Properties

Label 200.6.d
Level $200$
Weight $6$
Character orbit 200.d
Rep. character $\chi_{200}(101,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $5$
Sturm bound $180$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 200.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(180\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(200, [\chi])\).

Total New Old
Modular forms 156 98 58
Cusp forms 144 92 52
Eisenstein series 12 6 6

Trace form

\( 92 q + 2 q^{4} - 2 q^{6} + 100 q^{7} - 6964 q^{9} + 300 q^{12} + 168 q^{14} + 1218 q^{16} - 200 q^{17} + 540 q^{18} - 8200 q^{22} + 2340 q^{23} + 14382 q^{24} + 5892 q^{26} - 7260 q^{28} + 12920 q^{31}+ \cdots - 99900 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.6.d.a 200.d 8.b $4$ $32.077$ 4.0.218489.1 None 8.6.b.a \(2\) \(0\) \(0\) \(-96\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{3})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
200.6.d.b 200.d 8.b $20$ $32.077$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 40.6.d.a \(-2\) \(0\) \(0\) \(196\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-2-\beta _{2})q^{4}+(10+\cdots)q^{6}+\cdots\)
200.6.d.c 200.d 8.b $20$ $32.077$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 200.6.d.c \(-1\) \(0\) \(0\) \(-196\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}-\beta _{5}q^{3}+\beta _{2}q^{4}+(2-\beta _{7}+\cdots)q^{6}+\cdots\)
200.6.d.d 200.d 8.b $20$ $32.077$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 200.6.d.c \(1\) \(0\) \(0\) \(196\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}+\beta _{6}q^{3}-\beta _{2}q^{4}+(2-\beta _{10}+\cdots)q^{6}+\cdots\)
200.6.d.e 200.d 8.b $28$ $32.077$ None 40.6.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{6}^{\mathrm{old}}(200, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)