983871 0.178878i \(-0.0572467\pi\)
\(164\) 128187. + 138926.i 0.372163 + 0.403343i
\(165\) 0 0
\(166\) −15161.1 + 34618.1i −0.0427033 + 0.0975065i
\(167\) −56095.4 −0.155645 −0.0778227 0.996967i \(-0.524797\pi\)
−0.0778227 + 0.996967i \(0.524797\pi\)
\(168\) 0 0
\(169\) 354846. 0.955704
\(170\) −119749. + 273428.i −0.317797 + 0.725640i
\(171\) 0 0
\(172\) −386629. + 356741.i −0.996490 + 0.919459i
\(173\) 167666.i 0.425921i −0.977061 0.212960i \(-0.931689\pi\)
0.977061 0.212960i \(-0.0683105\pi\)
\(174\) 0 0
\(175\) −102316. −0.252551
\(176\) −328174. 26431.4i −0.798588 0.0643188i
\(177\) 0 0
\(178\) −468431. 205151.i −1.10814 0.485314i
\(179\) 535921.i 1.25017i −0.780558 0.625083i \(-0.785065\pi\)
0.780558 0.625083i \(-0.214935\pi\)
\(180\) 0 0
\(181\) 113446.i 0.257391i −0.991684 0.128696i \(-0.958921\pi\)
0.991684 0.128696i \(-0.0410790\pi\)
\(182\) −47643.9 + 108788.i −0.106618 + 0.243445i
\(183\) 0 0
\(184\) −72729.2 210666.i −0.158367 0.458722i
\(185\) −266416. −0.572309
\(186\) 0 0
\(187\) 678640.i 1.41917i
\(188\) −504284. 546533.i −1.04059 1.12777i
\(189\) 0 0
\(190\) −188403. 82511.6i −0.378620 0.165818i
\(191\) −391808. −0.777124 −0.388562 0.921423i \(-0.627028\pi\)
−0.388562 + 0.921423i \(0.627028\pi\)
\(192\) 0 0
\(193\) −261513. −0.505359 −0.252680 0.967550i \(-0.581312\pi\)
−0.252680 + 0.967550i \(0.581312\pi\)
\(194\) −775265. 339530.i −1.47892 0.647700i
\(195\) 0 0
\(196\) 216843. + 235009.i 0.403185 + 0.436963i
\(197\) 898947.i 1.65032i 0.564898 + 0.825161i \(0.308916\pi\)
−0.564898 + 0.825161i \(0.691084\pi\)
\(198\) 0 0
\(199\) −83719.3 −0.149862 −0.0749312 0.997189i \(-0.523874\pi\)
−0.0749312 + 0.997189i \(0.523874\pi\)
\(200\) 36920.6 + 106943.i 0.0652670 + 0.189051i
\(201\) 0 0
\(202\) −260570. + 594972.i −0.449310 + 1.02593i
\(203\) 666805.i 1.13569i
\(204\) 0 0
\(205\) 147680.i 0.245435i
\(206\) −199946. 87566.9i −0.328280 0.143771i
\(207\) 0 0
\(208\) 130900. + 10542.7i 0.209788 + 0.0168964i
\(209\) −467609. −0.740487
\(210\) 0 0
\(211\) 553641.i 0.856095i 0.903756 + 0.428047i \(0.140798\pi\)
−0.903756 + 0.428047i \(0.859202\pi\)
\(212\) −720454. + 664761.i −1.10095 + 1.01584i
\(213\) 0 0
\(214\) 429948. 981720.i 0.641772 1.46539i
\(215\) 410990. 0.606366
\(216\) 0 0
\(217\) −647627. −0.933632
\(218\) 55355.2 126395.i 0.0788892 0.180131i
\(219\) 0 0
\(220\) 174426. + 189039.i 0.242971 + 0.263327i
\(221\) 270691.i 0.372814i
\(222\) 0 0
\(223\) 279400. 0.376239 0.188120 0.982146i \(-0.439761\pi\)
0.188120 + 0.982146i \(0.439761\pi\)
\(224\) 448929. 835291.i 0.597802 1.11229i
\(225\) 0 0
\(226\) −274209. 120091.i −0.357116 0.156400i
\(227\) 593068.i 0.763905i 0.924182 + 0.381953i \(0.124748\pi\)
−0.924182 + 0.381953i \(0.875252\pi\)
\(228\) 0 0
\(229\) 927873.i 1.16923i −0.811311 0.584615i \(-0.801246\pi\)
0.811311 0.584615i \(-0.198754\pi\)
\(230\) −69849.1 + 159490.i −0.0870645 + 0.198799i
\(231\) 0 0
\(232\) 696960. 240615.i 0.850135 0.293496i
\(233\) 1.09279e6 1.31871 0.659353 0.751833i \(-0.270830\pi\)
0.659353 + 0.751833i \(0.270830\pi\)
\(234\) 0 0
\(235\) 580969.i 0.686251i
\(236\) 594125. 548197.i 0.694381 0.640703i
\(237\) 0 0
\(238\) −1.79048e6 784145.i −2.04892 0.897333i
\(239\) 797967. 0.903630 0.451815 0.892112i \(-0.350777\pi\)
0.451815 + 0.892112i \(0.350777\pi\)
\(240\) 0 0
\(241\) −1.61861e6 −1.79515 −0.897573 0.440865i \(-0.854672\pi\)
−0.897573 + 0.440865i \(0.854672\pi\)
\(242\) −298858. 130886.i −0.328040 0.143666i
\(243\) 0 0
\(244\) −919924. + 848812.i −0.989185 + 0.912719i
\(245\) 249817.i 0.265893i
\(246\) 0 0
\(247\) 186516. 0.194525
\(248\) 233695. + 676914.i 0.241279 + 0.698883i
\(249\) 0 0
\(250\) 35458.5 80964.1i 0.0358815 0.0819300i
\(251\) 449688.i 0.450533i −0.974297 0.225266i \(-0.927675\pi\)
0.974297 0.225266i \(-0.0723253\pi\)
\(252\) 0 0
\(253\) 395848.i 0.388801i
\(254\) −1.52161e6 666394.i −1.47985 0.648107i
\(255\) 0 0
\(256\) −1.03506e6 167817.i −0.987110 0.160043i
\(257\) −396434. −0.374402 −0.187201 0.982322i \(-0.559942\pi\)
−0.187201 + 0.982322i \(0.559942\pi\)
\(258\) 0 0
\(259\) 1.74456e6i 1.61598i
\(260\) −69573.7 75402.5i −0.0638280 0.0691755i
\(261\) 0 0
\(262\) 721058. 1.64643e6i 0.648958 1.48180i
\(263\) −1.93423e6 −1.72432 −0.862160 0.506635i \(-0.830889\pi\)
−0.862160 + 0.506635i \(0.830889\pi\)
\(264\) 0 0
\(265\) 765849. 0.669928
\(266\) 540306. 1.23371e6i 0.468205 1.06907i
\(267\) 0 0
\(268\) 491401. 453414.i 0.417926 0.385619i
\(269\) 670016.i 0.564553i 0.959333 + 0.282276i \(0.0910895\pi\)
−0.959333 + 0.282276i \(0.908910\pi\)
\(270\) 0 0
\(271\) 2.08940e6 1.72822 0.864109 0.503305i \(-0.167883\pi\)
0.864109 + 0.503305i \(0.167883\pi\)
\(272\) −173517. + 2.15440e6i −0.142207 + 1.76565i
\(273\) 0 0
\(274\) −840915. 368281.i −0.676668 0.296349i
\(275\) 200950.i 0.160235i
\(276\) 0 0
\(277\) 828834.i 0.649035i 0.945880 + 0.324517i \(0.105202\pi\)
−0.945880 + 0.324517i \(0.894798\pi\)
\(278\) 696143. 1.58954e6i 0.540240 1.23356i
\(279\) 0 0
\(280\) −700291. + 241765.i −0.533806 + 0.184289i
\(281\) −2.39932e6 −1.81268 −0.906342 0.422545i \(-0.861137\pi\)
−0.906342 + 0.422545i \(0.861137\pi\)
\(282\) 0 0
\(283\) 2.00868e6i 1.49089i 0.666568 + 0.745444i \(0.267763\pi\)
−0.666568 + 0.745444i \(0.732237\pi\)
\(284\) −301395. 326645.i −0.221738 0.240315i
\(285\) 0 0
\(286\) −213660. 93573.2i −0.154457 0.0676451i
\(287\) 967042. 0.693012
\(288\) 0 0
\(289\) 3.03529e6 2.13774
\(290\) −527651. 231087.i −0.368427 0.161354i
\(291\) 0 0
\(292\) −942897. 1.02189e6i −0.647153 0.701371i
\(293\) 1.74203e6i 1.18546i −0.805402 0.592729i \(-0.798050\pi\)
0.805402 0.592729i \(-0.201950\pi\)
\(294\) 0 0
\(295\) −631560. −0.422532
\(296\) −1.82345e6 + 629519.i −1.20966 + 0.417618i
\(297\) 0 0
\(298\) −835362. + 1.90742e6i −0.544922 + 1.24425i
\(299\) 157893.i 0.102137i
\(300\) 0 0
\(301\) 2.69126e6i 1.71214i
\(302\) −1.74531e6 764366.i −1.10118 0.482263i
\(303\) 0 0
\(304\) −1.48447e6 119560.i −0.921269 0.0741996i
\(305\) 977887. 0.601921
\(306\) 0 0
\(307\) 978690.i 0.592651i −0.955087 0.296326i \(-0.904239\pi\)
0.955087 0.296326i \(-0.0957614\pi\)
\(308\) −1.23787e6 + 1.14218e6i −0.743532 + 0.686055i
\(309\) 0 0
\(310\) 224440. 512475.i 0.132647 0.302879i
\(311\) 1.57652e6 0.924268 0.462134 0.886810i \(-0.347084\pi\)
0.462134 + 0.886810i \(0.347084\pi\)
\(312\) 0 0
\(313\) 1.60962e6 0.928670 0.464335 0.885660i \(-0.346293\pi\)
0.464335 + 0.885660i \(0.346293\pi\)
\(314\) 615566. 1.40555e6i 0.352331 0.804494i
\(315\) 0 0
\(316\) −272259. 295069.i −0.153379 0.166228i
\(317\) 1.50670e6i 0.842130i −0.907030 0.421065i \(-0.861656\pi\)
0.907030 0.421065i \(-0.138344\pi\)
\(318\) 0 0
\(319\) −1.30961e6 −0.720553
\(320\) 505396. + 644719.i 0.275904 + 0.351962i
\(321\) 0 0
\(322\) −1.04438e6 457389.i −0.561330 0.245836i
\(323\) 3.06977e6i 1.63719i
\(324\) 0 0
\(325\) 80153.5i 0.0420934i
\(326\) −275395. + 628823.i −0.143520 + 0.327706i
\(327\) 0 0
\(328\) −348955. 1.01077e6i −0.179095 0.518764i
\(329\) −3.80433e6 −1.93771
\(330\) 0 0
\(331\) 394453.i 0.197891i 0.995093 + 0.0989454i \(0.0315469\pi\)
−0.995093 + 0.0989454i \(0.968453\pi\)
\(332\) 157121. 144975.i 0.0782328 0.0721852i
\(333\) 0 0
\(334\) 290670. + 127300.i 0.142572 + 0.0624398i
\(335\) −522363. −0.254308
\(336\) 0 0
\(337\) −1.36879e6 −0.656543 −0.328272 0.944583i \(-0.606466\pi\)
−0.328272 + 0.944583i \(0.606466\pi\)
\(338\) −1.83871e6 805268.i −0.875429 0.383397i
\(339\) 0 0
\(340\) 1.24101e6 1.14507e6i 0.582206 0.537200i
\(341\) 1.27195e6i 0.592356i
\(342\) 0 0
\(343\) −1.11555e6 −0.511979
\(344\) 2.81297e6 971135.i 1.28165 0.442470i
\(345\) 0 0
\(346\) −380491. + 868794.i −0.170865 + 0.390145i
\(347\) 569376.i 0.253849i 0.991912 + 0.126925i \(0.0405106\pi\)
−0.991912 + 0.126925i \(0.959489\pi\)
\(348\) 0 0
\(349\) 2.20053e6i 0.967081i −0.875322 0.483541i \(-0.839351\pi\)
0.875322 0.483541i \(-0.160649\pi\)
\(350\) 530173. + 232191.i 0.231338 + 0.101315i
\(351\) 0 0
\(352\) 1.64052e6 + 881700.i 0.705708 + 0.379284i
\(353\) 2.51557e6 1.07448 0.537242 0.843428i \(-0.319466\pi\)
0.537242 + 0.843428i \(0.319466\pi\)
\(354\) 0 0
\(355\) 347226.i 0.146232i
\(356\) 1.96171e6 + 2.12606e6i 0.820371 + 0.889100i
\(357\) 0 0
\(358\) −1.21619e6 + 2.77698e6i −0.501526 + 1.14516i
\(359\) 794808. 0.325481 0.162741 0.986669i \(-0.447967\pi\)
0.162741 + 0.986669i \(0.447967\pi\)
\(360\) 0 0
\(361\) 360911. 0.145758
\(362\) −257449. + 587845.i −0.103257 + 0.235772i
\(363\) 0 0
\(364\) 493754. 455585.i 0.195325 0.180225i
\(365\) 1.08628e6i 0.426785i
\(366\) 0 0
\(367\) −874302. −0.338841 −0.169421 0.985544i \(-0.554190\pi\)
−0.169421 + 0.985544i \(0.554190\pi\)
\(368\) −101212. + 1.25666e6i −0.0389594 + 0.483723i
\(369\) 0 0
\(370\) 1.38049e6 + 604590.i 0.524238 + 0.229592i
\(371\) 5.01497e6i 1.89162i
\(372\) 0 0
\(373\) 4.86205e6i 1.80945i −0.425994 0.904726i \(-0.640076\pi\)
0.425994 0.904726i \(-0.359924\pi\)
\(374\) 1.54007e6 3.51651e6i 0.569326 1.29997i
\(375\) 0 0
\(376\) 1.37278e6 + 3.97637e6i 0.500763 + 1.45050i
\(377\) 522368. 0.189288
\(378\) 0 0
\(379\) 1.24150e6i 0.443964i 0.975051 + 0.221982i \(0.0712527\pi\)
−0.975051 + 0.221982i \(0.928747\pi\)
\(380\) 789000. + 855102.i 0.280297 + 0.303780i
\(381\) 0 0
\(382\) 2.03024e6 + 889149.i 0.711849 + 0.311757i
\(383\) 30969.9 0.0107880 0.00539402 0.999985i \(-0.498283\pi\)
0.00539402 + 0.999985i \(0.498283\pi\)
\(384\) 0 0
\(385\) 1.31587e6 0.452440
\(386\) 1.35508e6 + 593463.i 0.462911 + 0.202734i
\(387\) 0 0
\(388\) 3.24669e6 + 3.51869e6i 1.09487 + 1.18659i
\(389\) 4.27860e6i 1.43360i −0.697279 0.716800i \(-0.745606\pi\)
0.697279 0.716800i \(-0.254394\pi\)
\(390\) 0 0
\(391\) 2.59867e6 0.859626
\(392\) −590297. 1.70984e6i −0.194024 0.562005i
\(393\) 0 0
\(394\) 2.04002e6 4.65808e6i 0.662055 1.51170i
\(395\) 313660.i 0.101150i
\(396\) 0 0
\(397\) 2.31119e6i 0.735968i −0.929832 0.367984i \(-0.880048\pi\)
0.929832 0.367984i \(-0.119952\pi\)
\(398\) 433809. + 189988.i 0.137275 + 0.0601199i
\(399\) 0 0
\(400\) 51379.7 637934.i 0.0160561 0.199354i
\(401\) −996347. −0.309421 −0.154710 0.987960i \(-0.549444\pi\)
−0.154710 + 0.987960i \(0.549444\pi\)
\(402\) 0 0
\(403\) 507344.i 0.155611i
\(404\) 2.70039e6 2.49165e6i 0.823140 0.759509i
\(405\) 0 0
\(406\) 1.51321e6 3.45519e6i 0.455601 1.04030i
\(407\) 3.42633e6 1.02528
\(408\) 0 0
\(409\) −5.17948e6 −1.53101 −0.765505 0.643430i \(-0.777511\pi\)
−0.765505 + 0.643430i \(0.777511\pi\)
\(410\) −335136. + 765232.i −0.0984604 + 0.224819i
\(411\) 0 0
\(412\) 837341. + 907492.i 0.243030 + 0.263390i
\(413\) 4.13561e6i 1.19306i
\(414\) 0 0
\(415\) −167021. −0.0476048
\(416\) −654358. 351686.i −0.185388 0.0996371i
\(417\) 0 0
\(418\) 2.42301e6 + 1.06117e6i 0.678289 + 0.297059i
\(419\) 3.57698e6i 0.995363i 0.867360 + 0.497682i \(0.165815\pi\)
−0.867360 + 0.497682i \(0.834185\pi\)
\(420\) 0 0
\(421\) 2.15848e6i 0.593531i −0.954950 0.296765i \(-0.904092\pi\)
0.954950 0.296765i \(-0.0959080\pi\)
\(422\) 1.25640e6 2.86880e6i 0.343437 0.784187i
\(423\) 0 0
\(424\) 5.24175e6 1.80964e6i 1.41600 0.488852i
\(425\) −1.31920e6 −0.354273
\(426\) 0 0
\(427\) 6.40344e6i 1.69959i
\(428\) −4.45572e6 + 4.11128e6i −1.17573 + 1.08485i
\(429\) 0 0
\(430\) −2.12963e6 932678.i −0.555434 0.243254i
\(431\) 1.80890e6 0.469052 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(432\) 0 0
\(433\) 1.28911e6 0.330423 0.165211 0.986258i \(-0.447169\pi\)
0.165211 + 0.986258i \(0.447169\pi\)
\(434\) 3.35581e6 + 1.46969e6i 0.855211 + 0.374542i
\(435\) 0 0
\(436\) −573669. + 529323.i −0.144526 + 0.133354i
\(437\) 1.79058e6i 0.448530i
\(438\) 0 0
\(439\) 1.89694e6 0.469777 0.234889 0.972022i \(-0.424527\pi\)
0.234889 + 0.972022i \(0.424527\pi\)
\(440\) −474829. 1.37538e6i −0.116924 0.338681i
\(441\) 0 0
\(442\) −614290. + 1.40264e6i −0.149561 + 0.341500i
\(443\) 6.01979e6i 1.45738i −0.684845 0.728689i \(-0.740130\pi\)
0.684845 0.728689i \(-0.259870\pi\)
\(444\) 0 0
\(445\) 2.26002e6i 0.541019i
\(446\) −1.44777e6 634055.i −0.344637 0.150935i
\(447\) 0 0
\(448\) −4.22178e6 + 3.30946e6i −0.993803 + 0.779044i
\(449\) 2.40081e6 0.562007 0.281003 0.959707i \(-0.409333\pi\)
0.281003 + 0.959707i \(0.409333\pi\)
\(450\) 0 0
\(451\) 1.89928e6i 0.439691i
\(452\) 1.14834e6 + 1.24455e6i 0.264378 + 0.286527i
\(453\) 0 0
\(454\) 1.34588e6 3.07310e6i 0.306454 0.699741i
\(455\) −524864. −0.118855
\(456\) 0 0
\(457\) −858952. −0.192388 −0.0961941 0.995363i \(-0.530667\pi\)
−0.0961941 + 0.995363i \(0.530667\pi\)
\(458\) −2.10567e6 + 4.80797e6i −0.469057 + 1.07102i
\(459\) 0 0
\(460\) 723875. 667918.i 0.159503 0.147173i
\(461\) 2.33481e6i 0.511680i 0.966719 + 0.255840i \(0.0823521\pi\)
−0.966719 + 0.255840i \(0.917648\pi\)
\(462\) 0 0
\(463\) −1.35195e6 −0.293096 −0.146548 0.989204i \(-0.546816\pi\)
−0.146548 + 0.989204i \(0.546816\pi\)
\(464\) −4.15748e6 334846.i −0.896469 0.0722022i
\(465\) 0 0
\(466\) −5.66253e6 2.47993e6i −1.20794 0.529022i
\(467\) 6.44013e6i 1.36648i 0.730195 + 0.683239i \(0.239429\pi\)
−0.730195 + 0.683239i \(0.760571\pi\)
\(468\) 0 0
\(469\) 3.42056e6i 0.718068i
\(470\) 1.31842e6 3.01041e6i 0.275302 0.628610i
\(471\) 0 0
\(472\) −4.32263e6 + 1.49232e6i −0.893085 + 0.308324i
\(473\) −5.28566e6 −1.08629
\(474\) 0 0
\(475\) 908980.i 0.184850i
\(476\) 7.49822e6 + 8.12641e6i 1.51684 + 1.64392i
\(477\) 0 0
\(478\) −4.13483e6 1.81086e6i −0.827729 0.362507i
\(479\) 1.85358e6 0.369124 0.184562 0.982821i \(-0.440913\pi\)
0.184562 + 0.982821i \(0.440913\pi\)
\(480\) 0 0
\(481\) −1.36667e6 −0.269339
\(482\) 8.38717e6 + 3.67319e6i 1.64436 + 0.720154i
\(483\) 0 0
\(484\) 1.25157e6 + 1.35643e6i 0.242852 + 0.263198i
\(485\) 3.74040e6i 0.722043i
\(486\) 0 0
\(487\) 2.51668e6 0.480846 0.240423 0.970668i \(-0.422714\pi\)
0.240423 + 0.970668i \(0.422714\pi\)
\(488\) 6.69302e6 2.31067e6i 1.27225 0.439226i
\(489\) 0 0
\(490\) −566921. + 1.29448e6i −0.106668 + 0.243559i
\(491\) 5.39115e6i 1.00920i −0.863353 0.504601i \(-0.831640\pi\)
0.863353 0.504601i \(-0.168360\pi\)
\(492\) 0 0
\(493\) 8.59736e6i 1.59312i
\(494\) −966472. 423270.i −0.178185 0.0780369i
\(495\) 0 0
\(496\) 325215. 4.03790e6i 0.0593563 0.736973i
\(497\) −2.27372e6 −0.412902
\(498\) 0 0
\(499\) 3.18358e6i 0.572353i −0.958177 0.286177i \(-0.907616\pi\)
0.958177 0.286177i \(-0.0923844\pi\)
\(500\) −367471. + 339065.i −0.0657352 + 0.0606537i
\(501\) 0 0
\(502\) −1.02050e6 + 2.33015e6i −0.180739 + 0.412690i
\(503\) 8.99291e6 1.58482 0.792410 0.609989i \(-0.208826\pi\)
0.792410 + 0.609989i \(0.208826\pi\)
\(504\) 0 0
\(505\) −2.87054e6 −0.500882
\(506\) 898317. 2.05117e6i 0.155974 0.356144i
\(507\) 0 0
\(508\) 6.37226e6 + 6.90612e6i 1.09555 + 1.18734i
\(509\) 5.35388e6i 0.915956i −0.888964 0.457978i \(-0.848574\pi\)
0.888964 0.457978i \(-0.151426\pi\)
\(510\) 0 0
\(511\) −7.11322e6 −1.20508
\(512\) 4.98254e6 + 3.21849e6i 0.839993 + 0.542597i
\(513\) 0 0
\(514\) 2.05420e6 + 899646.i 0.342954 + 0.150198i
\(515\) 964672.i 0.160273i
\(516\) 0 0
\(517\) 7.47173e6i 1.22941i
\(518\) −3.95900e6 + 9.03978e6i −0.648278 + 1.48024i
\(519\) 0 0
\(520\) 189396. + 548600.i 0.0307158 + 0.0889708i
\(521\) 2.62401e6 0.423518 0.211759 0.977322i \(-0.432081\pi\)
0.211759 + 0.977322i \(0.432081\pi\)
\(522\) 0 0
\(523\) 1.31228e6i 0.209784i 0.994484 + 0.104892i \(0.0334497\pi\)
−0.994484 + 0.104892i \(0.966550\pi\)
\(524\) −7.47262e6 + 6.89497e6i −1.18890 + 1.09699i
\(525\) 0 0
\(526\) 1.00226e7 + 4.38943e6i 1.57949 + 0.691741i
\(527\) −8.35008e6 −1.30968
\(528\) 0 0
\(529\) −4.92055e6 −0.764494
\(530\) −3.96840e6 1.73798e6i −0.613658 0.268753i
\(531\) 0 0
\(532\) −5.59941e6 + 5.16657e6i −0.857756 + 0.791449i
\(533\) 757570.i 0.115506i
\(534\) 0 0
\(535\) 4.73647e6 0.715435
\(536\) −3.57525e6 + 1.23430e6i −0.537520 + 0.185571i
\(537\) 0 0
\(538\) 1.52050e6 3.47183e6i 0.226480 0.517133i
\(539\) 3.21285e6i 0.476342i
\(540\) 0 0
\(541\) 6.84935e6i 1.00613i 0.864247 + 0.503067i \(0.167795\pi\)
−0.864247 + 0.503067i \(0.832205\pi\)
\(542\) −1.08267e7 4.74157e6i −1.58306 0.693304i
\(543\) 0 0
\(544\) 5.78820e6 1.07697e7i 0.838583 1.56029i
\(545\) 609815. 0.0879441
\(546\) 0 0
\(547\) 6.39084e6i 0.913251i −0.889659 0.456625i \(-0.849058\pi\)
0.889659 0.456625i \(-0.150942\pi\)
\(548\) 3.52162e6 + 3.81665e6i 0.500946 + 0.542914i
\(549\) 0 0
\(550\) −456025. + 1.04126e6i −0.0642810 + 0.146776i
\(551\) −5.92391e6 −0.831246
\(552\) 0 0
\(553\) −2.05392e6 −0.285609
\(554\) 1.88091e6 4.29477e6i 0.260372 0.594519i
\(555\) 0 0
\(556\) −7.21441e6 + 6.65672e6i −0.989724 + 0.913216i
\(557\) 463389.i 0.0632861i −0.999499 0.0316430i \(-0.989926\pi\)
0.999499 0.0316430i \(-0.0100740\pi\)
\(558\) 0 0
\(559\) 2.10830e6 0.285367
\(560\) 4.17735e6 + 336446.i 0.562899 + 0.0453363i
\(561\) 0 0
\(562\) 1.24326e7 + 5.44488e6i 1.66043 + 0.727189i
\(563\) 1.07609e7i 1.43080i 0.698715 + 0.715400i \(0.253756\pi\)
−0.698715 + 0.715400i \(0.746244\pi\)
\(564\) 0 0
\(565\) 1.32296e6i 0.174352i
\(566\) 4.55839e6 1.04084e7i 0.598096 1.36566i
\(567\) 0 0
\(568\) 820467. + 2.37655e6i 0.106706 + 0.309083i
\(569\) 1.04253e7 1.34992 0.674961 0.737853i \(-0.264160\pi\)
0.674961 + 0.737853i \(0.264160\pi\)
\(570\) 0 0
\(571\) 1.58675e6i 0.203666i 0.994802 + 0.101833i \(0.0324707\pi\)
−0.994802 + 0.101833i \(0.967529\pi\)
\(572\) 894774. + 969737.i 0.114347 + 0.123926i
\(573\) 0 0
\(574\) −5.01093e6 2.19455e6i −0.634802 0.278014i
\(575\) −769485. −0.0970579
\(576\) 0 0
\(577\) −2.79056e6 −0.348941 −0.174471 0.984662i \(-0.555821\pi\)
−0.174471 + 0.984662i \(0.555821\pi\)
\(578\) −1.57280e7 6.88811e6i −1.95818 0.857592i
\(579\) 0 0
\(580\) 2.20972e6 + 2.39485e6i 0.272751 + 0.295602i
\(581\) 1.09369e6i 0.134417i
\(582\) 0 0
\(583\) −9.84944e6 −1.20016
\(584\) 2.56679e6 + 7.43490e6i 0.311428 + 0.902076i
\(585\) 0 0
\(586\) −3.95327e6 + 9.02668e6i −0.475567 + 1.08589i
\(587\) 1.94272e6i 0.232710i 0.993208 + 0.116355i \(0.0371210\pi\)
−0.993208 + 0.116355i \(0.962879\pi\)
\(588\) 0 0
\(589\) 5.75353e6i 0.683355i
\(590\) 3.27256e6 + 1.43323e6i 0.387041 + 0.169506i
\(591\) 0 0
\(592\) 1.08772e7 + 876055.i 1.27559 + 0.102737i
\(593\) −8.14862e6 −0.951584 −0.475792 0.879558i \(-0.657839\pi\)
−0.475792 + 0.879558i \(0.657839\pi\)
\(594\) 0 0
\(595\) 8.63845e6i 1.00033i
