Properties

Label 200.6.d.b.101.4
Level $200$
Weight $6$
Character 200.101
Analytic conductor $32.077$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,6,Mod(101,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.101");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.0767639626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{45}\cdot 3^{4}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.4
Root \(3.72553 - 1.45618i\) of defining polynomial
Character \(\chi\) \(=\) 200.101
Dual form 200.6.d.b.101.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.18171 + 2.26935i) q^{2} -10.8240i q^{3} +(21.7001 - 23.5182i) q^{4} +(24.5634 + 56.0868i) q^{6} -163.706 q^{7} +(-59.0729 + 171.109i) q^{8} +125.841 q^{9} +321.520i q^{11} +(-254.561 - 234.883i) q^{12} -128.246i q^{13} +(848.277 - 371.506i) q^{14} +(-82.2074 - 1020.69i) q^{16} +2110.72 q^{17} +(-652.070 + 285.576i) q^{18} -1454.37i q^{19} +1771.96i q^{21} +(-729.641 - 1666.02i) q^{22} +1231.18 q^{23} +(1852.09 + 639.406i) q^{24} +(291.033 + 664.531i) q^{26} -3992.34i q^{27} +(-3552.45 + 3850.07i) q^{28} +4073.19i q^{29} -3956.03 q^{31} +(2742.28 + 5102.38i) q^{32} +3480.14 q^{33} +(-10937.1 + 4789.95i) q^{34} +(2730.76 - 2959.54i) q^{36} -10656.6i q^{37} +(3300.46 + 7536.11i) q^{38} -1388.13 q^{39} -5907.19 q^{41} +(-4021.18 - 9181.76i) q^{42} +16439.6i q^{43} +(7561.57 + 6977.04i) q^{44} +(-6379.59 + 2793.96i) q^{46} -23238.8 q^{47} +(-11048.0 + 889.814i) q^{48} +9992.68 q^{49} -22846.5i q^{51} +(-3016.10 - 2782.95i) q^{52} -30634.0i q^{53} +(9059.99 + 20687.1i) q^{54} +(9670.60 - 28011.6i) q^{56} -15742.1 q^{57} +(-9243.47 - 21106.1i) q^{58} -25262.4i q^{59} -39115.5i q^{61} +(20499.0 - 8977.61i) q^{62} -20600.9 q^{63} +(-25788.8 - 20215.9i) q^{64} +(-18033.1 + 7897.64i) q^{66} -20894.5i q^{67} +(45803.0 - 49640.3i) q^{68} -13326.3i q^{69} +13889.1 q^{71} +(-7433.78 + 21532.5i) q^{72} +43451.2 q^{73} +(24183.6 + 55219.6i) q^{74} +(-34204.1 - 31560.0i) q^{76} -52634.8i q^{77} +(7192.89 - 3150.15i) q^{78} -12546.4 q^{79} -12633.8 q^{81} +(30609.3 - 13405.4i) q^{82} +6680.84i q^{83} +(41673.2 + 38451.7i) q^{84} +(-37307.1 - 85185.1i) q^{86} +44088.2 q^{87} +(-55015.1 - 18993.2i) q^{88} -90400.9 q^{89} +20994.6i q^{91} +(26716.7 - 28955.0i) q^{92} +42820.2i q^{93} +(120416. - 52736.8i) q^{94} +(55228.3 - 29682.5i) q^{96} -149616. q^{97} +(-51779.1 + 22676.8i) q^{98} +40460.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 32 q^{4} + 204 q^{6} + 196 q^{7} - 248 q^{8} - 1620 q^{9} + 1876 q^{12} + 2708 q^{14} + 3080 q^{16} + 5294 q^{18} - 13836 q^{22} + 4676 q^{23} + 1032 q^{24} - 8084 q^{26} - 2108 q^{28}+ \cdots - 216942 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.18171 + 2.26935i −0.916005 + 0.401167i
\(3\) 10.8240i 0.694361i −0.937798 0.347180i \(-0.887139\pi\)
0.937798 0.347180i \(-0.112861\pi\)
\(4\) 21.7001 23.5182i 0.678130 0.734942i
\(5\) 0 0
\(6\) 24.5634 + 56.0868i 0.278555 + 0.636038i
\(7\) −163.706 −1.26276 −0.631378 0.775475i \(-0.717510\pi\)
−0.631378 + 0.775475i \(0.717510\pi\)
\(8\) −59.0729 + 171.109i −0.326335 + 0.945254i
\(9\) 125.841 0.517863
\(10\) 0 0
\(11\) 321.520i 0.801174i 0.916259 + 0.400587i \(0.131194\pi\)
−0.916259 + 0.400587i \(0.868806\pi\)
\(12\) −254.561 234.883i −0.510315 0.470867i
\(13\) 128.246i 0.210467i −0.994448 0.105233i \(-0.966441\pi\)
0.994448 0.105233i \(-0.0335590\pi\)
\(14\) 848.277 371.506i 1.15669 0.506577i
\(15\) 0 0
\(16\) −82.2074 1020.69i −0.0802807 0.996772i
\(17\) 2110.72 1.77137 0.885683 0.464290i \(-0.153690\pi\)
0.885683 + 0.464290i \(0.153690\pi\)
\(18\) −652.070 + 285.576i −0.474365 + 0.207750i
\(19\) 1454.37i 0.924252i −0.886814 0.462126i \(-0.847087\pi\)
0.886814 0.462126i \(-0.152913\pi\)
\(20\) 0 0
\(21\) 1771.96i 0.876809i
\(22\) −729.641 1666.02i −0.321405 0.733879i
\(23\) 1231.18 0.485289 0.242645 0.970115i \(-0.421985\pi\)
0.242645 + 0.970115i \(0.421985\pi\)
\(24\) 1852.09 + 639.406i 0.656347 + 0.226594i
\(25\) 0 0
\(26\) 291.033 + 664.531i 0.0844325 + 0.192789i
\(27\) 3992.34i 1.05394i
\(28\) −3552.45 + 3850.07i −0.856313 + 0.928053i
\(29\) 4073.19i 0.899372i 0.893187 + 0.449686i \(0.148464\pi\)
−0.893187 + 0.449686i \(0.851536\pi\)
\(30\) 0 0
\(31\) −3956.03 −0.739360 −0.369680 0.929159i \(-0.620533\pi\)
−0.369680 + 0.929159i \(0.620533\pi\)
\(32\) 2742.28 + 5102.38i 0.473410 + 0.880842i
\(33\) 3480.14 0.556304
\(34\) −10937.1 + 4789.95i −1.62258 + 0.710615i
\(35\) 0 0
\(36\) 2730.76 2959.54i 0.351178 0.380600i
\(37\) 10656.6i 1.27972i −0.768490 0.639861i \(-0.778992\pi\)
0.768490 0.639861i \(-0.221008\pi\)
\(38\) 3300.46 + 7536.11i 0.370780 + 0.846620i
\(39\) −1388.13 −0.146140
\(40\) 0 0
\(41\) −5907.19 −0.548809 −0.274404 0.961614i \(-0.588481\pi\)
−0.274404 + 0.961614i \(0.588481\pi\)
\(42\) −4021.18 9181.76i −0.351747 0.803161i
\(43\) 16439.6i 1.35588i 0.735119 + 0.677938i \(0.237126\pi\)
−0.735119 + 0.677938i \(0.762874\pi\)
\(44\) 7561.57 + 6977.04i 0.588817 + 0.543300i
\(45\) 0 0
\(46\) −6379.59 + 2793.96i −0.444527 + 0.194682i
\(47\) −23238.8 −1.53450 −0.767252 0.641345i \(-0.778377\pi\)
−0.767252 + 0.641345i \(0.778377\pi\)
\(48\) −11048.0 + 889.814i −0.692120 + 0.0557438i
\(49\) 9992.68 0.594555
\(50\) 0 0
\(51\) 22846.5i 1.22997i
\(52\) −3016.10 2782.95i −0.154681 0.142724i
\(53\) 30634.0i 1.49801i −0.662567 0.749003i \(-0.730533\pi\)
0.662567 0.749003i \(-0.269467\pi\)
\(54\) 9059.99 + 20687.1i 0.422808 + 0.965418i
\(55\) 0 0
\(56\) 9670.60 28011.6i 0.412082 1.19363i
\(57\) −15742.1 −0.641764
\(58\) −9243.47 21106.1i −0.360799 0.823829i
\(59\) 25262.4i 0.944810i −0.881382 0.472405i \(-0.843386\pi\)
0.881382 0.472405i \(-0.156614\pi\)
\(60\) 0 0
\(61\) 39115.5i 1.34594i −0.739672 0.672968i \(-0.765019\pi\)
0.739672 0.672968i \(-0.234981\pi\)
\(62\) 20499.0 8977.61i 0.677257 0.296607i
\(63\) −20600.9 −0.653935
\(64\) −25788.8 20215.9i −0.787011 0.616939i
\(65\) 0 0
\(66\) −18033.1 + 7897.64i −0.509577 + 0.223171i
\(67\) 20894.5i 0.568651i −0.958728 0.284325i \(-0.908230\pi\)
0.958728 0.284325i \(-0.0917696\pi\)
\(68\) 45803.0 49640.3i 1.20122 1.30185i
\(69\) 13326.3i 0.336966i
\(70\) 0 0
\(71\) 13889.1 0.326984 0.163492 0.986545i \(-0.447724\pi\)
0.163492 + 0.986545i \(0.447724\pi\)
\(72\) −7433.78 + 21532.5i −0.168997 + 0.489512i
\(73\) 43451.2 0.954321 0.477161 0.878816i \(-0.341666\pi\)
0.477161 + 0.878816i \(0.341666\pi\)
\(74\) 24183.6 + 55219.6i 0.513383 + 1.17223i
\(75\) 0 0
\(76\) −34204.1 31560.0i −0.679272 0.626763i
\(77\) 52634.8i 1.01169i
\(78\) 7192.89 3150.15i 0.133865 0.0586266i
\(79\) −12546.4 −0.226179 −0.113089 0.993585i \(-0.536075\pi\)
−0.113089 + 0.993585i \(0.536075\pi\)
\(80\) 0 0
\(81\) −12633.8 −0.213955
\(82\) 30609.3 13405.4i 0.502711 0.220164i
\(83\) 6680.84i 0.106448i 0.998583 + 0.0532238i \(0.0169497\pi\)
−0.998583 + 0.0532238i \(0.983050\pi\)
\(84\) 41673.2 + 38451.7i 0.644404 + 0.594590i
\(85\) 0 0
\(86\) −37307.1 85185.1i −0.543933 1.24199i
\(87\) 44088.2 0.624488
\(88\) −55015.1 18993.2i −0.757313 0.261451i
\(89\) −90400.9 −1.20976 −0.604878 0.796318i \(-0.706778\pi\)
−0.604878 + 0.796318i \(0.706778\pi\)
\(90\) 0 0
\(91\) 20994.6i 0.265769i
\(92\) 26716.7 28955.0i 0.329089 0.356660i
\(93\) 42820.2i 0.513382i
\(94\) 120416. 52736.8i 1.40561 0.615593i
\(95\) 0 0
\(96\) 55228.3 29682.5i 0.611622 0.328717i
\(97\) −149616. −1.61454 −0.807269 0.590184i \(-0.799055\pi\)
−0.807269 + 0.590184i \(0.799055\pi\)
\(98\) −51779.1 + 22676.8i −0.544615 + 0.238516i
\(99\) 40460.4i 0.414898i
\(100\) 0 0
\(101\) 114822.i 1.12001i −0.828491 0.560003i \(-0.810800\pi\)
0.828491 0.560003i \(-0.189200\pi\)
\(102\) 51846.5 + 118384.i 0.493423 + 1.12666i
\(103\) −38586.9 −0.358382 −0.179191 0.983814i \(-0.557348\pi\)
−0.179191 + 0.983814i \(0.557348\pi\)
\(104\) 21944.0 + 7575.84i 0.198945 + 0.0686827i
\(105\) 0 0
\(106\) 69519.0 + 158736.i 0.600951 + 1.37218i
\(107\) 189459.i 1.59976i −0.600158 0.799881i \(-0.704896\pi\)
0.600158 0.799881i \(-0.295104\pi\)
\(108\) −93892.4 86634.3i −0.774589 0.714711i
\(109\) 24392.6i 0.196649i −0.995154 0.0983245i \(-0.968652\pi\)
0.995154 0.0983245i \(-0.0313483\pi\)
\(110\) 0 0
\(111\) −115348. −0.888589
\(112\) 13457.9 + 167094.i 0.101375 + 1.25868i
\(113\) 52918.6 0.389863 0.194932 0.980817i \(-0.437552\pi\)
0.194932 + 0.980817i \(0.437552\pi\)
\(114\) 81571.0 35724.3i 0.587859 0.257455i
\(115\) 0 0
\(116\) 95793.8 + 88388.7i 0.660987 + 0.609891i
\(117\) 16138.5i 0.108993i
\(118\) 57329.1 + 130902.i 0.379027 + 0.865450i
\(119\) −345538. −2.23681
\(120\) 0 0
\(121\) 57675.7 0.358120
\(122\) 88766.6 + 202685.i 0.539945 + 1.23288i
\(123\) 63939.5i 0.381071i
\(124\) −85846.5 + 93038.6i −0.501382 + 0.543387i
\(125\) 0 0
\(126\) 106748. 46750.5i 0.599008 0.262337i
\(127\) −293650. −1.61555 −0.807777 0.589489i \(-0.799329\pi\)
−0.807777 + 0.589489i \(0.799329\pi\)
\(128\) 179507. + 46229.0i 0.968402 + 0.249396i
\(129\) 177942. 0.941467
\(130\) 0 0
\(131\) 317738.i 1.61767i 0.588032 + 0.808837i \(0.299903\pi\)
−0.588032 + 0.808837i \(0.700097\pi\)
\(132\) 75519.6 81846.5i 0.377246 0.408851i
\(133\) 238089.i 1.16711i
\(134\) 47416.9 + 108269.i 0.228124 + 0.520887i
\(135\) 0 0
\(136\) −124687. + 361164.i −0.578059 + 1.67439i
\(137\) 162285. 0.738717 0.369358 0.929287i \(-0.379577\pi\)
0.369358 + 0.929287i \(0.379577\pi\)
\(138\) 30241.9 + 69052.8i 0.135180 + 0.308662i
\(139\) 306759.i 1.34667i −0.739338 0.673334i \(-0.764861\pi\)
0.739338 0.673334i \(-0.235139\pi\)
\(140\) 0 0
\(141\) 251537.i 1.06550i
\(142\) −71969.0 + 31519.1i −0.299519 + 0.131175i
\(143\) 41233.5 0.168621
\(144\) −10345.0 128445.i −0.0415744 0.516192i
\(145\) 0 0
\(146\) −225151. + 98605.8i −0.874163 + 0.382842i
\(147\) 108161.i 0.412835i
\(148\) −250625. 231251.i −0.940523 0.867818i
\(149\) 368107.i 1.35834i −0.733981 0.679170i \(-0.762340\pi\)
0.733981 0.679170i \(-0.237660\pi\)
\(150\) 0 0
\(151\) 336822. 1.20215 0.601075 0.799193i \(-0.294739\pi\)
0.601075 + 0.799193i \(0.294739\pi\)
\(152\) 248856. + 85913.8i 0.873653 + 0.301616i
\(153\) 265615. 0.917326
\(154\) 119447. + 272738.i 0.405856 + 0.926711i
\(155\) 0 0
\(156\) −30122.6 + 32646.3i −0.0991018 + 0.107404i
\(157\) 271253.i 0.878264i 0.898423 + 0.439132i \(0.144714\pi\)
−0.898423 + 0.439132i \(0.855286\pi\)
\(158\) 65011.8 28472.1i 0.207181 0.0907356i
\(159\) −331582. −1.04016
\(160\) 0 0
\(161\) −201551. −0.612802
\(162\) 65464.6 28670.5i 0.195983 0.0858316i
\(163\) 121354.i 0.357756i −0.983871 0.178878i \(-0.942753\pi\)
0.983871 0.178878i \(-0.0572467\pi\)
\(164\) −128187. + 138926.i −0.372163 + 0.403343i
\(165\) 0 0
\(166\) −15161.1 34618.1i −0.0427033 0.0975065i
\(167\) −56095.4 −0.155645 −0.0778227 0.996967i \(-0.524797\pi\)
−0.0778227 + 0.996967i \(0.524797\pi\)
\(168\) −303198. 104675.i −0.828807 0.286133i
\(169\) 354846. 0.955704
\(170\) 0 0
\(171\) 183019.i 0.478636i
\(172\) 386629. + 356741.i 0.996490 + 0.919459i
\(173\) 167666.i 0.425921i 0.977061 + 0.212960i \(0.0683105\pi\)
−0.977061 + 0.212960i \(0.931689\pi\)
\(174\) −228452. + 100051.i −0.572034 + 0.250524i
\(175\) 0 0
\(176\) 328174. 26431.4i 0.798588 0.0643188i
\(177\) −273440. −0.656039
\(178\) 468431. 205151.i 1.10814 0.485314i
\(179\) 535921.i 1.25017i −0.780558 0.625083i \(-0.785065\pi\)
0.780558 0.625083i \(-0.214935\pi\)
\(180\) 0 0
\(181\) 113446.i 0.257391i 0.991684 + 0.128696i \(0.0410790\pi\)
−0.991684 + 0.128696i \(0.958921\pi\)
\(182\) −47643.9 108788.i −0.106618 0.243445i
\(183\) −423387. −0.934565
\(184\) −72729.2 + 210666.i −0.158367 + 0.458722i
\(185\) 0 0
\(186\) −97173.7 221881.i −0.205952 0.470261i
\(187\) 678640.i 1.41917i
\(188\) −504284. + 546533.i −1.04059 + 1.12777i
\(189\) 653570.i 1.33088i
\(190\) 0 0
\(191\) 391808. 0.777124 0.388562 0.921423i \(-0.372972\pi\)
0.388562 + 0.921423i \(0.372972\pi\)
\(192\) −218817. + 279138.i −0.428378 + 0.546470i
\(193\) 261513. 0.505359 0.252680 0.967550i \(-0.418688\pi\)
0.252680 + 0.967550i \(0.418688\pi\)
\(194\) 775265. 339530.i 1.47892 0.647700i
\(195\) 0 0
\(196\) 216843. 235009.i 0.403185 0.436963i
\(197\) 898947.i 1.65032i −0.564898 0.825161i \(-0.691084\pi\)
0.564898 0.825161i \(-0.308916\pi\)
\(198\) −91818.5 209654.i −0.166444 0.380049i
\(199\) −83719.3 −0.149862 −0.0749312 0.997189i \(-0.523874\pi\)
−0.0749312 + 0.997189i \(0.523874\pi\)
\(200\) 0 0
\(201\) −226163. −0.394849
\(202\) 260570. + 594972.i 0.449310 + 1.02593i
\(203\) 666805.i 1.13569i
\(204\) −537307. 495772.i −0.903955 0.834077i
\(205\) 0 0
