L(s) = 1 | + (−2.44 − 4.23i)2-s + (3.42 − 5.92i)3-s + (−7.98 + 13.8i)4-s + (−9.57 − 16.5i)5-s − 33.4·6-s + (−17.5 − 5.98i)7-s + 38.9·8-s + (−9.89 − 17.1i)9-s + (−46.8 + 81.1i)10-s + (27.4 − 47.5i)11-s + (54.5 + 94.5i)12-s + 53.1·13-s + (17.5 + 88.9i)14-s − 130.·15-s + (−31.5 − 54.5i)16-s + (−13.7 + 23.7i)17-s + ⋯ |
L(s) = 1 | + (−0.865 − 1.49i)2-s + (0.658 − 1.14i)3-s + (−0.997 + 1.72i)4-s + (−0.856 − 1.48i)5-s − 2.27·6-s + (−0.946 − 0.322i)7-s + 1.72·8-s + (−0.366 − 0.634i)9-s + (−1.48 + 2.56i)10-s + (0.751 − 1.30i)11-s + (1.31 + 2.27i)12-s + 1.13·13-s + (0.334 + 1.69i)14-s − 2.25·15-s + (−0.492 − 0.853i)16-s + (−0.195 + 0.339i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.924i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.382 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.687489 + 0.459614i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.687489 + 0.459614i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (17.5 + 5.98i)T \) |
| 23 | \( 1 + (-11.5 - 19.9i)T \) |
good | 2 | \( 1 + (2.44 + 4.23i)T + (-4 + 6.92i)T^{2} \) |
| 3 | \( 1 + (-3.42 + 5.92i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (9.57 + 16.5i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-27.4 + 47.5i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 53.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + (13.7 - 23.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (43.6 + 75.6i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 29 | \( 1 - 285.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-28.1 + 48.7i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (8.63 + 14.9i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 11.3T + 6.89e4T^{2} \) |
| 43 | \( 1 + 155.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (67.9 + 117. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (150. - 261. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-85.7 + 148. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (245. + 424. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (510. - 884. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 32.0T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-359. + 622. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-549. - 952. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 433.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (3.26 + 5.65i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 700.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74613719181295690391649728970, −10.76476509944998198110456651233, −9.226566173866518862725235134617, −8.589707733135364975206433319248, −8.131790402057496220964752440258, −6.51590746299780301302324221933, −4.10589545057354926667568582039, −3.07327970147029831147329531047, −1.26764670287572808557546373062, −0.56391831399791762728735765070,
3.20879462030168729458170596729, 4.35963008619190097644236972209, 6.35850506033762738252124567631, 6.85210944572084519545884125895, 8.111572690322306569009070161900, 9.036291772860080062129189924180, 9.972874355222017008513426278837, 10.52129723771774873578026710410, 12.08768564262383500078905660378, 13.97646229583503327351944255517