Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1600,1,Mod(191,1600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 2]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1600.191");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1600.bh (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 800) |
Projective image: | |
Projective field: | Galois closure of 5.1.25000000.2 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 |
|
0 | −0.951057 | + | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0 | 1.61803i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
191.2 | 0 | 0.951057 | − | 0.309017i | 0 | 0.809017 | − | 0.587785i | 0 | − | 1.61803i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
511.1 | 0 | −0.951057 | − | 0.309017i | 0 | 0.809017 | + | 0.587785i | 0 | − | 1.61803i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
511.2 | 0 | 0.951057 | + | 0.309017i | 0 | 0.809017 | + | 0.587785i | 0 | 1.61803i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
831.1 | 0 | −0.587785 | − | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0 | − | 0.618034i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
831.2 | 0 | 0.587785 | + | 0.809017i | 0 | −0.309017 | + | 0.951057i | 0 | 0.618034i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1471.1 | 0 | −0.587785 | + | 0.809017i | 0 | −0.309017 | − | 0.951057i | 0 | 0.618034i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||
1471.2 | 0 | 0.587785 | − | 0.809017i | 0 | −0.309017 | − | 0.951057i | 0 | − | 0.618034i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
100.j | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1600.1.bh.b | 8 | |
4.b | odd | 2 | 1 | inner | 1600.1.bh.b | 8 | |
8.b | even | 2 | 1 | 800.1.bh.a | ✓ | 8 | |
8.d | odd | 2 | 1 | 800.1.bh.a | ✓ | 8 | |
25.d | even | 5 | 1 | inner | 1600.1.bh.b | 8 | |
40.e | odd | 2 | 1 | 4000.1.bh.a | 8 | ||
40.f | even | 2 | 1 | 4000.1.bh.a | 8 | ||
40.i | odd | 4 | 1 | 4000.1.bf.a | 8 | ||
40.i | odd | 4 | 1 | 4000.1.bf.b | 8 | ||
40.k | even | 4 | 1 | 4000.1.bf.a | 8 | ||
40.k | even | 4 | 1 | 4000.1.bf.b | 8 | ||
100.j | odd | 10 | 1 | inner | 1600.1.bh.b | 8 | |
200.n | odd | 10 | 1 | 800.1.bh.a | ✓ | 8 | |
200.o | even | 10 | 1 | 4000.1.bh.a | 8 | ||
200.s | odd | 10 | 1 | 4000.1.bh.a | 8 | ||
200.t | even | 10 | 1 | 800.1.bh.a | ✓ | 8 | |
200.v | even | 20 | 1 | 4000.1.bf.a | 8 | ||
200.v | even | 20 | 1 | 4000.1.bf.b | 8 | ||
200.x | odd | 20 | 1 | 4000.1.bf.a | 8 | ||
200.x | odd | 20 | 1 | 4000.1.bf.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
800.1.bh.a | ✓ | 8 | 8.b | even | 2 | 1 | |
800.1.bh.a | ✓ | 8 | 8.d | odd | 2 | 1 | |
800.1.bh.a | ✓ | 8 | 200.n | odd | 10 | 1 | |
800.1.bh.a | ✓ | 8 | 200.t | even | 10 | 1 | |
1600.1.bh.b | 8 | 1.a | even | 1 | 1 | trivial | |
1600.1.bh.b | 8 | 4.b | odd | 2 | 1 | inner | |
1600.1.bh.b | 8 | 25.d | even | 5 | 1 | inner | |
1600.1.bh.b | 8 | 100.j | odd | 10 | 1 | inner | |
4000.1.bf.a | 8 | 40.i | odd | 4 | 1 | ||
4000.1.bf.a | 8 | 40.k | even | 4 | 1 | ||
4000.1.bf.a | 8 | 200.v | even | 20 | 1 | ||
4000.1.bf.a | 8 | 200.x | odd | 20 | 1 | ||
4000.1.bf.b | 8 | 40.i | odd | 4 | 1 | ||
4000.1.bf.b | 8 | 40.k | even | 4 | 1 | ||
4000.1.bf.b | 8 | 200.v | even | 20 | 1 | ||
4000.1.bf.b | 8 | 200.x | odd | 20 | 1 | ||
4000.1.bh.a | 8 | 40.e | odd | 2 | 1 | ||
4000.1.bh.a | 8 | 40.f | even | 2 | 1 | ||
4000.1.bh.a | 8 | 200.o | even | 10 | 1 | ||
4000.1.bh.a | 8 | 200.s | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .