Properties

Label 200.6.d
Level 200200
Weight 66
Character orbit 200.d
Rep. character χ200(101,)\chi_{200}(101,\cdot)
Character field Q\Q
Dimension 9292
Newform subspaces 55
Sturm bound 180180
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 200.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 180180
Trace bound: 22
Distinguishing TpT_p: 33, 77

Dimensions

The following table gives the dimensions of various subspaces of M6(200,[χ])M_{6}(200, [\chi]).

Total New Old
Modular forms 156 98 58
Cusp forms 144 92 52
Eisenstein series 12 6 6

Trace form

92q+2q42q6+100q76964q9+300q12+168q14+1218q16200q17+540q188200q22+2340q23+14382q24+5892q267260q28+12920q31+99900q98+O(q100) 92 q + 2 q^{4} - 2 q^{6} + 100 q^{7} - 6964 q^{9} + 300 q^{12} + 168 q^{14} + 1218 q^{16} - 200 q^{17} + 540 q^{18} - 8200 q^{22} + 2340 q^{23} + 14382 q^{24} + 5892 q^{26} - 7260 q^{28} + 12920 q^{31}+ \cdots - 99900 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(200,[χ])S_{6}^{\mathrm{new}}(200, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
200.6.d.a 200.d 8.b 44 32.07732.077 4.0.218489.1 None 8.6.b.a 22 00 00 96-96 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+(β1+β3)q3+(5+β1+β2+)q4+q+\beta _{1}q^{2}+(\beta _{1}+\beta _{3})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
200.6.d.b 200.d 8.b 2020 32.07732.077 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 40.6.d.a 2-2 00 00 196196 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+β3q3+(2β2)q4+(10+)q6+q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-2-\beta _{2})q^{4}+(10+\cdots)q^{6}+\cdots
200.6.d.c 200.d 8.b 2020 32.07732.077 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 200.6.d.c 1-1 00 00 196-196 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2β5q3+β2q4+(2β7+)q6+q-\beta _{1}q^{2}-\beta _{5}q^{3}+\beta _{2}q^{4}+(2-\beta _{7}+\cdots)q^{6}+\cdots
200.6.d.d 200.d 8.b 2020 32.07732.077 Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots) None 200.6.d.c 11 00 00 196196 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β4q2+β6q3β2q4+(2β10+)q6+q+\beta _{4}q^{2}+\beta _{6}q^{3}-\beta _{2}q^{4}+(2-\beta _{10}+\cdots)q^{6}+\cdots
200.6.d.e 200.d 8.b 2828 32.07732.077 None 40.6.f.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S6old(200,[χ])S_{6}^{\mathrm{old}}(200, [\chi]) into lower level spaces

S6old(200,[χ]) S_{6}^{\mathrm{old}}(200, [\chi]) \simeq S6new(8,[χ])S_{6}^{\mathrm{new}}(8, [\chi])3^{\oplus 3}\oplusS6new(40,[χ])S_{6}^{\mathrm{new}}(40, [\chi])2^{\oplus 2}