\(206\) 199946. 87566.9i 0.328280 0.143771i
\(207\) 154932. 0.251313
\(208\) −130900. + 10542.7i −0.209788 + 0.0168964i
\(209\) 467609. 0.740487
\(210\) 0 0
\(211\) 553641.i 0.856095i −0.903756 0.428047i \(-0.859202\pi\)
0.903756 0.428047i \(-0.140798\pi\)
\(212\) −720454. 664761.i −1.10095 1.01584i
\(213\) 150335.i 0.227045i
\(214\) 429948. + 981720.i 0.641772 + 1.46539i
\(215\) 0 0
\(216\) 683126. + 235839.i 0.996246 + 0.343939i
\(217\) 647627. 0.933632
\(218\) 55355.2 + 126395.i 0.0788892 + 0.180131i
\(219\) 470316.i 0.662643i
\(220\) 0 0
\(221\) 270691.i 0.372814i
\(222\) 597697. 261764.i 0.813952 0.356473i
\(223\) −279400. −0.376239 −0.188120 0.982146i \(-0.560239\pi\)
−0.188120 + 0.982146i \(0.560239\pi\)
\(224\) −448929. 835291.i −0.597802 1.11229i
\(225\) 0 0
\(226\) −274209. + 120091.i −0.357116 + 0.156400i
\(227\) 593068.i 0.763905i −0.924182 0.381953i \(-0.875252\pi\)
0.924182 0.381953i \(-0.124748\pi\)
\(228\) −341606. + 370225.i −0.435199 + 0.471660i
\(229\) 927873.i 1.16923i 0.811311 + 0.584615i \(0.198754\pi\)
−0.811311 + 0.584615i \(0.801246\pi\)
\(230\) 0 0
\(231\) −569720. −0.702476
\(232\) −696960. 240615.i −0.850135 0.293496i
\(233\) 1.09279e6 1.31871 0.659353 0.751833i \(-0.270830\pi\)
0.659353 + 0.751833i \(0.270830\pi\)
\(234\) 36623.9 + 83625.0i 0.0437245 + 0.0998382i
\(235\) 0 0
\(236\) −594125. 548197.i −0.694381 0.640703i
\(237\) 135803.i 0.157050i
\(238\) 1.79048e6 784145.i 2.04892 0.897333i
\(239\) −797967. −0.903630 −0.451815 0.892112i \(-0.649223\pi\)
−0.451815 + 0.892112i \(0.649223\pi\)
\(240\) 0 0
\(241\) −1.61861e6 −1.79515 −0.897573 0.440865i \(-0.854672\pi\)
−0.897573 + 0.440865i \(0.854672\pi\)
\(242\) −298858. + 130886.i −0.328040 + 0.143666i
\(243\) 833389.i 0.905383i
\(244\) −919924. 848812.i −0.989185 0.912719i
\(245\) 0 0
\(246\) −145101. 331315.i −0.152873 0.349063i
\(247\) −186516. −0.194525
\(248\) 233695. 676914.i 0.241279 0.698883i
\(249\) 72313.5 0.0739130
\(250\) 0 0
\(251\) 449688.i 0.450533i −0.974297 0.225266i \(-0.927675\pi\)
0.974297 0.225266i \(-0.0723253\pi\)
\(252\) −447042. + 484495.i −0.443453 + 0.480605i
\(253\) 395848.i 0.388801i
\(254\) 1.52161e6 666394.i 1.47985 0.648107i
\(255\) 0 0
\(256\) −1.03506e6 + 167817.i −0.987110 + 0.160043i
\(257\) −396434. −0.374402 −0.187201 0.982322i \(-0.559942\pi\)
−0.187201 + 0.982322i \(0.559942\pi\)
\(258\) −922045. + 403813.i −0.862388 + 0.377686i
\(259\) 1.74456e6i 1.61598i
\(260\) 0 0
\(261\) 512573.i 0.465752i
\(262\) −721058. 1.64643e6i −0.648958 1.48180i
\(263\) −1.93423e6 −1.72432 −0.862160 0.506635i \(-0.830889\pi\)
−0.862160 + 0.506635i \(0.830889\pi\)
\(264\) −205582. + 595484.i −0.181541 + 0.525848i
\(265\) 0 0
\(266\) −540306. 1.23371e6i −0.468205 1.06907i
\(267\) 978500.i 0.840007i
\(268\) −491401. 453414.i −0.417926 0.385619i
\(269\) 670016.i 0.564553i 0.959333 + 0.282276i \(0.0910895\pi\)
−0.959333 + 0.282276i \(0.908910\pi\)
\(270\) 0 0
\(271\) 2.08940e6 1.72822 0.864109 0.503305i \(-0.167883\pi\)
0.864109 + 0.503305i \(0.167883\pi\)
\(272\) −173517. 2.15440e6i −0.142207 1.76565i
\(273\) 227246. 0.184539
\(274\) −840915. + 368281.i −0.676668 + 0.296349i
\(275\) 0 0
\(276\) −313409. 289182.i −0.247651 0.228506i
\(277\) 828834.i 0.649035i 0.945880 + 0.324517i \(0.105202\pi\)
−0.945880 + 0.324517i \(0.894798\pi\)
\(278\) 696143. + 1.58954e6i 0.540240 + 1.23356i
\(279\) −497830. −0.382887
\(280\) 0 0
\(281\) 2.39932e6 1.81268 0.906342 0.422545i \(-0.138863\pi\)
0.906342 + 0.422545i \(0.138863\pi\)
\(282\) −570823. 1.30339e6i −0.427444 0.976003i
\(283\) 2.00868e6i 1.49089i 0.666568 + 0.745444i \(0.267763\pi\)
−0.666568 + 0.745444i \(0.732237\pi\)
\(284\) 301395. 326645.i 0.221738 0.240315i
\(285\) 0 0
\(286\) −213660. + 93573.2i −0.154457 + 0.0676451i
\(287\) 967042. 0.693012
\(288\) 345091. + 642088.i 0.245162 + 0.456156i
\(289\) 3.03529e6 2.13774
\(290\) 0 0
\(291\) 1.61944e6i 1.12107i
\(292\) 942897. 1.02189e6i 0.647153 0.701371i
\(293\) 1.74203e6i 1.18546i 0.805402 + 0.592729i \(0.201950\pi\)
−0.805402 + 0.592729i \(0.798050\pi\)
\(294\) 245454. + 560458.i 0.165616 + 0.378159i
\(295\) 0 0
\(296\) 1.82345e6 + 629519.i 1.20966 + 0.417618i
\(297\) 1.28362e6 0.844393
\(298\) 835362. + 1.90742e6i 0.544922 + 1.24425i
\(299\) 157893.i 0.102137i
\(300\) 0 0
\(301\) 2.69126e6i 1.71214i
\(302\) −1.74531e6 + 764366.i −1.10118 + 0.482263i
\(303\) −1.24283e6 −0.777688
\(304\) −1.48447e6 + 119560.i −0.921269 + 0.0741996i
\(305\) 0 0
\(306\) −1.37634e6 + 602772.i −0.840275 + 0.368001i
\(307\) 978690.i 0.592651i −0.955087 0.296326i \(-0.904239\pi\)
0.955087 0.296326i \(-0.0957614\pi\)
\(308\) −1.23787e6 1.14218e6i −0.743532 0.686055i
\(309\) 417665.i 0.248847i
\(310\) 0 0
\(311\) −1.57652e6 −0.924268 −0.462134 0.886810i \(-0.652916\pi\)
−0.462134 + 0.886810i \(0.652916\pi\)
\(312\) 82001.0 237522.i 0.0476906 0.138139i
\(313\) −1.60962e6 −0.928670 −0.464335 0.885660i \(-0.653707\pi\)
−0.464335 + 0.885660i \(0.653707\pi\)
\(314\) −615566. 1.40555e6i −0.352331 0.804494i
\(315\) 0 0
\(316\) −272259. + 295069.i −0.153379 + 0.166228i
\(317\) 1.50670e6i 0.842130i 0.907030 + 0.421065i \(0.138344\pi\)
−0.907030 + 0.421065i \(0.861656\pi\)
\(318\) 1.71816e6 752475.i 0.952788 0.417277i
\(319\) −1.30961e6 −0.720553
\(320\) 0 0
\(321\) −2.05070e6 −1.11081
\(322\) 1.04438e6 457389.i 0.561330 0.245836i
\(323\) 3.06977e6i 1.63719i
\(324\) −274155. + 297124.i −0.145089 + 0.157244i
\(325\) 0 0
\(326\) 275395. + 628823.i 0.143520 + 0.327706i
\(327\) −264026. −0.136545
\(328\) 348955. 1.01077e6i 0.179095 0.518764i
\(329\) 3.80433e6 1.93771
\(330\) 0 0
\(331\) 394453.i 0.197891i −0.995093 0.0989454i \(-0.968453\pi\)
0.995093 0.0989454i \(-0.0315469\pi\)
\(332\) 157121. + 144975.i 0.0782328 + 0.0721852i
\(333\) 1.34104e6i 0.662721i
\(334\) 290670. 127300.i 0.142572 0.0624398i
\(335\) 0 0
\(336\) 1.80863e6 145668.i 0.873979 0.0703908i
\(337\) 1.36879e6 0.656543 0.328272 0.944583i \(-0.393534\pi\)
0.328272 + 0.944583i \(0.393534\pi\)
\(338\) −1.83871e6 + 805268.i −0.875429 + 0.383397i
\(339\) 572791.i 0.270706i
\(340\) 0 0
\(341\) 1.27195e6i 0.592356i
\(342\) 415333. + 948350.i 0.192013 + 0.438433i
\(343\) 1.11555e6 0.511979
\(344\) −2.81297e6 971135.i −1.28165 0.442470i
