L(s) = 1 | + (0.587 + 0.809i)3-s + (−0.309 + 0.951i)5-s + 0.618i·7-s + (−0.190 + 0.587i)13-s + (−0.951 + 0.309i)15-s + (−0.951 + 1.30i)19-s + (−0.500 + 0.363i)21-s + (−0.951 + 0.309i)23-s + (−0.809 − 0.587i)25-s + (0.951 − 0.309i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (−0.587 − 0.190i)35-s + (0.309 − 0.951i)37-s + (−0.587 + 0.190i)39-s + ⋯ |
L(s) = 1 | + (0.587 + 0.809i)3-s + (−0.309 + 0.951i)5-s + 0.618i·7-s + (−0.190 + 0.587i)13-s + (−0.951 + 0.309i)15-s + (−0.951 + 1.30i)19-s + (−0.500 + 0.363i)21-s + (−0.951 + 0.309i)23-s + (−0.809 − 0.587i)25-s + (0.951 − 0.309i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (−0.587 − 0.190i)35-s + (0.309 − 0.951i)37-s + (−0.587 + 0.190i)39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.368−0.929i)Λ(1−s)
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.368−0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.368−0.929i
|
Analytic conductor: |
0.798504 |
Root analytic conductor: |
0.893590 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(831,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :0), −0.368−0.929i)
|
Particular Values
L(21) |
≈ |
1.203547662 |
L(21) |
≈ |
1.203547662 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.309−0.951i)T |
good | 3 | 1+(−0.587−0.809i)T+(−0.309+0.951i)T2 |
| 7 | 1−0.618iT−T2 |
| 11 | 1+(0.809−0.587i)T2 |
| 13 | 1+(0.190−0.587i)T+(−0.809−0.587i)T2 |
| 17 | 1+(0.309+0.951i)T2 |
| 19 | 1+(0.951−1.30i)T+(−0.309−0.951i)T2 |
| 23 | 1+(0.951−0.309i)T+(0.809−0.587i)T2 |
| 29 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 37 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(−0.809−0.587i)T2 |
| 43 | 1−1.61iT−T2 |
| 47 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 53 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 59 | 1+(1.53+0.5i)T+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 67 | 1+(−0.309−0.951i)T2 |
| 71 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
| 73 | 1+(−0.309−0.951i)T+(−0.809+0.587i)T2 |
| 79 | 1+(−0.951−1.30i)T+(−0.309+0.951i)T2 |
| 83 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 89 | 1+(−0.809+0.587i)T2 |
| 97 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.809001227361923247004439598759, −9.224272471307720745956932795526, −8.194567102398282497923174291592, −7.73924018735133681392093578133, −6.35551578589057793637075630985, −6.09784496662361021465195119874, −4.50667966400483159496300568566, −3.97879710914419698497383099839, −2.99392619603187657659906976570, −2.12933265333839861037575657740,
0.906349613690973228259059539696, 2.11868694300867345995657015303, 3.21307347883301428800597200976, 4.46675729343005338010062467282, 4.99702864640554786271150938351, 6.32660077880599792239766290920, 7.12208267590452753699829002608, 7.82864318467304611372112415787, 8.534897087310013864931274552520, 8.975510094366421031631099485596