L(s) = 1 | + 1.59·2-s + 3·3-s − 5.44·4-s + 17.2·5-s + 4.79·6-s − 21.5·8-s + 9·9-s + 27.6·10-s + 11·11-s − 16.3·12-s − 46.1·13-s + 51.8·15-s + 9.11·16-s − 19.8·17-s + 14.3·18-s − 76.5·19-s − 93.9·20-s + 17.5·22-s − 163.·23-s − 64.5·24-s + 173.·25-s − 73.7·26-s + 27·27-s + 158.·29-s + 82.9·30-s − 170.·31-s + 186.·32-s + ⋯ |
L(s) = 1 | + 0.565·2-s + 0.577·3-s − 0.680·4-s + 1.54·5-s + 0.326·6-s − 0.950·8-s + 0.333·9-s + 0.874·10-s + 0.301·11-s − 0.392·12-s − 0.983·13-s + 0.892·15-s + 0.142·16-s − 0.283·17-s + 0.188·18-s − 0.924·19-s − 1.05·20-s + 0.170·22-s − 1.47·23-s − 0.548·24-s + 1.38·25-s − 0.556·26-s + 0.192·27-s + 1.01·29-s + 0.504·30-s − 0.989·31-s + 1.03·32-s + ⋯ |
Λ(s)=(=(1617s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1617s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 7 | 1 |
| 11 | 1−11T |
good | 2 | 1−1.59T+8T2 |
| 5 | 1−17.2T+125T2 |
| 13 | 1+46.1T+2.19e3T2 |
| 17 | 1+19.8T+4.91e3T2 |
| 19 | 1+76.5T+6.85e3T2 |
| 23 | 1+163.T+1.21e4T2 |
| 29 | 1−158.T+2.43e4T2 |
| 31 | 1+170.T+2.97e4T2 |
| 37 | 1+245.T+5.06e4T2 |
| 41 | 1−3.33T+6.89e4T2 |
| 43 | 1+122.T+7.95e4T2 |
| 47 | 1+390.T+1.03e5T2 |
| 53 | 1+410.T+1.48e5T2 |
| 59 | 1+408.T+2.05e5T2 |
| 61 | 1−21.9T+2.26e5T2 |
| 67 | 1−618.T+3.00e5T2 |
| 71 | 1−929.T+3.57e5T2 |
| 73 | 1+868.T+3.89e5T2 |
| 79 | 1−152.T+4.93e5T2 |
| 83 | 1−100.T+5.71e5T2 |
| 89 | 1−1.06e3T+7.04e5T2 |
| 97 | 1+1.41e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.758165875451702435532292292127, −8.043187340358688915225297526636, −6.74317372745553499999873563689, −6.13289043466406624192129568756, −5.22767461222078063757164759509, −4.54686553358942437178016167905, −3.52360879028872061928551112991, −2.45059689911978263152445739519, −1.69029688114168653335619848658, 0,
1.69029688114168653335619848658, 2.45059689911978263152445739519, 3.52360879028872061928551112991, 4.54686553358942437178016167905, 5.22767461222078063757164759509, 6.13289043466406624192129568756, 6.74317372745553499999873563689, 8.043187340358688915225297526636, 8.758165875451702435532292292127