Properties

Label 1600.1.bh.b
Level 16001600
Weight 11
Character orbit 1600.bh
Analytic conductor 0.7990.799
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,1,Mod(191,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.191");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1600=2652 1600 = 2^{6} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1600.bh (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7985040202130.798504020213
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 800)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.25000000.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ209q3ζ208q5+(ζ207ζ203)q7+(ζ2061)q13ζ207q15+(ζ207+ζ205)q19+(ζ206ζ202)q21++(ζ206+ζ202)q97+O(q100) q - \zeta_{20}^{9} q^{3} - \zeta_{20}^{8} q^{5} + ( - \zeta_{20}^{7} - \zeta_{20}^{3}) q^{7} + (\zeta_{20}^{6} - 1) q^{13} - \zeta_{20}^{7} q^{15} + ( - \zeta_{20}^{7} + \zeta_{20}^{5}) q^{19} + ( - \zeta_{20}^{6} - \zeta_{20}^{2}) q^{21} + \cdots + (\zeta_{20}^{6} + \zeta_{20}^{2}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q56q134q212q25+6q292q374q492q534q57+2q614q652q692q73+2q81+8q93+4q97+O(q100) 8 q + 2 q^{5} - 6 q^{13} - 4 q^{21} - 2 q^{25} + 6 q^{29} - 2 q^{37} - 4 q^{49} - 2 q^{53} - 4 q^{57} + 2 q^{61} - 4 q^{65} - 2 q^{69} - 2 q^{73} + 2 q^{81} + 8 q^{93} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1600Z)×\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times.

nn 577577 901901 11511151
χ(n)\chi(n) ζ204\zeta_{20}^{4} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
191.1
−0.951057 0.309017i
0.951057 + 0.309017i
−0.951057 + 0.309017i
0.951057 0.309017i
−0.587785 + 0.809017i
0.587785 0.809017i
−0.587785 0.809017i
0.587785 + 0.809017i
0 −0.951057 + 0.309017i 0 0.809017 0.587785i 0 1.61803i 0 0 0
191.2 0 0.951057 0.309017i 0 0.809017 0.587785i 0 1.61803i 0 0 0
511.1 0 −0.951057 0.309017i 0 0.809017 + 0.587785i 0 1.61803i 0 0 0
511.2 0 0.951057 + 0.309017i 0 0.809017 + 0.587785i 0 1.61803i 0 0 0
831.1 0 −0.587785 0.809017i 0 −0.309017 + 0.951057i 0 0.618034i 0 0 0
831.2 0 0.587785 + 0.809017i 0 −0.309017 + 0.951057i 0 0.618034i 0 0 0
1471.1 0 −0.587785 + 0.809017i 0 −0.309017 0.951057i 0 0.618034i 0 0 0
1471.2 0 0.587785 0.809017i 0 −0.309017 0.951057i 0 0.618034i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 191.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
25.d even 5 1 inner
100.j odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.1.bh.b 8
4.b odd 2 1 inner 1600.1.bh.b 8
8.b even 2 1 800.1.bh.a 8
8.d odd 2 1 800.1.bh.a 8
25.d even 5 1 inner 1600.1.bh.b 8
40.e odd 2 1 4000.1.bh.a 8
40.f even 2 1 4000.1.bh.a 8
40.i odd 4 1 4000.1.bf.a 8
40.i odd 4 1 4000.1.bf.b 8
40.k even 4 1 4000.1.bf.a 8
40.k even 4 1 4000.1.bf.b 8
100.j odd 10 1 inner 1600.1.bh.b 8
200.n odd 10 1 800.1.bh.a 8
200.o even 10 1 4000.1.bh.a 8
200.s odd 10 1 4000.1.bh.a 8
200.t even 10 1 800.1.bh.a 8
200.v even 20 1 4000.1.bf.a 8
200.v even 20 1 4000.1.bf.b 8
200.x odd 20 1 4000.1.bf.a 8
200.x odd 20 1 4000.1.bf.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.1.bh.a 8 8.b even 2 1
800.1.bh.a 8 8.d odd 2 1
800.1.bh.a 8 200.n odd 10 1
800.1.bh.a 8 200.t even 10 1
1600.1.bh.b 8 1.a even 1 1 trivial
1600.1.bh.b 8 4.b odd 2 1 inner
1600.1.bh.b 8 25.d even 5 1 inner
1600.1.bh.b 8 100.j odd 10 1 inner
4000.1.bf.a 8 40.i odd 4 1
4000.1.bf.a 8 40.k even 4 1
4000.1.bf.a 8 200.v even 20 1
4000.1.bf.a 8 200.x odd 20 1
4000.1.bf.b 8 40.i odd 4 1
4000.1.bf.b 8 40.k even 4 1
4000.1.bf.b 8 200.v even 20 1
4000.1.bf.b 8 200.x odd 20 1
4000.1.bh.a 8 40.e odd 2 1
4000.1.bh.a 8 40.f even 2 1
4000.1.bh.a 8 200.o even 10 1
4000.1.bh.a 8 200.s odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38T36+T34T32+1 T_{3}^{8} - T_{3}^{6} + T_{3}^{4} - T_{3}^{2} + 1 acting on S1new(1600,[χ])S_{1}^{\mathrm{new}}(1600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
55 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 (T4+3T2+1)2 (T^{4} + 3 T^{2} + 1)^{2} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 (T4+3T3+4T2++1)2 (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
2323 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
2929 (T43T3+4T2++1)2 (T^{4} - 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
3131 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
3737 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T4+3T2+1)2 (T^{4} + 3 T^{2} + 1)^{2} Copy content Toggle raw display
4747 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
5353 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
5959 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
6161 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T84T6++1 T^{8} - 4 T^{6} + \cdots + 1 Copy content Toggle raw display
7373 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
7979 T8+T6+6T4++1 T^{8} + T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
8383 T8T6+T4++1 T^{8} - T^{6} + T^{4} + \cdots + 1 Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T42T3+4T2++1)2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less