\(345\) 0 0
\(346\) −380491. 868794.i −0.170865 0.390145i
\(347\) 569376.i 0.253849i −0.991912 0.126925i \(-0.959489\pi\)
0.991912 0.126925i \(-0.0405106\pi\)
\(348\) 956721. 1.03687e6i 0.423484 0.458963i
\(349\) 2.20053e6i 0.967081i 0.875322 + 0.483541i \(0.160649\pi\)
−0.875322 + 0.483541i \(0.839351\pi\)
\(350\) 0 0
\(351\) −511999. −0.221820
\(352\) −1.64052e6 + 881700.i −0.705708 + 0.379284i
\(353\) 2.51557e6 1.07448 0.537242 0.843428i \(-0.319466\pi\)
0.537242 + 0.843428i \(0.319466\pi\)
\(354\) 1.41689e6 620531.i 0.600935 0.263181i
\(355\) 0 0
\(356\) −1.96171e6 + 2.12606e6i −0.820371 + 0.889100i
\(357\) 3.74011e6i 1.55315i
\(358\) 1.21619e6 + 2.77698e6i 0.501526 + 1.14516i
\(359\) −794808. −0.325481 −0.162741 0.986669i \(-0.552033\pi\)
−0.162741 + 0.986669i \(0.552033\pi\)
\(360\) 0 0
\(361\) 360911. 0.145758
\(362\) −257449. 587845.i −0.103257 0.235772i
\(363\) 624282.i 0.248665i
\(364\) 493754. + 455585.i 0.195325 + 0.180225i
\(365\) 0 0
\(366\) 2.19386e6 960810.i 0.856066 0.374917i
\(367\) 874302. 0.338841 0.169421 0.985544i \(-0.445810\pi\)
0.169421 + 0.985544i \(0.445810\pi\)
\(368\) −101212. 1.25666e6i −0.0389594 0.483723i
\(369\) −743365. −0.284208
\(370\) 0 0
\(371\) 5.01497e6i 1.89162i
\(372\) 1.00705e6 + 929204.i 0.377306 + 0.348140i
\(373\) 4.86205e6i 1.80945i −0.425994 0.904726i \(-0.640076\pi\)
0.425994 0.904726i \(-0.359924\pi\)
\(374\) −1.54007e6 3.51651e6i −0.569326 1.29997i
\(375\) 0 0
\(376\) 1.37278e6 3.97637e6i 0.500763 1.45050i
\(377\) 522368. 0.189288
\(378\) −1.48318e6 3.38661e6i −0.533904 1.21909i
\(379\) 1.24150e6i 0.443964i −0.975051 0.221982i \(-0.928747\pi\)
0.975051 0.221982i \(-0.0712527\pi\)
\(380\) 0 0
\(381\) 3.17848e6i 1.12178i
\(382\) −2.03024e6 + 889149.i −0.711849 + 0.311757i
\(383\) 30969.9 0.0107880 0.00539402 0.999985i \(-0.498283\pi\)
0.00539402 + 0.999985i \(0.498283\pi\)
\(384\) 500383. 1.94298e6i 0.173171 0.672420i
\(385\) 0 0
\(386\) −1.35508e6 + 593463.i −0.462911 + 0.202734i
\(387\) 2.06877e6i 0.702158i
\(388\) −3.24669e6 + 3.51869e6i −1.09487 + 1.18659i
\(389\) 4.27860e6i 1.43360i −0.697279 0.716800i \(-0.745606\pi\)
0.697279 0.716800i \(-0.254394\pi\)
\(390\) 0 0
\(391\) 2.59867e6 0.859626
\(392\) −590297. + 1.70984e6i −0.194024 + 0.562005i
\(393\) 3.43920e6 1.12325
\(394\) 2.04002e6 + 4.65808e6i 0.662055 + 1.51170i
\(395\) 0 0
\(396\) 951553. + 877996.i 0.304926 + 0.281355i
\(397\) 2.31119e6i 0.735968i −0.929832 0.367984i \(-0.880048\pi\)
0.929832 0.367984i \(-0.119952\pi\)
\(398\) 433809. 189988.i 0.137275 0.0601199i
\(399\) 2.57708e6 0.810392
\(400\) 0 0
\(401\) 996347. 0.309421 0.154710 0.987960i \(-0.450556\pi\)
0.154710 + 0.987960i \(0.450556\pi\)
\(402\) 1.17191e6 513241.i 0.361683 0.158400i
\(403\) 507344.i 0.155611i
\(404\) −2.70039e6 2.49165e6i −0.823140 0.759509i
\(405\) 0 0
\(406\) 1.51321e6 + 3.45519e6i 0.455601 + 1.04030i
\(407\) 3.42633e6 1.02528
\(408\) 3.90924e6 + 1.34961e6i 1.16263 + 0.401381i
\(409\) −5.17948e6 −1.53101 −0.765505 0.643430i \(-0.777511\pi\)
−0.765505 + 0.643430i \(0.777511\pi\)
\(410\) 0 0
\(411\) 1.75658e6i 0.512936i
\(412\) −837341. + 907492.i −0.243030 + 0.263390i
\(413\) 4.13561e6i 1.19306i
\(414\) −802813. + 351595.i −0.230204 + 0.100819i
\(415\) 0 0
\(416\) 654358. 351686.i 0.185388 0.0996371i
\(417\) −3.32037e6 −0.935074
\(418\) −2.42301e6 + 1.06117e6i −0.678289 + 0.297059i
\(419\) 3.57698e6i 0.995363i 0.867360 + 0.497682i \(0.165815\pi\)
−0.867360 + 0.497682i \(0.834185\pi\)
\(420\) 0 0
\(421\) 2.15848e6i 0.593531i 0.954950 + 0.296765i \(0.0959080\pi\)
−0.954950 + 0.296765i \(0.904092\pi\)
\(422\) 1.25640e6 + 2.86880e6i 0.343437 + 0.784187i
\(423\) −2.92438e6 −0.794664
\(424\) 5.24175e6 + 1.80964e6i 1.41600 + 0.488852i
\(425\) 0 0
\(426\) 341163. + 778993.i 0.0910831 + 0.207974i
\(427\) 6.40344e6i 1.69959i
\(428\) −4.45572e6 4.11128e6i −1.17573 1.08485i
\(429\) 446312.i 0.117084i
\(430\) 0 0
\(431\) −1.80890e6 −0.469052 −0.234526 0.972110i \(-0.575354\pi\)
−0.234526 + 0.972110i \(0.575354\pi\)
\(432\) −4.07496e6 + 328200.i −1.05054 + 0.0846114i
\(433\) −1.28911e6 −0.330423 −0.165211 0.986258i \(-0.552831\pi\)
−0.165211 + 0.986258i \(0.552831\pi\)
\(434\) −3.35581e6 + 1.46969e6i −0.855211 + 0.374542i
\(435\) 0 0
\(436\) −573669. 529323.i −0.144526 0.133354i
\(437\) 1.79058e6i 0.448530i
\(438\) 1.06731e6 + 2.43704e6i 0.265831 + 0.606984i
\(439\) 1.89694e6 0.469777 0.234889 0.972022i \(-0.424527\pi\)
0.234889 + 0.972022i \(0.424527\pi\)
\(440\) 0 0
\(441\) 1.25749e6 0.307898
\(442\) 614290. + 1.40264e6i 0.149561 + 0.341500i
\(443\) 6.01979e6i 1.45738i 0.684845 + 0.728689i \(0.259870\pi\)
−0.684845 + 0.728689i \(0.740130\pi\)
\(444\) −2.50306e6 + 2.71276e6i −0.602579 + 0.653062i
\(445\) 0 0
\(446\) 1.44777e6 634055.i 0.344637 0.150935i
\(447\) −3.98440e6 −0.943178
\(448\) 4.22178e6 + 3.30946e6i 0.993803 + 0.779044i
\(449\) −2.40081e6 −0.562007 −0.281003 0.959707i \(-0.590667\pi\)
−0.281003 + 0.959707i \(0.590667\pi\)
\(450\) 0 0
\(451\) 1.89928e6i 0.439691i
\(452\) 1.14834e6 1.24455e6i 0.264378 0.286527i
\(453\) 3.64577e6i 0.834726i
\(454\) 1.34588e6 + 3.07310e6i 0.306454 + 0.699741i
\(455\) 0 0
\(456\) 929933. 2.69362e6i 0.209430 0.606631i
\(457\) 858952. 0.192388 0.0961941 0.995363i \(-0.469333\pi\)
0.0961941 + 0.995363i \(0.469333\pi\)
\(458\) −2.10567e6 4.80797e6i −0.469057 1.07102i
\(459\) 8.42671e6i 1.86692i
\(460\) 0 0
\(461\) 2.33481e6i 0.511680i 0.966719 + 0.255840i \(0.0823521\pi\)
−0.966719 + 0.255840i \(0.917648\pi\)
\(462\) 2.95212e6 1.29289e6i 0.643472 0.281811i
\(463\) 1.35195e6 0.293096 0.146548 0.989204i \(-0.453184\pi\)
0.146548 + 0.989204i \(0.453184\pi\)
\(464\) 4.15748e6 334846.i 0.896469 0.0722022i
\(465\) 0 0
\(466\) −5.66253e6 + 2.47993e6i −1.20794 + 0.529022i
\(467\) 6.44013e6i 1.36648i −0.730195 0.683239i \(-0.760571\pi\)
0.730195 0.683239i \(-0.239429\pi\)
\(468\) −379548. 350208.i −0.0801036 0.0739114i
\(469\) 3.42056e6i 0.718068i
\(470\) 0 0
\(471\) 2.93604e6 0.609832
\(472\) 4.32263e6 + 1.49232e6i 0.893085 + 0.308324i
\(473\) −5.28566e6 −1.08629
\(474\) −308183. 703689.i −0.0630032 0.143858i
\(475\) 0 0
\(476\) −7.49822e6 + 8.12641e6i −1.51684 + 1.64392i
\(477\) 3.85500e6i 0.775762i
\(478\) 4.13483e6 1.81086e6i 0.827729 0.362507i
