Properties

Label 800.6.f.c.49.14
Level $800$
Weight $6$
Character 800.49
Analytic conductor $128.307$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,6,Mod(49,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{93}\cdot 3^{4}\cdot 5^{8} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.14
Root \(3.72553 + 1.45618i\) of defining polynomial
Character \(\chi\) \(=\) 800.49
Dual form 800.6.f.c.49.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.8240 q^{3} +163.706i q^{7} -125.841 q^{9} -321.520i q^{11} -128.246 q^{13} +2110.72i q^{17} -1454.37i q^{19} +1771.96i q^{21} +1231.18i q^{23} -3992.34 q^{27} -4073.19i q^{29} +3956.03 q^{31} -3480.14i q^{33} +10656.6 q^{37} -1388.13 q^{39} -5907.19 q^{41} -16439.6 q^{43} +23238.8i q^{47} -9992.68 q^{49} +22846.5i q^{51} -30634.0 q^{53} -15742.1i q^{57} -25262.4i q^{59} -39115.5i q^{61} -20600.9i q^{63} -20894.5 q^{67} +13326.3i q^{69} -13889.1 q^{71} -43451.2i q^{73} +52634.8 q^{77} -12546.4 q^{79} -12633.8 q^{81} -6680.84 q^{83} -44088.2i q^{87} +90400.9 q^{89} -20994.6i q^{91} +42820.2 q^{93} -149616. i q^{97} +40460.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{3} + 1620 q^{9} + 11664 q^{27} - 7160 q^{31} + 3608 q^{37} - 44904 q^{39} + 11608 q^{41} - 51772 q^{43} - 18756 q^{49} - 928 q^{53} - 161604 q^{67} + 200312 q^{71} - 26008 q^{77} + 282080 q^{79}+ \cdots - 293472 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.8240 0.694361 0.347180 0.937798i \(-0.387139\pi\)
0.347180 + 0.937798i \(0.387139\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 163.706i 1.26276i 0.775475 + 0.631378i \(0.217510\pi\)
−0.775475 + 0.631378i \(0.782490\pi\)
\(8\) 0 0
\(9\) −125.841 −0.517863
\(10\) 0 0
\(11\) − 321.520i − 0.801174i −0.916259 0.400587i \(-0.868806\pi\)
0.916259 0.400587i \(-0.131194\pi\)
\(12\) 0 0
\(13\) −128.246 −0.210467 −0.105233 0.994448i \(-0.533559\pi\)
−0.105233 + 0.994448i \(0.533559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2110.72i 1.77137i 0.464290 + 0.885683i \(0.346310\pi\)
−0.464290 + 0.885683i \(0.653690\pi\)
\(18\) 0 0
\(19\) − 1454.37i − 0.924252i −0.886814 0.462126i \(-0.847087\pi\)
0.886814 0.462126i \(-0.152913\pi\)
\(20\) 0 0
\(21\) 1771.96i 0.876809i
\(22\) 0 0
\(23\) 1231.18i 0.485289i 0.970115 + 0.242645i \(0.0780149\pi\)
−0.970115 + 0.242645i \(0.921985\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3992.34 −1.05394
\(28\) 0 0
\(29\) − 4073.19i − 0.899372i −0.893187 0.449686i \(-0.851536\pi\)
0.893187 0.449686i \(-0.148464\pi\)
\(30\) 0 0
\(31\) 3956.03 0.739360 0.369680 0.929159i \(-0.379467\pi\)
0.369680 + 0.929159i \(0.379467\pi\)
\(32\) 0 0
\(33\) − 3480.14i − 0.556304i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10656.6 1.27972 0.639861 0.768490i \(-0.278992\pi\)
0.639861 + 0.768490i \(0.278992\pi\)
\(38\) 0 0
\(39\) −1388.13 −0.146140
\(40\) 0 0
\(41\) −5907.19 −0.548809 −0.274404 0.961614i \(-0.588481\pi\)
−0.274404 + 0.961614i \(0.588481\pi\)
\(42\) 0 0
\(43\) −16439.6 −1.35588 −0.677938 0.735119i \(-0.737126\pi\)
−0.677938 + 0.735119i \(0.737126\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 23238.8i 1.53450i 0.641345 + 0.767252i \(0.278377\pi\)
−0.641345 + 0.767252i \(0.721623\pi\)
\(48\) 0 0
\(49\) −9992.68 −0.594555
\(50\) 0 0
\(51\) 22846.5i 1.22997i
\(52\) 0 0
\(53\) −30634.0 −1.49801 −0.749003 0.662567i \(-0.769467\pi\)
−0.749003 + 0.662567i \(0.769467\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 15742.1i − 0.641764i
\(58\) 0 0
\(59\) − 25262.4i − 0.944810i −0.881382 0.472405i \(-0.843386\pi\)
0.881382 0.472405i \(-0.156614\pi\)
\(60\) 0 0
\(61\) − 39115.5i − 1.34594i −0.739672 0.672968i \(-0.765019\pi\)
0.739672 0.672968i \(-0.234981\pi\)
\(62\) 0 0
\(63\) − 20600.9i − 0.653935i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −20894.5 −0.568651 −0.284325 0.958728i \(-0.591770\pi\)
−0.284325 + 0.958728i \(0.591770\pi\)
\(68\) 0 0
\(69\) 13326.3i 0.336966i
\(70\) 0 0
\(71\) −13889.1 −0.326984 −0.163492 0.986545i \(-0.552276\pi\)
−0.163492 + 0.986545i \(0.552276\pi\)
\(72\) 0 0
\(73\) − 43451.2i − 0.954321i −0.878816 0.477161i \(-0.841666\pi\)
0.878816 0.477161i \(-0.158334\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 52634.8 1.01169
\(78\) 0 0
\(79\) −12546.4 −0.226179 −0.113089 0.993585i \(-0.536075\pi\)
