L(s) = 1 | + (0.587 + 0.809i)3-s + (−0.309 + 0.951i)5-s + 0.618i·7-s + (−0.190 + 0.587i)13-s + (−0.951 + 0.309i)15-s + (−0.951 + 1.30i)19-s + (−0.500 + 0.363i)21-s + (−0.951 + 0.309i)23-s + (−0.809 − 0.587i)25-s + (0.951 − 0.309i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (−0.587 − 0.190i)35-s + (0.309 − 0.951i)37-s + (−0.587 + 0.190i)39-s + ⋯ |
L(s) = 1 | + (0.587 + 0.809i)3-s + (−0.309 + 0.951i)5-s + 0.618i·7-s + (−0.190 + 0.587i)13-s + (−0.951 + 0.309i)15-s + (−0.951 + 1.30i)19-s + (−0.500 + 0.363i)21-s + (−0.951 + 0.309i)23-s + (−0.809 − 0.587i)25-s + (0.951 − 0.309i)27-s + (1.30 − 0.951i)29-s + (0.587 − 0.809i)31-s + (−0.587 − 0.190i)35-s + (0.309 − 0.951i)37-s + (−0.587 + 0.190i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.368 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.368 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.203547662\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.203547662\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
good | 3 | \( 1 + (-0.587 - 0.809i)T + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 - 0.618iT - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - 1.61iT - T^{2} \) |
| 47 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (1.53 + 0.5i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (0.363 + 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.951 - 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.809001227361923247004439598759, −9.224272471307720745956932795526, −8.194567102398282497923174291592, −7.73924018735133681392093578133, −6.35551578589057793637075630985, −6.09784496662361021465195119874, −4.50667966400483159496300568566, −3.97879710914419698497383099839, −2.99392619603187657659906976570, −2.12933265333839861037575657740,
0.906349613690973228259059539696, 2.11868694300867345995657015303, 3.21307347883301428800597200976, 4.46675729343005338010062467282, 4.99702864640554786271150938351, 6.32660077880599792239766290920, 7.12208267590452753699829002608, 7.82864318467304611372112415787, 8.534897087310013864931274552520, 8.975510094366421031631099485596