\(479\) −1.85358e6 −0.369124 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(480\) 0 0
\(481\) −1.36667e6 −0.269339
\(482\) 8.38717e6 3.67319e6i 1.64436 0.720154i
\(483\) 2.18159e6i 0.425506i
\(484\) 1.25157e6 1.35643e6i 0.242852 0.263198i
\(485\) 0 0
\(486\) 1.89125e6 + 4.31838e6i 0.363210 + 0.829335i
\(487\) −2.51668e6 −0.480846 −0.240423 0.970668i \(-0.577286\pi\)
−0.240423 + 0.970668i \(0.577286\pi\)
\(488\) 6.69302e6 + 2.31067e6i 1.27225 + 0.439226i
\(489\) −1.31354e6 −0.248412
\(490\) 0 0
\(491\) 5.39115e6i 1.00920i −0.863353 0.504601i \(-0.831640\pi\)
0.863353 0.504601i \(-0.168360\pi\)
\(492\) 1.50374e6 + 1.38750e6i 0.280065 + 0.258416i
\(493\) 8.59736e6i 1.59312i
\(494\) 966472. 423270.i 0.178185 0.0780369i
\(495\) 0 0
\(496\) 325215. + 4.03790e6i 0.0593563 + 0.736973i
\(497\) −2.27372e6 −0.412902
\(498\) −374707. + 164104.i −0.0677047 + 0.0296515i
\(499\) 3.18358e6i 0.572353i 0.958177 + 0.286177i \(0.0923844\pi\)
−0.958177 + 0.286177i \(0.907616\pi\)
\(500\) 0 0
\(501\) 607177.i 0.108074i
\(502\) 1.02050e6 + 2.33015e6i 0.180739 + 0.412690i
\(503\) 8.99291e6 1.58482 0.792410 0.609989i \(-0.208826\pi\)
0.792410 + 0.609989i \(0.208826\pi\)
\(504\) 1.21696e6 3.52500e6i 0.213402 0.618135i
\(505\) 0 0
\(506\) −898317. 2.05117e6i −0.155974 0.356144i
\(507\) 3.84086e6i 0.663603i
\(508\) −6.37226e6 + 6.90612e6i −1.09555 + 1.18734i
\(509\) 5.35388e6i 0.915956i −0.888964 0.457978i \(-0.848574\pi\)
0.888964 0.457978i \(-0.151426\pi\)
\(510\) 0 0
\(511\) −7.11322e6 −1.20508
\(512\) 4.98254e6 3.21849e6i 0.839993 0.542597i
\(513\) −5.80633e6 −0.974111
\(514\) 2.05420e6 899646.i 0.342954 0.150198i
\(515\) 0 0
\(516\) 3.86137e6 4.18488e6i 0.638436 0.691924i
\(517\) 7.47173e6i 1.22941i
\(518\) −3.95900e6 9.03978e6i −0.648278 1.48024i
\(519\) 1.81481e6 0.295743
\(520\) 0 0
\(521\) −2.62401e6 −0.423518 −0.211759 0.977322i \(-0.567919\pi\)
−0.211759 + 0.977322i \(0.567919\pi\)
\(522\) −1.16320e6 2.65600e6i −0.186844 0.426631i
\(523\) 1.31228e6i 0.209784i 0.994484 + 0.104892i \(0.0334497\pi\)
−0.994484 + 0.104892i \(0.966550\pi\)
\(524\) 7.47262e6 + 6.89497e6i 1.18890 + 1.09699i
\(525\) 0 0
\(526\) 1.00226e7 4.38943e6i 1.57949 0.691741i
\(527\) −8.35008e6 −1.30968
\(528\) −286093. 3.55216e6i −0.0446605 0.554508i
\(529\) −4.92055e6 −0.764494
\(530\) 0 0
\(531\) 3.17904e6i 0.489282i
\(532\) 5.59941e6 + 5.16657e6i 0.857756 + 0.791449i
\(533\) 757570.i 0.115506i
\(534\) −2.22055e6 5.07030e6i −0.336983 0.769450i
\(535\) 0 0
\(536\) 3.57525e6 + 1.23430e6i 0.537520 + 0.185571i
\(537\) −5.80081e6 −0.868067
\(538\) −1.52050e6 3.47183e6i −0.226480 0.517133i
\(539\) 3.21285e6i 0.476342i
\(540\) 0 0
\(541\) 6.84935e6i 1.00613i −0.864247 0.503067i \(-0.832205\pi\)
0.864247 0.503067i \(-0.167795\pi\)
\(542\) −1.08267e7 + 4.74157e6i −1.58306 + 0.693304i
\(543\) 1.22794e6 0.178722
\(544\) 5.78820e6 + 1.07697e7i 0.838583 + 1.56029i
\(545\) 0 0
\(546\) −1.17752e6 + 515698.i −0.169039 + 0.0740311i
\(547\) 6.39084e6i 0.913251i −0.889659 0.456625i \(-0.849058\pi\)
0.889659 0.456625i \(-0.150942\pi\)
\(548\) 3.52162e6 3.81665e6i 0.500946 0.542914i
\(549\) 4.92232e6i 0.697010i
\(550\) 0 0
\(551\) 5.92391e6 0.831246
\(552\) 2.28025e6 + 787222.i 0.318518 + 0.109964i
\(553\) 2.05392e6 0.285609
\(554\) −1.88091e6 4.29477e6i −0.260372 0.594519i
\(555\) 0 0
\(556\) −7.21441e6 6.65672e6i −0.989724 0.913216i
\(557\) 463389.i 0.0632861i 0.999499 + 0.0316430i \(0.0100740\pi\)
−0.999499 + 0.0316430i \(0.989926\pi\)
\(558\) 2.57961e6 1.12975e6i 0.350726 0.153602i
\(559\) 2.10830e6 0.285367
\(560\) 0 0
\(561\) 7.34561e6 0.985418
\(562\) −1.24326e7 + 5.44488e6i −1.66043 + 0.727189i
\(563\) 1.07609e7i 1.43080i −0.698715 0.715400i \(-0.746244\pi\)
0.698715 0.715400i \(-0.253756\pi\)
\(564\) 5.91568e6 + 5.45838e6i 0.783081 + 0.722547i
\(565\) 0 0
\(566\) −4.55839e6 1.04084e7i −0.598096 1.36566i
\(567\) 2.06823e6 0.270173
\(568\) −820467. + 2.37655e6i −0.106706 + 0.309083i
\(569\) −1.04253e7 −1.34992 −0.674961 0.737853i \(-0.735840\pi\)
−0.674961 + 0.737853i \(0.735840\pi\)
\(570\) 0 0
\(571\) 1.58675e6i 0.203666i −0.994802 0.101833i \(-0.967529\pi\)
0.994802 0.101833i \(-0.0324707\pi\)
\(572\) 894774. 969737.i 0.114347 0.123926i
\(573\) 4.24094e6i 0.539605i
\(574\) −5.01093e6 + 2.19455e6i −0.634802 + 0.278014i
\(575\) 0 0
\(576\) −3.24528e6 2.54398e6i −0.407564 0.319490i
\(577\) 2.79056e6 0.348941 0.174471 0.984662i \(-0.444179\pi\)
0.174471 + 0.984662i \(0.444179\pi\)
\(578\) −1.57280e7 + 6.88811e6i −1.95818 + 0.857592i
\(579\) 2.83062e6i 0.350901i
\(580\) 0 0
\(581\) 1.09369e6i 0.134417i
\(582\) −3.67508e6 8.39148e6i −0.449737 1.02691i
\(583\) 9.84944e6 1.20016
\(584\) −2.56679e6 + 7.43490e6i −0.311428 + 0.902076i
\(585\) 0 0
\(586\) −3.95327e6 9.02668e6i −0.475567 1.08589i
\(587\) 1.94272e6i 0.232710i −0.993208 0.116355i \(-0.962879\pi\)
0.993208 0.116355i \(-0.0371210\pi\)
\(588\) −2.54374e6 2.34711e6i −0.303410 0.279956i
\(589\) 5.75353e6i 0.683355i
\(590\) 0 0
\(591\) −9.73022e6 −1.14592
\(592\) −1.08772e7 + 876055.i −1.27559 + 0.102737i
\(593\) −8.14862e6 −0.951584 −0.475792 0.879558i \(-0.657839\pi\)
−0.475792 + 0.879558i \(0.657839\pi\)
\(594\) −6.65133e6 + 2.91297e6i −0.773468 + 0.338743i
\(595\) 0 0
\(596\) −8.65720e6 7.98798e6i −0.998302 0.921131i
\(597\) 906179.i 0.104059i
\(598\) 358313. + 818154.i 0.0409742 + 0.0935583i
\(599\) 1.49677e6 0.170447 0.0852234 0.996362i \(-0.472840\pi\)
0.0852234 + 0.996362i \(0.472840\pi\)
\(600\) 0 0
\(601\) −9.04082e6 −1.02099 −0.510495 0.859881i \(-0.670538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(602\) 6.10740e6 + 1.39453e7i 0.686855 + 1.56833i
\(603\) 2.62938e6i 0.294483i
\(604\) 7.30910e6 7.92144e6i 0.815213 0.883511i
\(605\) 0 0
\(606\) 6.43998e6 2.82041e6i 0.712366 0.311983i
\(607\) 3.63200e6 0.400105 0.200052 0.979785i \(-0.435889\pi\)
0.200052 + 0.979785i \(0.435889\pi\)
\(608\) 7.42075e6 3.98829e6i 0.814120 0.437550i
\(609\) −7.21751e6 −0.788577
\(610\) 0 0
\(611\) 2.98027e6i 0.322962i
\(612\) 5.76388e6 6.24677e6i 0.622066 0.674182i
\(613\) 1.89937e6i 0.204154i −0.994776 0.102077i \(-0.967451\pi\)
0.994776 0.102077i \(-0.0325488\pi\)
\(614\) 2.22099e6 + 5.07128e6i 0.237752 + 0.542871i
\(615\) 0 0