−0.113089 + 0.993585i \(0.536075\pi\)
\(80\) 0 0
\(81\) −12633.8 −0.213955
\(82\) 0 0
\(83\) −6680.84 −0.106448 −0.0532238 0.998583i \(-0.516950\pi\)
−0.0532238 + 0.998583i \(0.516950\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 44088.2i − 0.624488i
\(88\) 0 0
\(89\) 90400.9 1.20976 0.604878 0.796318i \(-0.293222\pi\)
0.604878 + 0.796318i \(0.293222\pi\)
\(90\) 0 0
\(91\) − 20994.6i − 0.265769i
\(92\) 0 0
\(93\) 42820.2 0.513382
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 149616.i − 1.61454i −0.590184 0.807269i \(-0.700945\pi\)
0.590184 0.807269i \(-0.299055\pi\)
\(98\) 0 0
\(99\) 40460.4i 0.414898i
\(100\) 0 0
\(101\) − 114822.i − 1.12001i −0.828491 0.560003i \(-0.810800\pi\)
0.828491 0.560003i \(-0.189200\pi\)
\(102\) 0 0
\(103\) − 38586.9i − 0.358382i −0.983814 0.179191i \(-0.942652\pi\)
0.983814 0.179191i \(-0.0573481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −189459. −1.59976 −0.799881 0.600158i \(-0.795104\pi\)
−0.799881 + 0.600158i \(0.795104\pi\)
\(108\) 0 0
\(109\) 24392.6i 0.196649i 0.995154 + 0.0983245i \(0.0313483\pi\)
−0.995154 + 0.0983245i \(0.968652\pi\)
\(110\) 0 0
\(111\) 115348. 0.888589
\(112\) 0 0
\(113\) − 52918.6i − 0.389863i −0.980817 0.194932i \(-0.937552\pi\)
0.980817 0.194932i \(-0.0624485\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16138.5 0.108993
\(118\) 0 0
\(119\) −345538. −2.23681
\(120\) 0 0
\(121\) 57675.7 0.358120
\(122\) 0 0
\(123\) −63939.5 −0.381071
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 293650.i 1.61555i 0.589489 + 0.807777i \(0.299329\pi\)
−0.589489 + 0.807777i \(0.700671\pi\)
\(128\) 0 0
\(129\) −177942. −0.941467
\(130\) 0 0
\(131\) − 317738.i − 1.61767i −0.588032 0.808837i \(-0.700097\pi\)
0.588032 0.808837i \(-0.299903\pi\)
\(132\) 0 0
\(133\) 238089. 1.16711
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 162285.i 0.738717i 0.929287 + 0.369358i \(0.120423\pi\)
−0.929287 + 0.369358i \(0.879577\pi\)
\(138\) 0 0
\(139\) − 306759.i − 1.34667i −0.739338 0.673334i \(-0.764861\pi\)
0.739338 0.673334i \(-0.235139\pi\)
\(140\) 0 0
\(141\) 251537.i 1.06550i
\(142\) 0 0
\(143\) 41233.5i 0.168621i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −108161. −0.412835
\(148\) 0 0
\(149\) 368107.i 1.35834i 0.733981 + 0.679170i \(0.237660\pi\)
−0.733981 + 0.679170i \(0.762340\pi\)
\(150\) 0 0
\(151\) −336822. −1.20215 −0.601075 0.799193i \(-0.705261\pi\)
−0.601075 + 0.799193i \(0.705261\pi\)
\(152\) 0 0
\(153\) − 265615.i − 0.917326i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −271253. −0.878264 −0.439132 0.898423i \(-0.644714\pi\)
−0.439132 + 0.898423i \(0.644714\pi\)
\(158\) 0 0
\(159\) −331582. −1.04016
\(160\) 0 0
\(161\) −201551. −0.612802
\(162\) 0 0
\(163\) 121354. 0.357756 0.178878 0.983871i \(-0.442753\pi\)
0.178878 + 0.983871i \(0.442753\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 56095.4i 0.155645i 0.996967 + 0.0778227i \(0.0247968\pi\)
−0.996967 + 0.0778227i \(0.975203\pi\)
\(168\) 0 0
\(169\) −354846. −0.955704
\(170\) 0 0
\(171\) 183019.i 0.478636i
\(172\) 0 0
\(173\) 167666. 0.425921 0.212960 0.977061i \(-0.431689\pi\)
0.212960 + 0.977061i \(0.431689\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 273440.i − 0.656039i
\(178\) 0 0
\(179\) − 535921.i − 1.25017i −0.780558 0.625083i \(-0.785065\pi\)
0.780558 0.625083i \(-0.214935\pi\)
\(180\) 0 0
\(181\) 113446.i 0.257391i 0.991684 + 0.128696i \(0.0410790\pi\)
−0.991684 + 0.128696i \(0.958921\pi\)
\(182\) 0 0
\(183\) − 423387.i − 0.934565i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 678640. 1.41917
\(188\) 0 0
\(189\) − 653570.i − 1.33088i
\(190\) 0 0
\(191\) −391808. −0.777124 −0.388562 0.921423i \(-0.627028\pi\)
−0.388562 + 0.921423i \(0.627028\pi\)
\(192\) 0 0
\(193\) − 261513.i − 0.505359i −0.967550 0.252680i \(-0.918688\pi\)
0.967550 0.252680i \(-0.0813118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 898947. 1.65032 0.825161 0.564898i \(-0.191084\pi\)
0.825161 + 0.564898i \(0.191084\pi\)
\(198\) 0 0
\(199\) −83719.3 −0.149862 −0.0749312 0.997189i \(-0.523874\pi\)
−0.0749312 + 0.997189i \(0.523874\pi\)
\(200\) 0 0
\(201\) −226163. −0.394849
\(202\) 0 0
\(203\) 666805. 1.13569
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 154932.i − 0.251313i
\(208\) 0 0
\(209\) −467609. −0.740487
\(210\) 0 0