\(596\) 8.65720e6 7.98798e6i 0.998302 0.921131i
\(597\) 0 0
\(598\) −358313. + 818154.i −0.0409742 + 0.0935583i
\(599\) −1.49677e6 −0.170447 −0.0852234 0.996362i \(-0.527160\pi\)
−0.0852234 + 0.996362i \(0.527160\pi\)
\(600\) 0 0
\(601\) −9.04082e6 −1.02099 −0.510495 0.859881i \(-0.670538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(602\) 6.10740e6 1.39453e7i 0.686855 1.56833i
\(603\) 0 0
\(604\) 7.30910e6 + 7.92144e6i 0.815213 + 0.883511i
\(605\) 1.44189e6i 0.160156i
\(606\) 0 0
\(607\) −3.63200e6 −0.400105 −0.200052 0.979785i \(-0.564111\pi\)
−0.200052 + 0.979785i \(0.564111\pi\)
\(608\) 7.42075e6 + 3.98829e6i 0.814120 + 0.437550i
\(609\) 0 0
\(610\) −5.06712e6 2.21916e6i −0.551362 0.241471i
\(611\) 2.98027e6i 0.322962i
\(612\) 0 0
\(613\) 1.89937e6i 0.204154i −0.994776 0.102077i \(-0.967451\pi\)
0.994776 0.102077i \(-0.0325488\pi\)
\(614\) −2.22099e6 + 5.07128e6i −0.237752 + 0.542871i
\(615\) 0 0
\(616\) 9.00631e6 3.10929e6i 0.956302 0.330149i
\(617\) −5.96746e6 −0.631069 −0.315534 0.948914i \(-0.602184\pi\)
−0.315534 + 0.948914i \(0.602184\pi\)
\(618\) 0 0
\(619\) 1.46307e7i 1.53475i −0.641196 0.767377i \(-0.721561\pi\)
0.641196 0.767377i \(-0.278439\pi\)
\(620\) −2.32597e6 + 2.14616e6i −0.243010 + 0.224225i
\(621\) 0 0
\(622\) −8.16905e6 3.57766e6i −0.846634 0.370786i
\(623\) 1.47992e7 1.52763
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −8.34055e6 3.65277e6i −0.850666 0.372552i
\(627\) 0 0
\(628\) −6.37936e6 + 5.88622e6i −0.645473 + 0.595577i
\(629\) 2.24932e7i 2.26686i
\(630\) 0 0
\(631\) −1.47747e7 −1.47722 −0.738609 0.674134i \(-0.764517\pi\)
−0.738609 + 0.674134i \(0.764517\pi\)
\(632\) 741154. + 2.14681e6i 0.0738101 + 0.213796i
\(633\) 0 0
\(634\) −3.41923e6 + 7.80729e6i −0.337835 + 0.771395i
\(635\) 7.34126e6i 0.722497i
\(636\) 0 0
\(637\) 1.28152e6i 0.125134i
\(638\) 6.78603e6 + 2.97196e6i 0.660030 + 0.289062i
\(639\) 0 0
\(640\) −1.15572e6 4.48766e6i −0.111533 0.433082i
\(641\) −1.81017e7 −1.74010 −0.870050 0.492964i \(-0.835913\pi\)
−0.870050 + 0.492964i \(0.835913\pi\)
\(642\) 0 0
\(643\) 7.21849e6i 0.688524i 0.938874 + 0.344262i \(0.111871\pi\)
−0.938874 + 0.344262i \(0.888129\pi\)
\(644\) 4.37369e6 + 4.74011e6i 0.415559 + 0.450374i
\(645\) 0 0
\(646\) 6.96636e6 1.59066e7i 0.656787 1.49967i
\(647\) −2.44672e6 −0.229786 −0.114893 0.993378i \(-0.536653\pi\)
−0.114893 + 0.993378i \(0.536653\pi\)
\(648\) 0 0
\(649\) 8.12237e6 0.756957
\(650\) 181896. 415332.i 0.0168865 0.0385577i
\(651\) 0 0
\(652\) 2.85403e6 2.63341e6i 0.262930 0.242605i
\(653\) 5.92231e6i 0.543511i 0.962366 + 0.271755i \(0.0876041\pi\)
−0.962366 + 0.271755i \(0.912396\pi\)
\(654\) 0 0
\(655\) 7.94346e6 0.723446
\(656\) −485615. + 6.02943e6i −0.0440587 + 0.547037i
\(657\) 0 0
\(658\) 1.97129e7 + 8.63333e6i 1.77495 + 0.777345i
\(659\) 2.68146e6i 0.240523i 0.992742 + 0.120262i \(0.0383734\pi\)
−0.992742 + 0.120262i \(0.961627\pi\)
\(660\) 0 0
\(661\) 1.14098e7i 1.01572i −0.861440 0.507859i \(-0.830437\pi\)
0.861440 0.507859i \(-0.169563\pi\)
\(662\) 895150. 2.04394e6i 0.0793873 0.181269i
\(663\) 0 0
\(664\) −1.14315e6 + 394657.i −0.100620 + 0.0347376i
\(665\) 5.95223e6 0.521946
\(666\) 0 0
\(667\) 5.01481e6i 0.436456i
\(668\) −1.21728e6 1.31926e6i −0.105548 0.114390i
\(669\) 0 0
\(670\) 2.70673e6 + 1.18542e6i 0.232948 + 0.102020i
\(671\) −1.25764e7 −1.07833
\(672\) 0 0
\(673\) −5.13646e6 −0.437146 −0.218573 0.975821i \(-0.570140\pi\)
−0.218573 + 0.975821i \(0.570140\pi\)
\(674\) 7.09269e6 + 3.10627e6i 0.601397 + 0.263384i
\(675\) 0 0
\(676\) 7.70021e6 + 8.34533e6i 0.648091 + 0.702387i
\(677\) 4.91407e6i 0.412068i −0.978545 0.206034i \(-0.933944\pi\)
0.978545 0.206034i \(-0.0660558\pi\)
\(678\) 0 0
\(679\) 2.44930e7 2.03877
\(680\) −9.02910e6 + 3.11716e6i −0.748811 + 0.258516i
\(681\) 0 0
\(682\) −2.88648e6 + 6.59085e6i −0.237634 + 0.542601i
\(683\) 4.30841e6i 0.353399i −0.984265 0.176700i \(-0.943458\pi\)
0.984265 0.176700i \(-0.0565421\pi\)
\(684\) 0 0
\(685\) 4.05713e6i 0.330364i
\(686\) 5.78043e6 + 2.53156e6i 0.468975 + 0.205389i
\(687\) 0 0
\(688\) −1.67798e7 1.35146e6i −1.35150 0.108851i
\(689\) 3.92867e6 0.315281
\(690\) 0 0
\(691\) 2.17672e6i 0.173423i 0.996233 + 0.0867116i \(0.0276359\pi\)
−0.996233 + 0.0867116i \(0.972364\pi\)
\(692\) 3.94319e6 3.63837e6i 0.313027 0.288829i
\(693\) 0 0
\(694\) 1.29211e6 2.95034e6i 0.101836 0.232527i
\(695\) 7.66898e6 0.602249
\(696\) 0 0
\(697\) 1.24684e7 0.972142
\(698\) −4.99375e6 + 1.14025e7i −0.387961 + 0.885851i
\(699\) 0 0
\(700\) −2.22028e6 2.40629e6i −0.171263 0.185611i
