Properties

Label 2-1617-1.1-c3-0-187
Degree $2$
Conductor $1617$
Sign $-1$
Analytic cond. $95.4060$
Root an. cond. $9.76760$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.59·2-s + 3·3-s − 5.44·4-s + 17.2·5-s + 4.79·6-s − 21.5·8-s + 9·9-s + 27.6·10-s + 11·11-s − 16.3·12-s − 46.1·13-s + 51.8·15-s + 9.11·16-s − 19.8·17-s + 14.3·18-s − 76.5·19-s − 93.9·20-s + 17.5·22-s − 163.·23-s − 64.5·24-s + 173.·25-s − 73.7·26-s + 27·27-s + 158.·29-s + 82.9·30-s − 170.·31-s + 186.·32-s + ⋯
L(s)  = 1  + 0.565·2-s + 0.577·3-s − 0.680·4-s + 1.54·5-s + 0.326·6-s − 0.950·8-s + 0.333·9-s + 0.874·10-s + 0.301·11-s − 0.392·12-s − 0.983·13-s + 0.892·15-s + 0.142·16-s − 0.283·17-s + 0.188·18-s − 0.924·19-s − 1.05·20-s + 0.170·22-s − 1.47·23-s − 0.548·24-s + 1.38·25-s − 0.556·26-s + 0.192·27-s + 1.01·29-s + 0.504·30-s − 0.989·31-s + 1.03·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1617 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1617\)    =    \(3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(95.4060\)
Root analytic conductor: \(9.76760\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1617,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 \)
11 \( 1 - 11T \)
good2 \( 1 - 1.59T + 8T^{2} \)
5 \( 1 - 17.2T + 125T^{2} \)
13 \( 1 + 46.1T + 2.19e3T^{2} \)
17 \( 1 + 19.8T + 4.91e3T^{2} \)
19 \( 1 + 76.5T + 6.85e3T^{2} \)
23 \( 1 + 163.T + 1.21e4T^{2} \)
29 \( 1 - 158.T + 2.43e4T^{2} \)
31 \( 1 + 170.T + 2.97e4T^{2} \)
37 \( 1 + 245.T + 5.06e4T^{2} \)
41 \( 1 - 3.33T + 6.89e4T^{2} \)
43 \( 1 + 122.T + 7.95e4T^{2} \)
47 \( 1 + 390.T + 1.03e5T^{2} \)
53 \( 1 + 410.T + 1.48e5T^{2} \)
59 \( 1 + 408.T + 2.05e5T^{2} \)
61 \( 1 - 21.9T + 2.26e5T^{2} \)
67 \( 1 - 618.T + 3.00e5T^{2} \)
71 \( 1 - 929.T + 3.57e5T^{2} \)
73 \( 1 + 868.T + 3.89e5T^{2} \)
79 \( 1 - 152.T + 4.93e5T^{2} \)
83 \( 1 - 100.T + 5.71e5T^{2} \)
89 \( 1 - 1.06e3T + 7.04e5T^{2} \)
97 \( 1 + 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.758165875451702435532292292127, −8.043187340358688915225297526636, −6.74317372745553499999873563689, −6.13289043466406624192129568756, −5.22767461222078063757164759509, −4.54686553358942437178016167905, −3.52360879028872061928551112991, −2.45059689911978263152445739519, −1.69029688114168653335619848658, 0, 1.69029688114168653335619848658, 2.45059689911978263152445739519, 3.52360879028872061928551112991, 4.54686553358942437178016167905, 5.22767461222078063757164759509, 6.13289043466406624192129568756, 6.74317372745553499999873563689, 8.043187340358688915225297526636, 8.758165875451702435532292292127

Graph of the $Z$-function along the critical line