\(211\) 553641.i 0.856095i 0.903756 + 0.428047i \(0.140798\pi\)
−0.903756 + 0.428047i \(0.859202\pi\)
\(212\) 0 0
\(213\) −150335. −0.227045
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 647627.i 0.933632i
\(218\) 0 0
\(219\) − 470316.i − 0.662643i
\(220\) 0 0
\(221\) − 270691.i − 0.372814i
\(222\) 0 0
\(223\) − 279400.i − 0.376239i −0.982146 0.188120i \(-0.939761\pi\)
0.982146 0.188120i \(-0.0602392\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −593068. −0.763905 −0.381953 0.924182i \(-0.624748\pi\)
−0.381953 + 0.924182i \(0.624748\pi\)
\(228\) 0 0
\(229\) − 927873.i − 1.16923i −0.811311 0.584615i \(-0.801246\pi\)
0.811311 0.584615i \(-0.198754\pi\)
\(230\) 0 0
\(231\) 569720. 0.702476
\(232\) 0 0
\(233\) − 1.09279e6i − 1.31871i −0.751833 0.659353i \(-0.770830\pi\)
0.751833 0.659353i \(-0.229170\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −135803. −0.157050
\(238\) 0 0
\(239\) −797967. −0.903630 −0.451815 0.892112i \(-0.649223\pi\)
−0.451815 + 0.892112i \(0.649223\pi\)
\(240\) 0 0
\(241\) −1.61861e6 −1.79515 −0.897573 0.440865i \(-0.854672\pi\)
−0.897573 + 0.440865i \(0.854672\pi\)
\(242\) 0 0
\(243\) 833389. 0.905383
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 186516.i 0.194525i
\(248\) 0 0
\(249\) −72313.5 −0.0739130
\(250\) 0 0
\(251\) 449688.i 0.450533i 0.974297 + 0.225266i \(0.0723253\pi\)
−0.974297 + 0.225266i \(0.927675\pi\)
\(252\) 0 0
\(253\) 395848. 0.388801
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 396434.i − 0.374402i −0.982322 0.187201i \(-0.940058\pi\)
0.982322 0.187201i \(-0.0599416\pi\)
\(258\) 0 0
\(259\) 1.74456e6i 1.61598i
\(260\) 0 0
\(261\) 512573.i 0.465752i
\(262\) 0 0
\(263\) − 1.93423e6i − 1.72432i −0.506635 0.862160i \(-0.669111\pi\)
0.506635 0.862160i \(-0.330889\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 978500. 0.840007
\(268\) 0 0
\(269\) − 670016.i − 0.564553i −0.959333 0.282276i \(-0.908910\pi\)
0.959333 0.282276i \(-0.0910895\pi\)
\(270\) 0 0
\(271\) −2.08940e6 −1.72822 −0.864109 0.503305i \(-0.832117\pi\)
−0.864109 + 0.503305i \(0.832117\pi\)
\(272\) 0 0
\(273\) − 227246.i − 0.184539i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −828834. −0.649035 −0.324517 0.945880i \(-0.605202\pi\)
−0.324517 + 0.945880i \(0.605202\pi\)
\(278\) 0 0
\(279\) −497830. −0.382887
\(280\) 0 0
\(281\) 2.39932e6 1.81268 0.906342 0.422545i \(-0.138863\pi\)
0.906342 + 0.422545i \(0.138863\pi\)
\(282\) 0 0
\(283\) −2.00868e6 −1.49089 −0.745444 0.666568i \(-0.767763\pi\)
−0.745444 + 0.666568i \(0.767763\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 967042.i − 0.693012i
\(288\) 0 0
\(289\) −3.03529e6 −2.13774
\(290\) 0 0
\(291\) − 1.61944e6i − 1.12107i
\(292\) 0 0
\(293\) 1.74203e6 1.18546 0.592729 0.805402i \(-0.298050\pi\)
0.592729 + 0.805402i \(0.298050\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.28362e6i 0.844393i
\(298\) 0 0
\(299\) − 157893.i − 0.102137i
\(300\) 0 0
\(301\) − 2.69126e6i − 1.71214i
\(302\) 0 0
\(303\) − 1.24283e6i − 0.777688i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −978690. −0.592651 −0.296326 0.955087i \(-0.595761\pi\)
−0.296326 + 0.955087i \(0.595761\pi\)
\(308\) 0 0
\(309\) − 417665.i − 0.248847i
\(310\) 0 0
\(311\) 1.57652e6 0.924268 0.462134 0.886810i \(-0.347084\pi\)
0.462134 + 0.886810i \(0.347084\pi\)
\(312\) 0 0
\(313\) 1.60962e6i 0.928670i 0.885660 + 0.464335i \(0.153707\pi\)
−0.885660 + 0.464335i \(0.846293\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.50670e6 −0.842130 −0.421065 0.907030i \(-0.638344\pi\)
−0.421065 + 0.907030i \(0.638344\pi\)
\(318\) 0 0
\(319\) −1.30961e6 −0.720553
\(320\) 0 0
\(321\) −2.05070e6 −1.11081
\(322\) 0 0
\(323\) 3.06977e6 1.63719
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 264026.i 0.136545i
\(328\) 0 0
\(329\) −3.80433e6 −1.93771
\(330\) 0 0
\(331\) 394453.i 0.197891i 0.995093 + 0.0989454i \(0.0315469\pi\)
−0.995093 + 0.0989454i \(0.968453\pi\)
\(332\) 0 0
\(333\) −1.34104e6 −0.662721
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.36879e6i 0.656543i 0.944583 + 0.328272i \(0.106466\pi\)
−0.944583 + 0.328272i \(0.893534\pi\)
\(338\) 0 0
\(339\) − 572791.i − 0.270706i
\(340\) 0 0
\(341\) − 1.27195e6i − 0.592356i
\(342\) 0 0
\(343\) 1.11555e6i 0.511979i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −569376. −0.253849 −0.126925 0.991912i \(-0.540511\pi\)
−0.126925 + 0.991912i \(0.540511\pi\)
\(348\) 0 0
\(349\) − 2.20053e6i − 0.967081i −0.875322 0.483541i \(-0.839351\pi\)
0.875322 0.483541i \(-0.160649\pi\)
\(350\) 0 0
\(351\) 511999. 0.221820
\(352\) 0 0
\(353\) − 2.51557e6i − 1.07448i −0.843428 0.537242i \(-0.819466\pi\)
0.843428 0.537242i \(-0.180534\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.74011e6 −1.55315
\(358\) 0 0
\(359\) −794808. −0.325481 −0.162741 0.986669i \(-0.552033\pi\)
−0.162741 + 0.986669i \(0.552033\pi\)
\(360\) 0 0
\(361\) 360911. 0.145758
\(362\) 0 0
\(363\) 624282. 0.248665
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 874302.i − 0.338841i −0.985544 0.169421i \(-0.945810\pi\)
0.985544 0.169421i \(-0.0541896\pi\)
\(368\) 0 0
\(369\) 743365. 0.284208
\(370\) 0 0
\(371\) − 5.01497e6i − 1.89162i
\(372\) 0 0
\(373\) −4.86205e6 −1.80945 −0.904726 0.425994i \(-0.859924\pi\)
−0.904726 + 0.425994i \(0.859924\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 522368.i 0.189288i
\(378\) 0 0
\(379\) − 1.24150e6i − 0.443964i −0.975051 0.221982i \(-0.928747\pi\)
0.975051 0.221982i \(-0.0712527\pi\)
\(380\) 0 0
\(381\) 3.17848e6i 1.12178i
\(382\) 0 0
\(383\) 30969.9i 0.0107880i 0.999985 + 0.00539402i \(0.00171698\pi\)
−0.999985 + 0.00539402i \(0.998283\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.06877e6 0.702158
\(388\) 0 0
\(389\) 4.27860e6i 1.43360i 0.697279 + 0.716800i \(0.254394\pi\)
−0.697279 + 0.716800i \(0.745606\pi\)
\(390\) 0 0
\(391\) −2.59867e6 −0.859626
\(392\) 0 0
\(393\) − 3.43920e6i − 1.12325i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.31119e6 0.735968 0.367984 0.929832i \(-0.380048\pi\)
0.367984 + 0.929832i \(0.380048\pi\)
\(398\) 0 0
\(399\) 2.57708e6 0.810392
\(400\) 0 0
\(401\) 996347. 0.309421 0.154710 0.987960i \(-0.450556\pi\)
0.154710 + 0.987960i \(0.450556\pi\)
\(402\) 0 0
\(403\) −507344. −0.155611
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3.42633e6i − 1.02528i
\(408\) 0 0
\(409\) 5.17948e6 1.53101 0.765505 0.643430i \(-0.222489\pi\)
0.765505 + 0.643430i \(0.222489\pi\)
\(410\) 0 0
\(411\) 1.75658e6i 0.512936i
\(412\) 0 0
\(413\) 4.13561e6 1.19306
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 3.32037e6i − 0.935074i
\(418\) 0 0
\(419\) 3.57698e6i 0.995363i 0.867360 + 0.497682i \(0.165815\pi\)
−0.867360 + 0.497682i \(0.834185\pi\)
\(420\) 0 0
\(421\) 2.15848e6i 0.593531i 0.954950 + 0.296765i \(0.0959080\pi\)
−0.954950 + 0.296765i \(0.904092\pi\)
\(422\) 0 0
\(423\) − 2.92438e6i − 0.794664i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.40344e6 1.69959
\(428\) 0 0
\(429\) 446312.i 0.117084i
\(430\) 0 0
\(431\) 1.80890e6 0.469052 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(432\) 0 0
\(433\) 1.28911e6i 0.330423i 0.986258 + 0.165211i \(0.0528306\pi\)
−0.986258 + 0.165211i \(0.947169\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.79058e6 0.448530
\(438\) 0 0
\(439\) 1.89694e6 0.469777 0.234889 0.972022i \(-0.424527\pi\)
0.234889 + 0.972022i \(0.424527\pi\)
\(440\) 0 0
\(441\) 1.25749e6 0.307898
\(442\) 0 0
\(443\) −6.01979e6 −1.45738 −0.728689 0.684845i \(-0.759870\pi\)
−0.728689 + 0.684845i \(0.759870\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.98440e6i 0.943178i
\(448\) 0 0
\(449\) 2.40081e6 0.562007 0.281003 0.959707i \(-0.409333\pi\)
0.281003 + 0.959707i \(0.409333\pi\)
\(450\) 0 0
\(451\) 1.89928e6i 0.439691i
\(452\) 0 0
\(453\) −3.64577e6 −0.834726
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 858952.i 0.192388i 0.995363 + 0.0961941i \(0.0306669\pi\)
−0.995363 + 0.0961941i \(0.969333\pi\)
\(458\) 0 0
\(459\) − 8.42671e6i − 1.86692i
\(460\) 0 0
\(461\) 2.33481e6i 0.511680i 0.966719 + 0.255840i \(0.0823521\pi\)
−0.966719 + 0.255840i \(0.917648\pi\)
\(462\) 0 0
\(463\) 1.35195e6i 0.293096i 0.989204 + 0.146548i \(0.0468162\pi\)
−0.989204 + 0.146548i \(0.953184\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.44013e6 −1.36648 −0.683239 0.730195i \(-0.739429\pi\)
−0.683239 + 0.730195i \(0.739429\pi\)
\(468\) 0 0
\(469\) − 3.42056e6i − 0.718068i
\(470\) 0 0
\(471\) −2.93604e6 −0.609832
\(472\) 0 0
\(473\) 5.28566e6i 1.08629i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.85500e6 0.775762
\(478\) 0 0
\(479\) −1.85358e6 −0.369124 −0.184562 0.982821i \(-0.559087\pi\)
−0.184562 + 0.982821i \(0.559087\pi\)
\(480\) 0 0
\(481\) −1.36667e6 −0.269339
\(482\) 0 0
\(483\) −2.18159e6 −0.425506
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.51668e6i 0.480846i 0.970668 + 0.240423i \(0.0772861\pi\)
−0.970668 + 0.240423i \(0.922714\pi\)
\(488\) 0 0
\(489\) 1.31354e6 0.248412
\(490\) 0 0
\(491\) 5.39115e6i 1.00920i 0.863353 + 0.504601i \(0.168360\pi\)
−0.863353 + 0.504601i \(0.831640\pi\)
\(492\) 0 0
\(493\) 8.59736e6 1.59312
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2.27372e6i − 0.412902i
\(498\) 0 0
\(499\) 3.18358e6i 0.572353i 0.958177 + 0.286177i \(0.0923844\pi\)
−0.958177 + 0.286177i \(0.907616\pi\)
\(500\) 0 0
\(501\) 607177.i 0.108074i
\(502\) 0 0
\(503\) 8.99291e6i 1.58482i 0.609989 + 0.792410i \(0.291174\pi\)
−0.609989 + 0.792410i \(0.708826\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.84086e6 −0.663603
\(508\) 0 0
\(509\) 5.35388e6i 0.915956i 0.888964 + 0.457978i \(0.151426\pi\)
−0.888964 + 0.457978i \(0.848574\pi\)
\(510\) 0 0
\(511\) 7.11322e6 1.20508
\(512\) 0 0
\(513\) 5.80633e6i 0.974111i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.47173e6 1.22941
\(518\) 0 0
\(519\) 1.81481e6 0.295743
\(520\) 0 0
\(521\) −2.62401e6 −0.423518 −0.211759 0.977322i \(-0.567919\pi\)
−0.211759 + 0.977322i \(0.567919\pi\)
\(522\) 0 0
\(523\) −1.31228e6 −0.209784 −0.104892 0.994484i \(-0.533450\pi\)
−0.104892 + 0.994484i \(0.533450\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.35008e6i 1.30968i
\(528\) 0 0
\(529\) 4.92055e6 0.764494
\(530\) 0 0
\(531\) 3.17904e6i 0.489282i
\(532\) 0 0
\(533\) 757570. 0.115506
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 5.80081e6i − 0.868067i
\(538\) 0 0
\(539\) 3.21285e6i 0.476342i
\(540\) 0 0
\(541\) − 6.84935e6i − 1.00613i −0.864247 0.503067i \(-0.832205\pi\)
0.864247 0.503067i \(-0.167795\pi\)
\(542\) 0 0
\(543\) 1.22794e6i 0.178722i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.39084e6 −0.913251 −0.456625 0.889659i \(-0.650942\pi\)
−0.456625 + 0.889659i \(0.650942\pi\)
\(548\) 0 0
\(549\) 4.92232e6i 0.697010i
\(550\) 0 0
\(551\) −5.92391e6 −0.831246
\(552\) 0 0
\(553\) − 2.05392e6i − 0.285609i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −463389. −0.0632861 −0.0316430 0.999499i \(-0.510074\pi\)
−0.0316430 + 0.999499i \(0.510074\pi\)
\(558\) 0 0
\(559\) 2.10830e6 0.285367
\(560\) 0 0
\(561\) 7.34561e6 0.985418
\(562\) 0 0
\(563\) 1.07609e7 1.43080 0.715400 0.698715i \(-0.246244\pi\)
0.715400 + 0.698715i \(0.246244\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2.06823e6i − 0.270173i
\(568\) 0 0
\(569\) 1.04253e7 1.34992 0.674961 0.737853i \(-0.264160\pi\)
0.674961 + 0.737853i \(0.264160\pi\)
\(570\) 0 0
\(571\) 1.58675e6i 0.203666i 0.994802 + 0.101833i \(0.0324707\pi\)
−0.994802 + 0.101833i \(0.967529\pi\)
\(572\) 0 0
\(573\) −4.24094e6 −0.539605
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.79056e6i 0.348941i 0.984662 + 0.174471i \(0.0558214\pi\)
−0.984662 + 0.174471i \(0.944179\pi\)
\(578\) 0 0
\(579\) − 2.83062e6i − 0.350901i
\(580\) 0 0
\(581\) − 1.09369e6i − 0.134417i
\(582\) 0 0
\(583\) 9.84944e6i 1.20016i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.94272e6 −0.232710 −0.116355 0.993208i \(-0.537121\pi\)
−0.116355 + 0.993208i \(0.537121\pi\)
\(588\) 0 0
\(589\) − 5.75353e6i − 0.683355i
\(590\) 0 0
\(591\) 9.73022e6 1.14592
\(592\) 0 0
\(593\) 8.14862e6i 0.951584i 0.879558 + 0.475792i \(0.157839\pi\)
−0.879558 + 0.475792i \(0.842161\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −906179. −0.104059
\(598\) 0 0
\(599\) 1.49677e6 0.170447 0.0852234 0.996362i \(-0.472840\pi\)
0.0852234 + 0.996362i \(0.472840\pi\)
\(600\) 0 0
\(601\) −9.04082e6 −1.02099 −0.510495 0.859881i \(-0.670538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(602\) 0 0
\(603\) 2.62938e6 0.294483
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 3.63200e6i − 0.400105i −0.979785 0.200052i \(-0.935889\pi\)
0.979785 0.200052i \(-0.0641112\pi\)
\(608\) 0 0
\(609\) 7.21751e6 0.788577
\(610\) 0 0
\(611\) − 2.98027e6i − 0.322962i
\(612\) 0 0
\(613\) −1.89937e6 −0.204154 −0.102077 0.994776i \(-0.532549\pi\)
−0.102077 + 0.994776i \(0.532549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 5.96746e6i − 0.631069i −0.948914 0.315534i \(-0.897816\pi\)
0.948914 0.315534i \(-0.102184\pi\)
\(618\) 0 0
\(619\) 1.46307e7i 1.53475i 0.641196 + 0.767377i \(0.278439\pi\)
−0.641196 + 0.767377i \(0.721561\pi\)
\(620\) 0 0
\(621\) − 4.91527e6i − 0.511468i
\(622\) 0 0
\(623\) 1.47992e7i 1.52763i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.06141e6 −0.514165
\(628\) 0 0
\(629\) 2.24932e7i 2.26686i
\(630\) 0 0
\(631\) 1.47747e7 1.47722 0.738609 0.674134i \(-0.235483\pi\)
0.738609 + 0.674134i \(0.235483\pi\)
\(632\) 0 0
\(633\) 5.99261e6i 0.594438i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.28152e6 0.125134
\(638\) 0 0
\(639\) 1.74781e6 0.169333
\(640\) 0 0
\(641\) 1.81017e7 1.74010 0.870050 0.492964i \(-0.164087\pi\)
0.870050 + 0.492964i \(0.164087\pi\)
\(642\) 0 0
\(643\) −7.21849e6 −0.688524 −0.344262 0.938874i \(-0.611871\pi\)
−0.344262 + 0.938874i \(0.611871\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.44672e6i 0.229786i 0.993378 + 0.114893i \(0.0366526\pi\)
−0.993378 + 0.114893i \(0.963347\pi\)
\(648\) 0 0
\(649\) −8.12237e6 −0.756957
\(650\) 0 0
\(651\) 7.00992e6i 0.648277i
\(652\) 0 0
\(653\) −5.92231e6 −0.543511 −0.271755 0.962366i \(-0.587604\pi\)
−0.271755 + 0.962366i \(0.587604\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.46793e6i 0.494208i
\(658\) 0 0
\(659\) 2.68146e6i 0.240523i 0.992742 + 0.120262i \(0.0383734\pi\)
−0.992742 + 0.120262i \(0.961627\pi\)
\(660\) 0 0
\(661\) 1.14098e7i 1.01572i 0.861440 + 0.507859i \(0.169563\pi\)
−0.861440 + 0.507859i \(0.830437\pi\)
\(662\) 0 0
\(663\) − 2.92996e6i − 0.258868i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.01481e6 0.436456
\(668\) 0 0
\(669\) − 3.02423e6i − 0.261246i
\(670\) 0 0
\(671\) −1.25764e7 −1.07833
\(672\) 0 0
\(673\) − 5.13646e6i − 0.437146i −0.975821 0.218573i \(-0.929860\pi\)
0.975821 0.218573i \(-0.0701402\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.91407e6 −0.412068 −0.206034 0.978545i \(-0.566056\pi\)
−0.206034 + 0.978545i \(0.566056\pi\)
\(678\) 0 0
\(679\) 2.44930e7 2.03877
\(680\) 0 0
\(681\) −6.41937e6 −0.530426
\(682\) 0 0
\(683\) −4.30841e6 −0.353399 −0.176700 0.984265i \(-0.556542\pi\)
−0.176700 + 0.984265i \(0.556542\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.00433e7i − 0.811868i
\(688\) 0 0
\(689\) 3.92867e6 0.315281
\(690\) 0 0
\(691\) 2.17672e6i 0.173423i 0.996233 + 0.0867116i \(0.0276359\pi\)
−0.996233 + 0.0867116i \(0.972364\pi\)
\(692\) 0 0
\(693\) −6.62361e6 −0.523916
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.24684e7i − 0.972142i
\(698\) 0 0
\(699\) − 1.18284e7i − 0.915658i
\(700\) 0 0
\(701\) 1.31991e6i 0.101450i 0.998713 + 0.0507248i \(0.0161531\pi\)
−0.998713 + 0.0507248i \(0.983847\pi\)
\(702\) 0 0
\(703\) − 1.54987e7i − 1.18279i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.87970e7 1.41429
\(708\) 0 0
\(709\) 1.33410e7i 0.996721i 0.866970 + 0.498360i \(0.166064\pi\)
−0.866970 + 0.498360i \(0.833936\pi\)
\(710\) 0 0
\(711\) 1.57885e6 0.117130
\(712\) 0 0
\(713\) 4.87058e6i 0.358803i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8.63721e6 −0.627445
\(718\) 0 0
\(719\) 2.25289e7 1.62524 0.812620 0.582794i \(-0.198040\pi\)
0.812620 + 0.582794i \(0.198040\pi\)
\(720\) 0 0
\(721\) 6.31691e6 0.452550
\(722\) 0 0
\(723\) −1.75199e7 −1.24648
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.49088e7i − 1.04618i −0.852277 0.523091i \(-0.824779\pi\)
0.852277 0.523091i \(-0.175221\pi\)
\(728\) 0 0
\(729\) 1.20906e7 0.842617
\(730\) 0 0
\(731\) − 3.46994e7i − 2.40175i
\(732\) 0 0
\(733\) 7.98329e6 0.548810 0.274405 0.961614i \(-0.411519\pi\)
0.274405 + 0.961614i \(0.411519\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.71802e6i 0.455588i
\(738\) 0 0
\(739\) 3.81018e6i 0.256646i 0.991732 + 0.128323i \(0.0409594\pi\)
−0.991732 + 0.128323i \(0.959041\pi\)
\(740\) 0 0
\(741\) 2.01885e6i 0.135070i
\(742\) 0 0
\(743\) − 8.99457e6i − 0.597734i −0.954295 0.298867i \(-0.903391\pi\)
0.954295 0.298867i \(-0.0966088\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 840722. 0.0551253
\(748\) 0 0
\(749\) − 3.10156e7i − 2.02011i
\(750\) 0 0
\(751\) −1.18325e7 −0.765559 −0.382779 0.923840i \(-0.625033\pi\)
−0.382779 + 0.923840i \(0.625033\pi\)
\(752\) 0 0
\(753\) 4.86742e6i 0.312832i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 5.14086e6 0.326059 0.163030 0.986621i \(-0.447873\pi\)