\(701\) 1.31991e6i 0.101450i 0.998713 + 0.0507248i \(0.0161531\pi\)
−0.998713 + 0.0507248i \(0.983847\pi\)
\(702\) 0 0
\(703\) 1.54987e7 1.18279
\(704\) −6.49981e6 8.29162e6i −0.494275 0.630533i
\(705\) 0 0
\(706\) −1.30349e7 5.70870e6i −0.984232 0.431048i
\(707\) 1.87970e7i 1.41429i
\(708\) 0 0
\(709\) 1.33410e7i 0.996721i 0.866970 + 0.498360i \(0.166064\pi\)
−0.866970 + 0.498360i \(0.833936\pi\)
\(710\) 787977. 1.79923e6i 0.0586634 0.133949i
\(711\) 0 0
\(712\) −5.34024e6 1.54684e7i −0.394785 1.14353i
\(713\) −4.87058e6 −0.358803
\(714\) 0 0
\(715\) 1.03084e6i 0.0754094i
\(716\) 1.26039e7 1.16296e7i 0.918800 0.847775i
\(717\) 0 0
\(718\) −4.11846e6 1.80369e6i −0.298143 0.130573i
\(719\) −2.25289e7 −1.62524 −0.812620 0.582794i \(-0.801960\pi\)
−0.812620 + 0.582794i \(0.801960\pi\)
\(720\) 0 0
\(721\) 6.31691e6 0.452550
\(722\) −1.87013e6 819031.i −0.133515 0.0584732i
\(723\) 0 0
\(724\) 2.66805e6 2.46180e6i 0.189168 0.174545i
\(725\) 2.54574e6i 0.179874i
\(726\) 0 0
\(727\) −1.49088e7 −1.04618 −0.523091 0.852277i \(-0.675221\pi\)
−0.523091 + 0.852277i \(0.675221\pi\)
\(728\) −3.59237e6 + 1.24021e6i −0.251219 + 0.0867296i
\(729\) 0 0
\(730\) 2.46514e6 5.62878e6i 0.171212 0.390937i
\(731\) 3.46994e7i 2.40175i
\(732\) 0 0
\(733\) 7.98329e6i 0.548810i 0.961614 + 0.274405i \(0.0884809\pi\)
−0.961614 + 0.274405i \(0.911519\pi\)
\(734\) 4.53037e6 + 1.98409e6i 0.310380 + 0.135932i
\(735\) 0 0
\(736\) 3.37624e6 6.28193e6i 0.229741 0.427463i
\(737\) 6.71802e6 0.455588
\(738\) 0 0
\(739\) 3.81018e6i 0.256646i −0.991732 0.128323i \(-0.959041\pi\)
0.991732 0.128323i \(-0.0409594\pi\)
\(740\) −5.78127e6 6.26561e6i −0.388100 0.420615i
\(741\) 0 0
\(742\) 1.13807e7 2.59861e7i 0.758855 1.73273i
\(743\) −8.99457e6 −0.597734 −0.298867 0.954295i \(-0.596609\pi\)
−0.298867 + 0.954295i \(0.596609\pi\)
\(744\) 0 0
\(745\) −9.20268e6 −0.607468
\(746\) −1.10337e7 + 2.51937e7i −0.725893 + 1.65747i
\(747\) 0 0
\(748\) −1.59604e7 + 1.47266e7i −1.04301 + 0.962383i
\(749\) 3.10156e7i 2.02011i
\(750\) 0 0
\(751\) 1.18325e7 0.765559 0.382779 0.923840i \(-0.374967\pi\)
0.382779 + 0.923840i \(0.374967\pi\)
\(752\) 1.91040e6 2.37197e7i 0.123191 1.52955i
\(753\) 0 0
\(754\) −2.70676e6 1.18543e6i −0.173389 0.0759362i
\(755\) 8.42056e6i 0.537618i
\(756\) 0 0
\(757\) 5.14086e6i 0.326059i −0.986621 0.163030i \(-0.947873\pi\)
0.986621 0.163030i \(-0.0521266\pi\)
\(758\) 2.81739e6 6.43308e6i 0.178104 0.406673i
\(759\) 0 0
\(760\) −2.14785e6 6.22140e6i −0.134887 0.390710i
\(761\) −8.21979e6 −0.514516 −0.257258 0.966343i \(-0.582819\pi\)
−0.257258 + 0.966343i \(0.582819\pi\)
\(762\) 0 0
\(763\) 3.99322e6i 0.248320i
\(764\) −8.50230e6 9.21461e6i −0.526991 0.571142i
\(765\) 0 0
\(766\) −160477. 70281.3i −0.00988189 0.00432781i
\(767\) −3.23979e6 −0.198851
\(768\) 0 0
\(769\) −1.11390e7 −0.679251 −0.339626 0.940561i \(-0.610300\pi\)
−0.339626 + 0.940561i \(0.610300\pi\)
\(770\) −6.81846e6 2.98617e6i −0.414438 0.181504i
\(771\) 0 0
\(772\) −5.67487e6 6.15030e6i −0.342699 0.371410i
\(773\) 5.63671e6i 0.339294i 0.985505 + 0.169647i \(0.0542628\pi\)
−0.985505 + 0.169647i \(0.945737\pi\)
\(774\) 0 0
\(775\) 2.47252e6 0.147872
\(776\) −8.83825e6 2.56007e7i −0.526880 1.52615i
\(777\) 0 0
\(778\) −9.70963e6 + 2.21705e7i −0.575113 + 1.31318i
\(779\) 8.59123e6i 0.507238i
\(780\) 0 0
\(781\) 4.46561e6i 0.261971i
\(782\) −1.34655e7 5.89728e6i −0.787421 0.344854i
\(783\) 0 0
\(784\) −821473. + 1.01995e7i −0.0477313 + 0.592636i
\(785\) 6.78132e6 0.392771
\(786\) 0 0
\(787\) 3.07197e7i 1.76799i 0.467495 + 0.883996i \(0.345157\pi\)
−0.467495 + 0.883996i \(0.654843\pi\)
\(788\) −2.11416e7 + 1.95073e7i −1.21289 + 1.11913i
\(789\) 0 0
\(790\) 711804. 1.62530e6i 0.0405782 0.0926541i
\(791\) 8.66309e6 0.492302
\(792\) 0 0
\(793\) 5.01639e6 0.283275
\(794\) −5.24489e6 + 1.19759e7i −0.295246 + 0.674151i
\(795\) 0 0
\(796\) −1.81672e6 1.96892e6i −0.101626 0.110140i
\(797\) 2.22339e7i 1.23985i −0.784660 0.619926i \(-0.787163\pi\)
0.784660 0.619926i \(-0.212837\pi\)
\(798\) 0 0
\(799\) −4.90505e7 −2.71817
\(800\) −1.71393e6 + 3.18899e6i −0.0946820 + 0.176168i
\(801\) 0 0
\(802\) 5.16278e6 + 2.26106e6i 0.283431 + 0.124130i
\(803\) 1.39704e7i 0.764577i
\(804\) 0 0
\(805\) 5.03878e6i 0.274054i
\(806\) 1.15134e6 2.62891e6i 0.0624260 0.142540i
\(807\) 0 0
\(808\) −1.96470e7 + 6.78285e6i −1.05869 + 0.365497i
\(809\) −1.51247e7 −0.812484 −0.406242 0.913765i \(-0.633161\pi\)
−0.406242 + 0.913765i \(0.633161\pi\)
\(810\) 0 0
\(811\) 1.35982e7i 0.725990i 0.931791 + 0.362995i \(0.118246\pi\)