\(616\) 9.00631e6 + 3.10929e6i 0.956302 + 0.330149i
\(617\) −5.96746e6 −0.631069 −0.315534 0.948914i \(-0.602184\pi\)
−0.315534 + 0.948914i \(0.602184\pi\)
\(618\) −947826. 2.16422e6i −0.0998291 0.227945i
\(619\) 1.46307e7i 1.53475i 0.641196 + 0.767377i \(0.278439\pi\)
−0.641196 + 0.767377i \(0.721561\pi\)
\(620\) 0 0
\(621\) 4.91527e6i 0.511468i
\(622\) 8.16905e6 3.57766e6i 0.846634 0.370786i
\(623\) 1.47992e7 1.52763
\(624\) 114115. + 1.41686e6i 0.0117322 + 0.145668i
\(625\) 0 0
\(626\) 8.34055e6 3.65277e6i 0.850666 0.372552i
\(627\) 5.06141e6i 0.514165i
\(628\) 6.37936e6 + 5.88622e6i 0.645473 + 0.595577i
\(629\) 2.24932e7i 2.26686i
\(630\) 0 0
\(631\) −1.47747e7 −1.47722 −0.738609 0.674134i \(-0.764517\pi\)
−0.738609 + 0.674134i \(0.764517\pi\)
\(632\) 741154. 2.14681e6i 0.0738101 0.213796i
\(633\) −5.99261e6 −0.594438
\(634\) −3.41923e6 7.80729e6i −0.337835 0.771395i
\(635\) 0 0
\(636\) −7.19538e6 + 7.79821e6i −0.705361 + 0.764455i
\(637\) 1.28152e6i 0.125134i
\(638\) 6.78603e6 2.97196e6i 0.660030 0.289062i
\(639\) 1.74781e6 0.169333
\(640\) 0 0
\(641\) 1.81017e7 1.74010 0.870050 0.492964i \(-0.164087\pi\)
0.870050 + 0.492964i \(0.164087\pi\)
\(642\) 1.06261e7 4.65376e6i 1.01751 0.445622i
\(643\) 7.21849e6i 0.688524i 0.938874 + 0.344262i \(0.111871\pi\)
−0.938874 + 0.344262i \(0.888129\pi\)
\(644\) −4.37369e6 + 4.74011e6i −0.415559 + 0.450374i
\(645\) 0 0
\(646\) 6.96636e6 + 1.59066e7i 0.656787 + 1.49967i
\(647\) −2.44672e6 −0.229786 −0.114893 0.993378i \(-0.536653\pi\)
−0.114893 + 0.993378i \(0.536653\pi\)
\(648\) 746316. 2.16176e6i 0.0698209 0.202241i
\(649\) 8.12237e6 0.756957
\(650\) 0 0
\(651\) 7.00992e6i 0.648277i
\(652\) −2.85403e6 2.63341e6i −0.262930 0.242605i
\(653\) 5.92231e6i 0.543511i −0.962366 0.271755i \(-0.912396\pi\)
0.962366 0.271755i \(-0.0876041\pi\)
\(654\) 1.36810e6 599166.i 0.125076 0.0547776i
\(655\) 0 0
\(656\) 485615. + 6.02943e6i 0.0440587 + 0.547037i
\(657\) 5.46793e6 0.494208
\(658\) −1.97129e7 + 8.63333e6i −1.77495 + 0.777345i
\(659\) 2.68146e6i 0.240523i 0.992742 + 0.120262i \(0.0383734\pi\)
−0.992742 + 0.120262i \(0.961627\pi\)
\(660\) 0 0
\(661\) 1.14098e7i 1.01572i 0.861440 + 0.507859i \(0.169563\pi\)
−0.861440 + 0.507859i \(0.830437\pi\)
\(662\) 895150. + 2.04394e6i 0.0793873 + 0.181269i
\(663\) −2.92996e6 −0.258868
\(664\) −1.14315e6 394657.i −0.100620 0.0347376i
\(665\) 0 0
\(666\) 3.04328e6 + 6.94887e6i 0.265862 + 0.607056i
\(667\) 5.01481e6i 0.436456i
\(668\) −1.21728e6 + 1.31926e6i −0.105548 + 0.114390i
\(669\) 3.02423e6i 0.261246i
\(670\) 0 0
\(671\) 1.25764e7 1.07833
\(672\) −9.04120e6 + 4.85921e6i −0.772330 + 0.415090i
\(673\) 5.13646e6 0.437146 0.218573 0.975821i \(-0.429860\pi\)
0.218573 + 0.975821i \(0.429860\pi\)
\(674\) −7.09269e6 + 3.10627e6i −0.601397 + 0.263384i
\(675\) 0 0
\(676\) 7.70021e6 8.34533e6i 0.648091 0.702387i
\(677\) 4.91407e6i 0.412068i 0.978545 + 0.206034i \(0.0660558\pi\)
−0.978545 + 0.206034i \(0.933944\pi\)
\(678\) 1.29986e6 + 2.96804e6i 0.108598 + 0.247968i
\(679\) 2.44930e7 2.03877
\(680\) 0 0
\(681\) −6.41937e6 −0.530426
\(682\) 2.88648e6 + 6.59085e6i 0.237634 + 0.542601i
\(683\) 4.30841e6i 0.353399i 0.984265 + 0.176700i \(0.0565421\pi\)
−0.984265 + 0.176700i \(0.943458\pi\)
\(684\) −4.30427e6 3.97154e6i −0.351770 0.324577i
\(685\) 0 0
\(686\) −5.78043e6 + 2.53156e6i −0.468975 + 0.205389i
\(687\) 1.00433e7 0.811868
\(688\) 1.67798e7 1.35146e6i 1.35150 0.108851i
\(689\) −3.92867e6 −0.315281
\(690\) 0 0
\(691\) 2.17672e6i 0.173423i −0.996233 0.0867116i \(-0.972364\pi\)
0.996233 0.0867116i \(-0.0276359\pi\)
\(692\) 3.94319e6 + 3.63837e6i 0.313027 + 0.288829i
\(693\) 6.62361e6i 0.523916i
\(694\) 1.29211e6 + 2.95034e6i 0.101836 + 0.232527i
\(695\) 0 0
\(696\) −2.60442e6 + 7.54390e6i −0.203792 + 0.590300i
\(697\) −1.24684e7 −0.972142
\(698\) −4.99375e6 1.14025e7i −0.387961 0.885851i
\(699\) 1.18284e7i 0.915658i
\(700\) 0 0
\(701\) 1.31991e6i 0.101450i 0.998713 + 0.0507248i \(0.0161531\pi\)
−0.998713 + 0.0507248i \(0.983847\pi\)
\(702\) 2.65303e6 1.16190e6i 0.203189 0.0889871i
\(703\) −1.54987e7 −1.18279
\(704\) 6.49981e6 8.29162e6i 0.494275 0.630533i
\(705\) 0 0
\(706\) −1.30349e7 + 5.70870e6i −0.984232 + 0.431048i
\(707\) 1.87970e7i 1.41429i
\(708\) −5.93370e6 + 6.43081e6i −0.444879 + 0.482151i
\(709\) 1.33410e7i 0.996721i −0.866970 0.498360i \(-0.833936\pi\)
0.866970 0.498360i \(-0.166064\pi\)
\(710\) 0 0
\(711\) −1.57885e6 −0.117130
\(712\) 5.34024e6 1.54684e7i 0.394785 1.14353i
\(713\) −4.87058e6 −0.358803
\(714\) −8.48759e6 1.93801e7i −0.623073 1.42269i
\(715\) 0 0
\(716\) −1.26039e7 1.16296e7i −0.918800 0.847775i
\(717\) 8.63721e6i 0.627445i
\(718\) 4.11846e6 1.80369e6i 0.298143 0.130573i
\(719\) 2.25289e7 1.62524 0.812620 0.582794i \(-0.198040\pi\)
0.812620 + 0.582794i \(0.198040\pi\)
\(720\) 0 0
\(721\) 6.31691e6 0.452550
\(722\) −1.87013e6 + 819031.i −0.133515 + 0.0584732i
\(723\) 1.75199e7i 1.24648i
\(724\) 2.66805e6 + 2.46180e6i 0.189168 + 0.174545i
\(725\) 0 0
\(726\) 1.41671e6 + 3.23485e6i 0.0997562 + 0.227778i
\(727\) 1.49088e7 1.04618 0.523091 0.852277i \(-0.324779\pi\)
0.523091 + 0.852277i \(0.324779\pi\)
\(728\) −3.59237e6 1.24021e6i −0.251219 0.0867296i
\(729\) −1.20906e7 −0.842617
\(730\) 0 0
\(731\) 3.46994e7i 2.40175i
\(732\) −9.18755e6 + 9.95727e6i −0.633756 + 0.686851i
\(733\) 7.98329e6i 0.548810i 0.961614 + 0.274405i \(0.0884809\pi\)
−0.961614 + 0.274405i \(0.911519\pi\)
\(734\) −4.53037e6 + 1.98409e6i −0.310380 + 0.135932i
\(735\) 0 0
\(736\) 3.37624e6 + 6.28193e6i 0.229741 + 0.427463i
\(737\) 6.71802e6 0.455588
\(738\) 3.85190e6 1.68695e6i 0.260336 0.114015i
\(739\) 3.81018e6i 0.256646i 0.991732 + 0.128323i \(0.0409594\pi\)
−0.991732 + 0.128323i \(0.959041\pi\)
\(740\) 0 0
\(741\) 2.01885e6i 0.135070i
\(742\) −1.13807e7 2.59861e7i −0.758855 1.73273i
\(743\) −8.99457e6 −0.597734 −0.298867 0.954295i \(-0.596609\pi\)
−0.298867 + 0.954295i \(0.596609\pi\)
\(744\) −7.32693e6 2.52951e6i −0.485277 0.167535i
\(745\) 0 0
\(746\) 1.10337e7 + 2.51937e7i 0.725893 + 1.65747i
\(747\) 840722.i 0.0551253i
\(748\) 1.59604e7 + 1.47266e7i 1.04301 + 0.962383i
\(749\) 3.10156e7i 2.02011i
\(750\) 0 0
\(751\) 1.18325e7 0.765559 0.382779 0.923840i \(-0.374967\pi\)
0.382779 + 0.923840i \(0.374967\pi\)
