Defining parameters
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 98 | 58 |
Cusp forms | 144 | 92 | 52 |
Eisenstein series | 12 | 6 | 6 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
200.6.d.a | $4$ | $32.077$ | 4.0.218489.1 | None | \(2\) | \(0\) | \(0\) | \(-96\) | \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{3})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
200.6.d.b | $20$ | $32.077$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-2\) | \(0\) | \(0\) | \(196\) | \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-2-\beta _{2})q^{4}+(10+\cdots)q^{6}+\cdots\) |
200.6.d.c | $20$ | $32.077$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-1\) | \(0\) | \(0\) | \(-196\) | \(q-\beta _{1}q^{2}-\beta _{5}q^{3}+\beta _{2}q^{4}+(2-\beta _{7}+\cdots)q^{6}+\cdots\) |
200.6.d.d | $20$ | $32.077$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(1\) | \(0\) | \(0\) | \(196\) | \(q+\beta _{4}q^{2}+\beta _{6}q^{3}-\beta _{2}q^{4}+(2-\beta _{10}+\cdots)q^{6}+\cdots\) |
200.6.d.e | $28$ | $32.077$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{6}^{\mathrm{old}}(200, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)