−0.931791 + 0.362995i \(0.881754\pi\)
\(812\) −1.56820e7 + 1.44698e7i −0.834665 + 0.770143i
\(813\) 0 0
\(814\) −1.77542e7 7.77552e6i −0.939162 0.411309i
\(815\) −3.03386e6 −0.159993
\(816\) 0 0
\(817\) −2.39092e7 −1.25317
\(818\) 2.68385e7 + 1.17540e7i 1.40241 + 0.614191i
\(819\) 0 0
\(820\) 3.47315e6 3.20467e6i 0.180380 0.166437i
\(821\) 2.56951e7i 1.33043i 0.746651 + 0.665216i \(0.231660\pi\)
−0.746651 + 0.665216i \(0.768340\pi\)
\(822\) 0 0
\(823\) 8.73184e6 0.449372 0.224686 0.974431i \(-0.427864\pi\)
0.224686 + 0.974431i \(0.427864\pi\)
\(824\) −2.27944e6 6.60257e6i −0.116953 0.338762i
\(825\) 0 0
\(826\) −9.38512e6 + 2.14295e7i −0.478619 + 1.09285i
\(827\) 1.46565e6i 0.0745191i −0.999306 0.0372596i \(-0.988137\pi\)
0.999306 0.0372596i \(-0.0118628\pi\)
\(828\) 0 0
\(829\) 4.49887e6i 0.227362i −0.993517 0.113681i \(-0.963736\pi\)
0.993517 0.113681i \(-0.0362641\pi\)
\(830\) 865453. + 379028.i 0.0436062 + 0.0190975i
\(831\) 0 0
\(832\) 2.59259e6 + 3.30729e6i 0.129845 + 0.165640i
\(833\) 2.10918e7 1.05317
\(834\) 0 0
\(835\) 1.40239e6i 0.0696067i
\(836\) −1.01472e7 1.09973e7i −0.502146 0.544215i
\(837\) 0 0
\(838\) 8.11741e6 1.85349e7i 0.399307 0.911758i
\(839\) 1.43801e7 0.705273 0.352636 0.935760i \(-0.385285\pi\)
0.352636 + 0.935760i \(0.385285\pi\)
\(840\) 0 0
\(841\) 3.92030e6 0.191130
\(842\) −4.89834e6 + 1.11846e7i −0.238105 + 0.543677i
\(843\) 0 0
\(844\) −1.30206e7 + 1.20141e7i −0.629180 + 0.580543i
\(845\) 8.87115e6i 0.427404i
\(846\) 0 0
\(847\) 9.44185e6 0.452219
\(848\) −3.12679e7 2.51834e6i −1.49317 0.120261i
\(849\) 0 0
\(850\) 6.83571e6 + 2.99372e6i 0.324516 + 0.142123i
\(851\) 1.31202e7i 0.621036i
\(852\) 0 0
\(853\) 2.62365e7i 1.23462i −0.786720 0.617310i \(-0.788222\pi\)
0.786720 0.617310i \(-0.211778\pi\)
\(854\) 1.45316e7 3.31808e7i 0.681820 1.55683i
\(855\) 0 0
\(856\) 3.24182e7 1.11919e7i 1.51218 0.522058i
\(857\) 6.34066e6 0.294905 0.147453 0.989069i \(-0.452893\pi\)
0.147453 + 0.989069i \(0.452893\pi\)
\(858\) 0 0
\(859\) 1.09488e7i 0.506273i −0.967431 0.253137i \(-0.918538\pi\)
0.967431 0.253137i \(-0.0814622\pi\)
\(860\) 8.91854e6 + 9.66572e6i 0.411195 + 0.445644i
\(861\) 0 0
\(862\) −9.37318e6 4.10501e6i −0.429654 0.188168i
\(863\) 3.28604e6 0.150192 0.0750958 0.997176i \(-0.476074\pi\)
0.0750958 + 0.997176i \(0.476074\pi\)
\(864\) 0 0
\(865\) −4.19164e6 −0.190478
\(866\) −6.67978e6 2.92543e6i −0.302669 0.132555i
\(867\) 0 0
\(868\) −1.40536e7 1.52310e7i −0.633123 0.686165i
\(869\) 4.03393e6i 0.181209i
\(870\) 0 0
\(871\) −2.67963e6 −0.119682
\(872\) 4.17380e6 1.44094e6i 0.185883 0.0641735i
\(873\) 0 0
\(874\) 4.06345e6 9.27828e6i 0.179936 0.410855i
\(875\) 2.55791e6i 0.112944i
\(876\) 0 0
\(877\) 7.75326e6i 0.340397i 0.985410 + 0.170198i \(0.0544409\pi\)
−0.985410 + 0.170198i \(0.945559\pi\)
\(878\) −9.82937e6 4.30481e6i −0.430318 0.188459i
\(879\) 0 0
\(880\) −660784. + 8.20435e6i −0.0287642 + 0.357139i
\(881\) 449453. 0.0195094 0.00975471 0.999952i \(-0.496895\pi\)
0.00975471 + 0.999952i \(0.496895\pi\)
\(882\) 0 0
\(883\) 2.42001e7i 1.04452i −0.852787 0.522259i \(-0.825089\pi\)
0.852787 0.522259i \(-0.174911\pi\)
\(884\) 6.36614e6 5.87402e6i 0.273997 0.252816i
\(885\) 0 0
\(886\) −1.36610e7 + 3.11928e7i −0.584652 + 1.33496i
\(887\) −8.80204e6 −0.375642 −0.187821 0.982203i \(-0.560143\pi\)
−0.187821 + 0.982203i \(0.560143\pi\)
\(888\) 0 0
\(889\) 4.80724e7 2.04005
\(890\) −5.12877e6 + 1.17108e7i −0.217039 + 0.495576i
\(891\) 0 0
\(892\) 6.06302e6 + 6.57097e6i 0.255139 + 0.276514i
\(893\) 3.37977e7i 1.41827i
\(894\) 0 0
\(895\) −1.33980e7 −0.559091
\(896\) 2.93863e7 7.56797e6i 1.22286 0.314926i
\(897\) 0 0
\(898\) −1.24403e7 5.44826e6i −0.514801 0.225459i
\(899\) 1.61137e7i 0.664959i
\(900\) 0 0
\(901\) 6.46597e7i 2.65352i
\(902\) 4.31012e6 9.84151e6i 0.176390 0.402759i
\(903\) 0 0
\(904\) −3.12606e6 9.05486e6i −0.127226 0.368520i
\(905\) −2.83616e6 −0.115109
\(906\) 0 0
\(907\) 1.35035e7i 0.545040i −0.962150 0.272520i \(-0.912143\pi\)
0.962150 0.272520i \(-0.0878571\pi\)
\(908\) −1.39479e7 + 1.28697e7i −0.561426 + 0.518027i
\(909\) 0 0
\(910\) 2.71969e6 + 1.19110e6i 0.108872 + 0.0476809i
\(911\) 1.74802e7 0.697831 0.348915 0.937154i \(-0.386550\pi\)
0.348915 + 0.937154i \(0.386550\pi\)
\(912\) 0 0
\(913\) 2.14803e6 0.0852830
\(914\) 4.45083e6 + 1.94926e6i 0.176228 + 0.0771798i
\(915\) 0 0
\(916\) 2.18219e7 2.01350e7i 0.859317 0.792890i
\(917\) 5.20157e7i 2.04273i
\(918\) 0 0
\(919\) 3.84416e7 1.50146 0.750728 0.660612i \(-0.229703\pi\)
0.750728 + 0.660612i \(0.229703\pi\)