\(752\) 1.91040e6 + 2.37197e7i 0.123191 + 1.52955i
\(753\) −4.86742e6 −0.312832
\(754\) −2.70676e6 + 1.18543e6i −0.173389 + 0.0759362i
\(755\) 0 0
\(756\) 1.53708e7 + 1.41826e7i 0.978117 + 0.902506i
\(757\) 5.14086e6i 0.326059i −0.986621 0.163030i \(-0.947873\pi\)
0.986621 0.163030i \(-0.0521266\pi\)
\(758\) 2.81739e6 + 6.43308e6i 0.178104 + 0.406673i
\(759\) 4.28467e6 0.269968
\(760\) 0 0
\(761\) 8.21979e6 0.514516 0.257258 0.966343i \(-0.417181\pi\)
0.257258 + 0.966343i \(0.417181\pi\)
\(762\) −7.21306e6 1.64699e7i −0.450020 1.02755i
\(763\) 3.99322e6i 0.248320i
\(764\) 8.50230e6 9.21461e6i 0.526991 0.571142i
\(765\) 0 0
\(766\) −160477. + 70281.3i −0.00988189 + 0.00432781i
\(767\) −3.23979e6 −0.198851
\(768\) 1.81646e6 + 1.12035e7i 0.111128 + 0.685410i
\(769\) −1.11390e7 −0.679251 −0.339626 0.940561i \(-0.610300\pi\)
−0.339626 + 0.940561i \(0.610300\pi\)
\(770\) 0 0
\(771\) 4.29101e6i 0.259970i
\(772\) 5.67487e6 6.15030e6i 0.342699 0.371410i
\(773\) 5.63671e6i 0.339294i −0.985505 0.169647i \(-0.945737\pi\)
0.985505 0.169647i \(-0.0542628\pi\)
\(774\) −4.69475e6 1.07198e7i −0.281683 0.643180i
\(775\) 0 0
\(776\) 8.83825e6 2.56007e7i 0.526880 1.52615i
\(777\) 1.88831e7 1.12207
\(778\) 9.70963e6 + 2.21705e7i 0.575113 + 1.31318i
\(779\) 8.59123e6i 0.507238i
\(780\) 0 0
\(781\) 4.46561e6i 0.261971i
\(782\) −1.34655e7 + 5.89728e6i −0.787421 + 0.344854i
\(783\) 1.62615e7 0.947888
\(784\) −821473. 1.01995e7i −0.0477313 0.592636i
\(785\) 0 0
\(786\) −1.78209e7 + 7.80474e6i −1.02890 + 0.450611i
\(787\) 3.07197e7i 1.76799i 0.467495 + 0.883996i \(0.345157\pi\)
−0.467495 + 0.883996i \(0.654843\pi\)
\(788\) −2.11416e7 1.95073e7i −1.21289 1.11913i
\(789\) 2.09361e7i 1.19730i
\(790\) 0 0
\(791\) −8.66309e6 −0.492302
\(792\) −6.92314e6 2.39011e6i −0.392184 0.135396i
\(793\) −5.01639e6 −0.283275
\(794\) 5.24489e6 + 1.19759e7i 0.295246 + 0.674151i
\(795\) 0 0
\(796\) −1.81672e6 + 1.96892e6i −0.101626 + 0.110140i
\(797\) 2.22339e7i 1.23985i 0.784660 + 0.619926i \(0.212837\pi\)
−0.784660 + 0.619926i \(0.787163\pi\)
\(798\) −1.33537e7 + 5.84828e6i −0.742323 + 0.325103i
\(799\) −4.90505e7 −2.71817
\(800\) 0 0
\(801\) −1.13761e7 −0.626488
\(802\) −5.16278e6 + 2.26106e6i −0.283431 + 0.124130i
\(803\) 1.39704e7i 0.764577i
\(804\) −4.90776e6 + 5.31893e6i −0.267759 + 0.290191i
\(805\) 0 0
\(806\) −1.15134e6 2.62891e6i −0.0624260 0.142540i
\(807\) 7.25226e6 0.392003
\(808\) 1.96470e7 + 6.78285e6i 1.05869 + 0.365497i
\(809\) 1.51247e7 0.812484 0.406242 0.913765i \(-0.366839\pi\)
0.406242 + 0.913765i \(0.366839\pi\)
\(810\) 0 0
\(811\) 1.35982e7i 0.725990i −0.931791 0.362995i \(-0.881754\pi\)
0.931791 0.362995i \(-0.118246\pi\)
\(812\) −1.56820e7 1.44698e7i −0.834665 0.770143i
\(813\) 2.26157e7i 1.20001i
\(814\) −1.77542e7 + 7.77552e6i −0.939162 + 0.411309i
\(815\) 0 0
\(816\) −2.33193e7 + 1.87815e6i −1.22600 + 0.0987427i
\(817\) 2.39092e7 1.25317
\(818\) 2.68385e7 1.17540e7i 1.40241 0.614191i
\(819\) 2.64197e6i 0.137632i
\(820\) 0 0
\(821\) 2.56951e7i 1.33043i 0.746651 + 0.665216i \(0.231660\pi\)
−0.746651 + 0.665216i \(0.768340\pi\)
\(822\) 3.98628e6 + 9.10207e6i 0.205773 + 0.469852i
\(823\) −8.73184e6 −0.449372 −0.224686 0.974431i \(-0.572136\pi\)
−0.224686 + 0.974431i \(0.572136\pi\)
\(824\) 2.27944e6 6.60257e6i 0.116953 0.338762i
\(825\) 0 0
\(826\) −9.38512e6 2.14295e7i −0.478619 1.09285i
\(827\) 1.46565e6i 0.0745191i 0.999306 + 0.0372596i \(0.0118628\pi\)
−0.999306 + 0.0372596i \(0.988137\pi\)
\(828\) 3.36205e6 3.64372e6i 0.170423 0.184701i
\(829\) 4.49887e6i 0.227362i 0.993517 + 0.113681i \(0.0362641\pi\)
−0.993517 + 0.113681i \(0.963736\pi\)
\(830\) 0 0
\(831\) 8.97130e6 0.450664
\(832\) −2.59259e6 + 3.30729e6i −0.129845 + 0.165640i
\(833\) 2.10918e7 1.05317
\(834\) 1.72052e7 7.53506e6i 0.856532 0.375121i
\(835\) 0 0
\(836\) 1.01472e7 1.09973e7i 0.502146 0.544215i
\(837\) 1.57938e7i 0.779244i
\(838\) −8.11741e6 1.85349e7i −0.399307 0.911758i
\(839\) −1.43801e7 −0.705273 −0.352636 0.935760i \(-0.614715\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(840\) 0 0
\(841\) 3.92030e6 0.191130
\(842\) −4.89834e6 1.11846e7i −0.238105 0.543677i
\(843\) 2.59702e7i 1.25866i
\(844\) −1.30206e7 1.20141e7i −0.629180 0.580543i
\(845\) 0 0
\(846\) 1.51533e7 6.63643e6i 0.727916 0.318793i
\(847\) −9.44185e6 −0.452219
\(848\) −3.12679e7 + 2.51834e6i −1.49317 + 0.120261i
\(849\) 2.17420e7 1.03521
\(850\) 0 0
\(851\) 1.31202e7i 0.621036i
\(852\) −3.53561e6 3.26230e6i −0.166865 0.153966i
\(853\) 2.62365e7i 1.23462i −0.786720 0.617310i \(-0.788222\pi\)
0.786720 0.617310i \(-0.211778\pi\)
\(854\) −1.45316e7 3.31808e7i −0.681820 1.55683i
\(855\) 0 0
\(856\) 3.24182e7 + 1.11919e7i 1.51218 + 0.522058i
\(857\) 6.34066e6 0.294905 0.147453 0.989069i \(-0.452893\pi\)
0.147453 + 0.989069i \(0.452893\pi\)
\(858\) 1.01284e6 + 2.31266e6i 0.0469701 + 0.107249i
\(859\) 1.09488e7i 0.506273i 0.967431 + 0.253137i \(0.0814622\pi\)
−0.967431 + 0.253137i \(0.918538\pi\)
\(860\) 0 0
\(861\) 1.04673e7i 0.481200i
\(862\) 9.37318e6 4.10501e6i 0.429654 0.188168i
\(863\) 3.28604e6 0.150192 0.0750958 0.997176i \(-0.476074\pi\)
0.0750958 + 0.997176i \(0.476074\pi\)
\(864\) 2.03704e7 1.09481e7i 0.928359 0.498948i
\(865\) 0 0
\(866\) 6.67978e6 2.92543e6i 0.302669 0.132555i
\(867\) 3.28540e7i 1.48436i
\(868\) 1.40536e7 1.52310e7i 0.633123 0.686165i
\(869\) 4.03393e6i 0.181209i
\(870\) 0 0
\(871\) −2.67963e6 −0.119682
\(872\) 4.17380e6 + 1.44094e6i 0.185883 + 0.0641735i
\(873\) −1.88278e7 −0.836110
\(874\) 4.06345e6 + 9.27828e6i 0.179936 + 0.410855i
\(875\) 0 0
\(876\) −1.10610e7 1.02059e7i −0.487005 0.449358i
\(877\) 7.75326e6i 0.340397i 0.985410 + 0.170198i \(0.0544409\pi\)
−0.985410 + 0.170198i \(0.945559\pi\)
\(878\) −9.82937e6 + 4.30481e6i −0.430318 + 0.188459i
\(879\) 1.88557e7 0.823136
\(880\) 0 0
\(881\) −449453. −0.0195094 −0.00975471 0.999952i \(-0.503105\pi\)
−0.00975471 + 0.999952i \(0.503105\pi\)
\(882\) −6.51592e6 + 2.85367e6i −0.282036 + 0.123519i
\(883\) 2.42001e7i 1.04452i −0.852787 0.522259i \(-0.825089\pi\)
0.852787 0.522259i \(-0.174911\pi\)
\(884\) −6.36614e6 5.87402e6i −0.273997 0.252816i
\(885\) 0 0
\(886\) −1.36610e7 3.11928e7i −0.584652 1.33496i