0.163030 + 0.986621i \(0.447873\pi\)
\(758\) 0 0
\(759\) 4.28467e6 0.269968
\(760\) 0 0
\(761\) 8.21979e6 0.514516 0.257258 0.966343i \(-0.417181\pi\)
0.257258 + 0.966343i \(0.417181\pi\)
\(762\) 0 0
\(763\) −3.99322e6 −0.248320
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.23979e6i 0.198851i
\(768\) 0 0
\(769\) 1.11390e7 0.679251 0.339626 0.940561i \(-0.389700\pi\)
0.339626 + 0.940561i \(0.389700\pi\)
\(770\) 0 0
\(771\) − 4.29101e6i − 0.259970i
\(772\) 0 0
\(773\) −5.63671e6 −0.339294 −0.169647 0.985505i \(-0.554263\pi\)
−0.169647 + 0.985505i \(0.554263\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.88831e7i 1.12207i
\(778\) 0 0
\(779\) 8.59123e6i 0.507238i
\(780\) 0 0
\(781\) 4.46561e6i 0.261971i
\(782\) 0 0
\(783\) 1.62615e7i 0.947888i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.07197e7 1.76799 0.883996 0.467495i \(-0.154843\pi\)
0.883996 + 0.467495i \(0.154843\pi\)
\(788\) 0 0
\(789\) − 2.09361e7i − 1.19730i
\(790\) 0 0
\(791\) 8.66309e6 0.492302
\(792\) 0 0
\(793\) 5.01639e6i 0.283275i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.22339e7 −1.23985 −0.619926 0.784660i \(-0.712837\pi\)
−0.619926 + 0.784660i \(0.712837\pi\)
\(798\) 0 0
\(799\) −4.90505e7 −2.71817
\(800\) 0 0
\(801\) −1.13761e7 −0.626488
\(802\) 0 0
\(803\) −1.39704e7 −0.764577
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 7.25226e6i − 0.392003i
\(808\) 0 0
\(809\) −1.51247e7 −0.812484 −0.406242 0.913765i \(-0.633161\pi\)
−0.406242 + 0.913765i \(0.633161\pi\)
\(810\) 0 0
\(811\) 1.35982e7i 0.725990i 0.931791 + 0.362995i \(0.118246\pi\)
−0.931791 + 0.362995i \(0.881754\pi\)
\(812\) 0 0
\(813\) −2.26157e7 −1.20001
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.39092e7i 1.25317i
\(818\) 0 0
\(819\) 2.64197e6i 0.137632i
\(820\) 0 0
\(821\) 2.56951e7i 1.33043i 0.746651 + 0.665216i \(0.231660\pi\)
−0.746651 + 0.665216i \(0.768340\pi\)
\(822\) 0 0
\(823\) − 8.73184e6i − 0.449372i −0.974431 0.224686i \(-0.927864\pi\)
0.974431 0.224686i \(-0.0721357\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.46565e6 0.0745191 0.0372596 0.999306i \(-0.488137\pi\)
0.0372596 + 0.999306i \(0.488137\pi\)
\(828\) 0 0
\(829\) − 4.49887e6i − 0.227362i −0.993517 0.113681i \(-0.963736\pi\)
0.993517 0.113681i \(-0.0362641\pi\)
\(830\) 0 0
\(831\) −8.97130e6 −0.450664
\(832\) 0 0
\(833\) − 2.10918e7i − 1.05317i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.57938e7 −0.779244
\(838\) 0 0
\(839\) −1.43801e7 −0.705273 −0.352636 0.935760i \(-0.614715\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(840\) 0 0
\(841\) 3.92030e6 0.191130
\(842\) 0 0
\(843\) 2.59702e7 1.25866
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.44185e6i 0.452219i
\(848\) 0 0
\(849\) −2.17420e7 −1.03521
\(850\) 0 0
\(851\) 1.31202e7i 0.621036i
\(852\) 0 0
\(853\) −2.62365e7 −1.23462 −0.617310 0.786720i \(-0.711778\pi\)
−0.617310 + 0.786720i \(0.711778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.34066e6i 0.294905i 0.989069 + 0.147453i \(0.0471074\pi\)
−0.989069 + 0.147453i \(0.952893\pi\)
\(858\) 0 0
\(859\) 1.09488e7i 0.506273i 0.967431 + 0.253137i \(0.0814622\pi\)
−0.967431 + 0.253137i \(0.918538\pi\)
\(860\) 0 0
\(861\) − 1.04673e7i − 0.481200i
\(862\) 0 0
\(863\) 3.28604e6i 0.150192i 0.997176 + 0.0750958i \(0.0239263\pi\)
−0.997176 + 0.0750958i \(0.976074\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.28540e7 −1.48436
\(868\) 0 0
\(869\) 4.03393e6i 0.181209i
\(870\) 0 0
\(871\) 2.67963e6 0.119682
\(872\) 0 0
\(873\) 1.88278e7i 0.836110i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.75326e6 −0.340397 −0.170198 0.985410i \(-0.554441\pi\)
−0.170198 + 0.985410i \(0.554441\pi\)
\(878\) 0 0
\(879\) 1.88557e7 0.823136
\(880\) 0 0
\(881\) −449453. −0.0195094 −0.00975471 0.999952i \(-0.503105\pi\)
−0.00975471 + 0.999952i \(0.503105\pi\)
\(882\) 0 0
\(883\) 2.42001e7 1.04452 0.522259 0.852787i \(-0.325089\pi\)
0.522259 + 0.852787i \(0.325089\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.80204e6i 0.375642i 0.982203 + 0.187821i \(0.0601425\pi\)
−0.982203 + 0.187821i \(0.939857\pi\)
\(888\) 0 0
\(889\) −4.80724e7 −2.04005
\(890\) 0 0
\(891\) 4.06203e6i 0.171415i
\(892\) 0 0
\(893\) 3.37977e7 1.41827
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.70903e6i − 0.0709202i