\(920\) −5.26664e6 + 1.81823e6i −0.205147 + 0.0708238i
\(921\) 0 0
\(922\) 5.29849e6 1.20983e7i 0.205270 0.468702i
\(923\) 1.78121e6i 0.0688194i
\(924\) 0 0
\(925\) 6.66040e6i 0.255945i
\(926\) 7.00542e6 + 3.06805e6i 0.268477 + 0.117580i
\(927\) 0 0
\(928\) 2.07830e7 + 1.11698e7i 0.792205 + 0.425772i
\(929\) 694053. 0.0263848 0.0131924 0.999913i \(-0.495801\pi\)
0.0131924 + 0.999913i \(0.495801\pi\)
\(930\) 0 0
\(931\) 1.45330e7i 0.549518i
\(932\) 2.37138e7 + 2.57005e7i 0.894254 + 0.969174i
\(933\) 0 0
\(934\) 1.46149e7 3.33709e7i 0.548186 1.25170i
\(935\) 1.69660e7 0.634673
\(936\) 0 0
\(937\) 4.08849e7 1.52130 0.760648 0.649165i \(-0.224881\pi\)
0.760648 + 0.649165i \(0.224881\pi\)
\(938\) −7.76244e6 + 1.77243e7i −0.288065 + 0.657753i
\(939\) 0 0
\(940\) −1.36633e7 + 1.26071e7i −0.504355 + 0.465367i
\(941\) 1.21324e7i 0.446655i 0.974743 + 0.223328i \(0.0716920\pi\)
−0.974743 + 0.223328i \(0.928308\pi\)
\(942\) 0 0
\(943\) 7.27279e6 0.266331
\(944\) 2.57852e7 + 2.07676e6i 0.941760 + 0.0758500i
\(945\) 0 0
\(946\) 2.73887e7 + 1.19950e7i 0.995049 + 0.435785i
\(947\) 3.38948e7i 1.22817i −0.789241 0.614084i \(-0.789526\pi\)
0.789241 0.614084i \(-0.210474\pi\)
\(948\) 0 0
\(949\) 5.57242e6i 0.200853i
\(950\) −2.06279e6 + 4.71007e6i −0.0741560 + 0.169324i
\(951\) 0 0
\(952\) −2.04119e7 5.91247e7i −0.729948 2.11435i
\(953\) 5.18152e7 1.84810 0.924049 0.382274i \(-0.124859\pi\)
0.924049 + 0.382274i \(0.124859\pi\)
\(954\) 0 0
\(955\) 9.79521e6i 0.347541i
\(956\) 1.73160e7 + 1.87667e7i 0.612778 + 0.664116i
\(957\) 0 0
\(958\) −9.60470e6 4.20641e6i −0.338119 0.148080i
\(959\) 2.65671e7 0.932819
\(960\) 0 0
\(961\) −1.29789e7 −0.453347
\(962\) 7.08166e6 + 3.10144e6i 0.246716 + 0.108050i
\(963\) 0 0
\(964\) −3.51241e7 3.80667e7i −1.21734 1.31933i
\(965\) 6.53783e6i 0.226003i
\(966\) 0 0
\(967\) −4.41440e7 −1.51812 −0.759058 0.651023i \(-0.774340\pi\)
−0.759058 + 0.651023i \(0.774340\pi\)
\(968\) −3.40707e6 9.86884e6i −0.116867 0.338515i
\(969\) 0 0
\(970\) −8.48825e6 + 1.93816e7i −0.289660 + 0.661395i
\(971\) 2.25369e7i 0.767091i 0.923522 + 0.383546i \(0.125297\pi\)
−0.923522 + 0.383546i \(0.874703\pi\)
\(972\) 0 0
\(973\) 5.02184e7i 1.70052i
\(974\) −1.30407e7 5.71122e6i −0.440457 0.192900i
\(975\) 0 0
\(976\) −3.99250e7 3.21558e6i −1.34159 0.108053i
\(977\) 508955. 0.0170586 0.00852929 0.999964i \(-0.497285\pi\)
0.00852929 + 0.999964i \(0.497285\pi\)
\(978\) 0 0
\(979\) 2.90657e7i 0.969224i
\(980\) 5.87523e6 5.42106e6i 0.195416 0.180310i
\(981\) 0 0
\(982\) −1.22344e7 + 2.79354e7i −0.404859 + 0.924433i
\(983\) 1.38312e7 0.456536 0.228268 0.973598i \(-0.426694\pi\)
0.228268 + 0.973598i \(0.426694\pi\)
\(984\) 0 0
\(985\) 2.24737e7 0.738046
\(986\) 1.95104e7 4.45490e7i 0.639107 1.45930i
\(987\) 0 0
\(988\) 4.04743e6 + 4.38652e6i 0.131913 + 0.142964i
\(989\) 2.02400e7i 0.657992i
\(990\) 0 0
\(991\) 1.13368e7 0.366696 0.183348 0.983048i \(-0.441307\pi\)
0.183348 + 0.983048i \(0.441307\pi\)
\(992\) −1.08486e7 + 2.01852e7i −0.350020 + 0.651259i
\(993\) 0 0
\(994\) 1.17818e7 + 5.15986e6i 0.378220 + 0.165643i
\(995\) 2.09298e6i 0.0670205i
\(996\) 0 0
\(997\) 3.66390e7i 1.16736i 0.811983 + 0.583681i \(0.198388\pi\)
−0.811983 + 0.583681i \(0.801612\pi\)
\(998\) −7.22464e6 + 1.64964e7i −0.229609 + 0.524278i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.6.k.b.181.3 20
3.2 odd 2 40.6.d.a.21.18 yes 20
8.5 even 2 inner 360.6.k.b.181.4 20
12.11 even 2 160.6.d.a.81.14 20
15.2 even 4 200.6.f.b.149.8 20
15.8 even 4 200.6.f.c.149.13 20
15.14 odd 2 200.6.d.b.101.3 20
24.5 odd 2 40.6.d.a.21.17 20
24.11 even 2 160.6.d.a.81.7 20
60.23 odd 4 800.6.f.b.49.8 20
60.47 odd 4 800.6.f.c.49.13 20
60.59 even 2 800.6.d.c.401.7 20
120.29 odd 2 200.6.d.b.101.4 20
120.53 even 4 200.6.f.b.149.7 20
120.59 even 2 800.6.d.c.401.14 20
120.77 even 4 200.6.f.c.149.14 20
120.83 odd 4 800.6.f.c.49.14 20
120.107 odd 4 800.6.f.b.49.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.17 20 24.5 odd 2
40.6.d.a.21.18 yes 20 3.2 odd 2
160.6.d.a.81.7 20 24.11 even 2
160.6.d.a.81.14 20 12.11 even 2
200.6.d.b.101.3 20 15.14 odd 2
200.6.d.b.101.4 20 120.29 odd 2
200.6.f.b.149.7 20 120.53 even 4
200.6.f.b.149.8 20 15.2 even 4
200.6.f.c.149.13 20 15.8 even 4
200.6.f.c.149.14 20 120.77 even 4
360.6.k.b.181.3 20 1.1 even 1 trivial
360.6.k.b.181.4 20 8.5 even 2 inner
800.6.d.c.401.7 20 60.59 even 2
800.6.d.c.401.14 20 120.59 even 2
800.6.f.b.49.7 20 120.107 odd 4
800.6.f.b.49.8 20 60.23 odd 4
800.6.f.c.49.13 20 60.47 odd 4
800.6.f.c.49.14 20 120.83 odd 4