\(887\) −8.80204e6 −0.375642 −0.187821 0.982203i \(-0.560143\pi\)
−0.187821 + 0.982203i \(0.560143\pi\)
\(888\) 6.81392e6 1.97370e7i 0.289978 0.839943i
\(889\) 4.80724e7 2.04005
\(890\) 0 0
\(891\) 4.06203e6i 0.171415i
\(892\) −6.06302e6 + 6.57097e6i −0.255139 + 0.276514i
\(893\) 3.37977e7i 1.41827i
\(894\) 2.06460e7 9.04197e6i 0.863956 0.378372i
\(895\) 0 0
\(896\) −2.93863e7 7.56797e6i −1.22286 0.314926i
\(897\) −1.70903e6 −0.0709202
\(898\) 1.24403e7 5.44826e6i 0.514801 0.225459i
\(899\) 1.61137e7i 0.664959i
\(900\) 0 0
\(901\) 6.46597e7i 2.65352i
\(902\) 4.31012e6 + 9.84151e6i 0.176390 + 0.402759i
\(903\) −2.91302e7 −1.18884
\(904\) −3.12606e6 + 9.05486e6i −0.127226 + 0.368520i
\(905\) 0 0
\(906\) 8.27351e6 + 1.88913e7i 0.334865 + 0.764613i
\(907\) 1.35035e7i 0.545040i −0.962150 0.272520i \(-0.912143\pi\)
0.962150 0.272520i \(-0.0878571\pi\)
\(908\) −1.39479e7 1.28697e7i −0.561426 0.518027i
\(909\) 1.44492e7i 0.580010i
\(910\) 0 0
\(911\) −1.74802e7 −0.697831 −0.348915 0.937154i \(-0.613450\pi\)
−0.348915 + 0.937154i \(0.613450\pi\)
\(912\) 1.29412e6 + 1.60679e7i 0.0515213 + 0.639693i
\(913\) −2.14803e6 −0.0852830
\(914\) −4.45083e6 + 1.94926e6i −0.176228 + 0.0771798i
\(915\) 0 0
\(916\) 2.18219e7 + 2.01350e7i 0.859317 + 0.792890i
\(917\) 5.20157e7i 2.04273i
\(918\) 1.91231e7 + 4.36647e7i 0.748948 + 1.71011i
\(919\) 3.84416e7 1.50146 0.750728 0.660612i \(-0.229703\pi\)
0.750728 + 0.660612i \(0.229703\pi\)
\(920\) 0 0
\(921\) −1.05934e7 −0.411514
\(922\) −5.29849e6 1.20983e7i −0.205270 0.468702i
\(923\) 1.78121e6i 0.0688194i
\(924\) −1.23630e7 + 1.33988e7i −0.476370 + 0.516280i
\(925\) 0 0
\(926\) −7.00542e6 + 3.06805e6i −0.268477 + 0.117580i
\(927\) −4.85580e6 −0.185593
\(928\) −2.07830e7 + 1.11698e7i −0.792205 + 0.425772i
\(929\) −694053. −0.0263848 −0.0131924 0.999913i \(-0.504199\pi\)
−0.0131924 + 0.999913i \(0.504199\pi\)
\(930\) 0 0
\(931\) 1.45330e7i 0.549518i
\(932\) 2.37138e7 2.57005e7i 0.894254 0.969174i
\(933\) 1.70643e7i 0.641776i
\(934\) 1.46149e7 + 3.33709e7i 0.548186 + 1.25170i
\(935\) 0 0
\(936\) 2.76145e6 + 953349.i 0.103026 + 0.0355682i
\(937\) −4.08849e7 −1.52130 −0.760648 0.649165i \(-0.775119\pi\)
−0.760648 + 0.649165i \(0.775119\pi\)
\(938\) −7.76244e6 1.77243e7i −0.288065 0.657753i
\(939\) 1.74225e7i 0.644832i
\(940\) 0 0
\(941\) 1.21324e7i 0.446655i 0.974743 + 0.223328i \(0.0716920\pi\)
−0.974743 + 0.223328i \(0.928308\pi\)
\(942\) −1.52137e7 + 6.66289e6i −0.558609 + 0.244645i
\(943\) −7.27279e6 −0.266331
\(944\) −2.57852e7 + 2.07676e6i −0.941760 + 0.0758500i
\(945\) 0 0
\(946\) 2.73887e7 1.19950e7i 0.995049 0.435785i
\(947\) 3.38948e7i 1.22817i 0.789241 + 0.614084i \(0.210474\pi\)
−0.789241 + 0.614084i \(0.789526\pi\)
\(948\) 3.19383e6 + 2.94694e6i 0.115422 + 0.106500i
\(949\) 5.57242e6i 0.200853i
\(950\) 0 0
\(951\) 1.63086e7 0.584742
\(952\) 2.04119e7 5.91247e7i 0.729948 2.11435i
\(953\) 5.18152e7 1.84810 0.924049 0.382274i \(-0.124859\pi\)
0.924049 + 0.382274i \(0.124859\pi\)
\(954\) 8.74833e6 + 1.99755e7i 0.311210 + 0.710602i
\(955\) 0 0
\(956\) −1.73160e7 + 1.87667e7i −0.612778 + 0.664116i
\(957\) 1.41753e7i 0.500324i
\(958\) 9.60470e6 4.20641e6i 0.338119 0.148080i
\(959\) −2.65671e7 −0.932819
\(960\) 0 0
\(961\) −1.29789e7 −0.453347
\(962\) 7.08166e6 3.10144e6i 0.246716 0.108050i
\(963\) 2.38416e7i 0.828458i
\(964\) −3.51241e7 + 3.80667e7i −1.21734 + 1.31933i
\(965\) 0 0
\(966\) −4.95078e6 1.13044e7i −0.170699 0.389765i
\(967\) 4.41440e7 1.51812 0.759058 0.651023i \(-0.225660\pi\)
0.759058 + 0.651023i \(0.225660\pi\)
\(968\) −3.40707e6 + 9.86884e6i −0.116867 + 0.338515i
\(969\) −3.32272e7 −1.13680
\(970\) 0 0
\(971\) 2.25369e7i 0.767091i 0.923522 + 0.383546i \(0.125297\pi\)
−0.923522 + 0.383546i \(0.874703\pi\)
\(972\) −1.95998e7 1.80847e7i −0.665404 0.613967i
\(973\) 5.02184e7i 1.70052i
\(974\) 1.30407e7 5.71122e6i 0.440457 0.192900i
\(975\) 0 0
\(976\) −3.99250e7 + 3.21558e6i −1.34159 + 0.108053i
\(977\) 508955. 0.0170586 0.00852929 0.999964i \(-0.497285\pi\)
0.00852929 + 0.999964i \(0.497285\pi\)
\(978\) 6.80639e6 2.98088e6i 0.227546 0.0996546i
\(979\) 2.90657e7i 0.969224i
\(980\) 0 0
\(981\) 3.06958e6i 0.101837i
\(982\) 1.22344e7 + 2.79354e7i 0.404859 + 0.924433i
\(983\) 1.38312e7 0.456536 0.228268 0.973598i \(-0.426694\pi\)
0.228268 + 0.973598i \(0.426694\pi\)
\(984\) −1.09406e7 3.77709e6i −0.360209 0.124357i
\(985\) 0 0
\(986\) −1.95104e7 4.45490e7i −0.639107 1.45930i
\(987\) 4.11781e7i 1.34547i
\(988\) −4.04743e6 + 4.38652e6i −0.131913 + 0.142964i
\(989\) 2.02400e7i 0.657992i
\(990\) 0 0
\(991\) 1.13368e7 0.366696 0.183348 0.983048i \(-0.441307\pi\)
0.183348 + 0.983048i \(0.441307\pi\)
\(992\) −1.08486e7 2.01852e7i −0.350020 0.651259i
\(993\) −4.26957e6 −0.137408
\(994\) 1.17818e7 5.15986e6i 0.378220 0.165643i
\(995\) 0 0
\(996\) 1.56921e6 1.70068e6i 0.0501226 0.0543218i
\(997\) 3.66390e7i 1.16736i 0.811983 + 0.583681i \(0.198388\pi\)
−0.811983 + 0.583681i \(0.801612\pi\)
\(998\) −7.22464e6 1.64964e7i −0.229609 0.524278i
\(999\) −4.25449e7 −1.34876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.6.d.b.101.4 20
4.3 odd 2 800.6.d.c.401.14 20
5.2 odd 4 200.6.f.b.149.7 20
5.3 odd 4 200.6.f.c.149.14 20
5.4 even 2 40.6.d.a.21.17 20
8.3 odd 2 800.6.d.c.401.7 20
8.5 even 2 inner 200.6.d.b.101.3 20
15.14 odd 2 360.6.k.b.181.4 20
20.3 even 4 800.6.f.b.49.7 20
20.7 even 4 800.6.f.c.49.14 20
20.19 odd 2 160.6.d.a.81.7 20
40.3 even 4 800.6.f.c.49.13 20
40.13 odd 4 200.6.f.b.149.8 20
40.19 odd 2 160.6.d.a.81.14 20
40.27 even 4 800.6.f.b.49.8 20
40.29 even 2 40.6.d.a.21.18 yes 20
40.37 odd 4 200.6.f.c.149.13 20
120.29 odd 2 360.6.k.b.181.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.17 20 5.4 even 2
40.6.d.a.21.18 yes 20 40.29 even 2
160.6.d.a.81.7 20 20.19 odd 2
160.6.d.a.81.14 20 40.19 odd 2
200.6.d.b.101.3 20 8.5 even 2 inner
200.6.d.b.101.4 20 1.1 even 1 trivial
200.6.f.b.149.7 20 5.2 odd 4
200.6.f.b.149.8 20 40.13 odd 4
200.6.f.c.149.13 20 40.37 odd 4
200.6.f.c.149.14 20 5.3 odd 4
360.6.k.b.181.3 20 120.29 odd 2
360.6.k.b.181.4 20 15.14 odd 2
800.6.d.c.401.7 20 8.3 odd 2
800.6.d.c.401.14 20 4.3 odd 2
800.6.f.b.49.7 20 20.3 even 4
800.6.f.b.49.8 20 40.27 even 4
800.6.f.c.49.13 20 40.3 even 4
800.6.f.c.49.14 20 20.7 even 4