\(898\) 0 0
\(899\) − 1.61137e7i − 0.664959i
\(900\) 0 0
\(901\) − 6.46597e7i − 2.65352i
\(902\) 0 0
\(903\) − 2.91302e7i − 1.18884i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.35035e7 −0.545040 −0.272520 0.962150i \(-0.587857\pi\)
−0.272520 + 0.962150i \(0.587857\pi\)
\(908\) 0 0
\(909\) 1.44492e7i 0.580010i
\(910\) 0 0
\(911\) 1.74802e7 0.697831 0.348915 0.937154i \(-0.386550\pi\)
0.348915 + 0.937154i \(0.386550\pi\)
\(912\) 0 0
\(913\) 2.14803e6i 0.0852830i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.20157e7 2.04273
\(918\) 0 0
\(919\) 3.84416e7 1.50146 0.750728 0.660612i \(-0.229703\pi\)
0.750728 + 0.660612i \(0.229703\pi\)
\(920\) 0 0
\(921\) −1.05934e7 −0.411514
\(922\) 0 0
\(923\) 1.78121e6 0.0688194
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.85580e6i 0.185593i
\(928\) 0 0
\(929\) 694053. 0.0263848 0.0131924 0.999913i \(-0.495801\pi\)
0.0131924 + 0.999913i \(0.495801\pi\)
\(930\) 0 0
\(931\) 1.45330e7i 0.549518i
\(932\) 0 0
\(933\) 1.70643e7 0.641776
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 4.08849e7i − 1.52130i −0.649165 0.760648i \(-0.724881\pi\)
0.649165 0.760648i \(-0.275119\pi\)
\(938\) 0 0
\(939\) 1.74225e7i 0.644832i
\(940\) 0 0
\(941\) 1.21324e7i 0.446655i 0.974743 + 0.223328i \(0.0716920\pi\)
−0.974743 + 0.223328i \(0.928308\pi\)
\(942\) 0 0
\(943\) − 7.27279e6i − 0.266331i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.38948e7 1.22817 0.614084 0.789241i \(-0.289526\pi\)
0.614084 + 0.789241i \(0.289526\pi\)
\(948\) 0 0
\(949\) 5.57242e6i 0.200853i
\(950\) 0 0
\(951\) −1.63086e7 −0.584742
\(952\) 0 0
\(953\) − 5.18152e7i − 1.84810i −0.382274 0.924049i \(-0.624859\pi\)
0.382274 0.924049i \(-0.375141\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.41753e7 −0.500324
\(958\) 0 0
\(959\) −2.65671e7 −0.932819
\(960\) 0 0
\(961\) −1.29789e7 −0.453347
\(962\) 0 0
\(963\) 2.38416e7 0.828458
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.41440e7i − 1.51812i −0.651023 0.759058i \(-0.725660\pi\)
0.651023 0.759058i \(-0.274340\pi\)
\(968\) 0 0
\(969\) 3.32272e7 1.13680
\(970\) 0 0
\(971\) − 2.25369e7i − 0.767091i −0.923522 0.383546i \(-0.874703\pi\)
0.923522 0.383546i \(-0.125297\pi\)
\(972\) 0 0
\(973\) 5.02184e7 1.70052
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 508955.i 0.0170586i 0.999964 + 0.00852929i \(0.00271499\pi\)
−0.999964 + 0.00852929i \(0.997285\pi\)
\(978\) 0 0
\(979\) − 2.90657e7i − 0.969224i
\(980\) 0 0
\(981\) − 3.06958e6i − 0.101837i
\(982\) 0 0
\(983\) 1.38312e7i 0.456536i 0.973598 + 0.228268i \(0.0733063\pi\)
−0.973598 + 0.228268i \(0.926694\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −4.11781e7 −1.34547
\(988\) 0 0
\(989\) − 2.02400e7i − 0.657992i
\(990\) 0 0
\(991\) −1.13368e7 −0.366696 −0.183348 0.983048i \(-0.558693\pi\)
−0.183348 + 0.983048i \(0.558693\pi\)
\(992\) 0 0
\(993\) 4.26957e6i 0.137408i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.66390e7 −1.16736 −0.583681 0.811983i \(-0.698388\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(998\) 0 0
\(999\) −4.25449e7 −1.34876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.f.c.49.14 20
4.3 odd 2 200.6.f.b.149.7 20
5.2 odd 4 160.6.d.a.81.7 20
5.3 odd 4 800.6.d.c.401.14 20
5.4 even 2 800.6.f.b.49.7 20
8.3 odd 2 200.6.f.c.149.13 20
8.5 even 2 800.6.f.b.49.8 20
20.3 even 4 200.6.d.b.101.4 20
20.7 even 4 40.6.d.a.21.17 20
20.19 odd 2 200.6.f.c.149.14 20
40.3 even 4 200.6.d.b.101.3 20
40.13 odd 4 800.6.d.c.401.7 20
40.19 odd 2 200.6.f.b.149.8 20
40.27 even 4 40.6.d.a.21.18 yes 20
40.29 even 2 inner 800.6.f.c.49.13 20
40.37 odd 4 160.6.d.a.81.14 20
60.47 odd 4 360.6.k.b.181.4 20
120.107 odd 4 360.6.k.b.181.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.17 20 20.7 even 4
40.6.d.a.21.18 yes 20 40.27 even 4
160.6.d.a.81.7 20 5.2 odd 4
160.6.d.a.81.14 20 40.37 odd 4
200.6.d.b.101.3 20 40.3 even 4
200.6.d.b.101.4 20 20.3 even 4
200.6.f.b.149.7 20 4.3 odd 2
200.6.f.b.149.8 20 40.19 odd 2
200.6.f.c.149.13 20 8.3 odd 2
200.6.f.c.149.14 20 20.19 odd 2
360.6.k.b.181.3 20 120.107 odd 4
360.6.k.b.181.4 20 60.47 odd 4
800.6.d.c.401.7 20 40.13 odd 4
800.6.d.c.401.14 20 5.3 odd 4
800.6.f.b.49.7 20 5.4 even 2
800.6.f.b.49.8 20 8.5 even 2
800.6.f.c.49.13 20 40.29 even 2 inner
800.6.f.c.49.14 20 1.1 even 1 trivial