Properties

Label 1617.4.a.n.1.4
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 30x^{3} + 11x^{2} + 185x + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.59998\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.59998 q^{2} +3.00000 q^{3} -5.44007 q^{4} +17.2762 q^{5} +4.79994 q^{6} -21.5038 q^{8} +9.00000 q^{9} +27.6416 q^{10} +11.0000 q^{11} -16.3202 q^{12} -46.1062 q^{13} +51.8287 q^{15} +9.11483 q^{16} -19.8752 q^{17} +14.3998 q^{18} -76.5707 q^{19} -93.9838 q^{20} +17.5998 q^{22} -163.205 q^{23} -64.5115 q^{24} +173.468 q^{25} -73.7690 q^{26} +27.0000 q^{27} +158.858 q^{29} +82.9248 q^{30} -170.768 q^{31} +186.614 q^{32} +33.0000 q^{33} -31.7999 q^{34} -48.9606 q^{36} -245.971 q^{37} -122.511 q^{38} -138.319 q^{39} -371.505 q^{40} +3.33673 q^{41} -122.798 q^{43} -59.8407 q^{44} +155.486 q^{45} -261.125 q^{46} -390.972 q^{47} +27.3445 q^{48} +277.545 q^{50} -59.6255 q^{51} +250.821 q^{52} -410.957 q^{53} +43.1995 q^{54} +190.038 q^{55} -229.712 q^{57} +254.169 q^{58} -408.774 q^{59} -281.951 q^{60} +21.9747 q^{61} -273.225 q^{62} +225.660 q^{64} -796.541 q^{65} +52.7993 q^{66} +618.424 q^{67} +108.122 q^{68} -489.616 q^{69} +929.041 q^{71} -193.534 q^{72} -868.090 q^{73} -393.549 q^{74} +520.404 q^{75} +416.549 q^{76} -221.307 q^{78} +152.702 q^{79} +157.470 q^{80} +81.0000 q^{81} +5.33871 q^{82} +100.924 q^{83} -343.368 q^{85} -196.475 q^{86} +476.573 q^{87} -236.542 q^{88} +1063.23 q^{89} +248.774 q^{90} +887.848 q^{92} -512.303 q^{93} -625.547 q^{94} -1322.85 q^{95} +559.843 q^{96} -1415.50 q^{97} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 15 q^{3} + 21 q^{4} - 21 q^{5} - 3 q^{6} - 42 q^{8} + 45 q^{9} + 23 q^{10} + 55 q^{11} + 63 q^{12} - 101 q^{13} - 63 q^{15} - 7 q^{16} + 20 q^{17} - 9 q^{18} - 237 q^{19} - 85 q^{20} - 11 q^{22}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.59998 0.565678 0.282839 0.959167i \(-0.408724\pi\)
0.282839 + 0.959167i \(0.408724\pi\)
\(3\) 3.00000 0.577350
\(4\) −5.44007 −0.680008
\(5\) 17.2762 1.54523 0.772616 0.634873i \(-0.218948\pi\)
0.772616 + 0.634873i \(0.218948\pi\)
\(6\) 4.79994 0.326594
\(7\) 0 0
\(8\) −21.5038 −0.950344
\(9\) 9.00000 0.333333
\(10\) 27.6416 0.874104
\(11\) 11.0000 0.301511
\(12\) −16.3202 −0.392603
\(13\) −46.1062 −0.983658 −0.491829 0.870692i \(-0.663672\pi\)
−0.491829 + 0.870692i \(0.663672\pi\)
\(14\) 0 0
\(15\) 51.8287 0.892140
\(16\) 9.11483 0.142419
\(17\) −19.8752 −0.283555 −0.141778 0.989899i \(-0.545282\pi\)
−0.141778 + 0.989899i \(0.545282\pi\)
\(18\) 14.3998 0.188559
\(19\) −76.5707 −0.924553 −0.462277 0.886736i \(-0.652967\pi\)
−0.462277 + 0.886736i \(0.652967\pi\)
\(20\) −93.9838 −1.05077
\(21\) 0 0
\(22\) 17.5998 0.170558
\(23\) −163.205 −1.47960 −0.739798 0.672829i \(-0.765079\pi\)
−0.739798 + 0.672829i \(0.765079\pi\)
\(24\) −64.5115 −0.548681
\(25\) 173.468 1.38774
\(26\) −73.7690 −0.556434
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 158.858 1.01721 0.508605 0.861000i \(-0.330161\pi\)
0.508605 + 0.861000i \(0.330161\pi\)
\(30\) 82.9248 0.504664
\(31\) −170.768 −0.989380 −0.494690 0.869069i \(-0.664718\pi\)
−0.494690 + 0.869069i \(0.664718\pi\)
\(32\) 186.614 1.03091
\(33\) 33.0000 0.174078
\(34\) −31.7999 −0.160401
\(35\) 0 0
\(36\) −48.9606 −0.226669
\(37\) −245.971 −1.09290 −0.546452 0.837490i \(-0.684022\pi\)
−0.546452 + 0.837490i \(0.684022\pi\)
\(38\) −122.511 −0.523000
\(39\) −138.319 −0.567915
\(40\) −371.505 −1.46850
\(41\) 3.33673 0.0127100 0.00635500 0.999980i \(-0.497977\pi\)
0.00635500 + 0.999980i \(0.497977\pi\)
\(42\) 0 0
\(43\) −122.798 −0.435502 −0.217751 0.976004i \(-0.569872\pi\)
−0.217751 + 0.976004i \(0.569872\pi\)
\(44\) −59.8407 −0.205030
\(45\) 155.486 0.515077
\(46\) −261.125 −0.836975
\(47\) −390.972 −1.21338 −0.606692 0.794937i \(-0.707504\pi\)
−0.606692 + 0.794937i \(0.707504\pi\)
\(48\) 27.3445 0.0822258
\(49\) 0 0
\(50\) 277.545 0.785016
\(51\) −59.6255 −0.163711
\(52\) 250.821 0.668896
\(53\) −410.957 −1.06508 −0.532541 0.846404i \(-0.678763\pi\)
−0.532541 + 0.846404i \(0.678763\pi\)
\(54\) 43.1995 0.108865
\(55\) 190.038 0.465905
\(56\) 0 0
\(57\) −229.712 −0.533791
\(58\) 254.169 0.575414
\(59\) −408.774 −0.901998 −0.450999 0.892524i \(-0.648932\pi\)
−0.450999 + 0.892524i \(0.648932\pi\)
\(60\) −281.951 −0.606663
\(61\) 21.9747 0.0461241 0.0230621 0.999734i \(-0.492658\pi\)
0.0230621 + 0.999734i \(0.492658\pi\)
\(62\) −273.225 −0.559671
\(63\) 0 0
\(64\) 225.660 0.440743
\(65\) −796.541 −1.51998
\(66\) 52.7993 0.0984719
\(67\) 618.424 1.12765 0.563824 0.825895i \(-0.309329\pi\)
0.563824 + 0.825895i \(0.309329\pi\)
\(68\) 108.122 0.192820
\(69\) −489.616 −0.854245
\(70\) 0 0
\(71\) 929.041 1.55291 0.776457 0.630171i \(-0.217015\pi\)
0.776457 + 0.630171i \(0.217015\pi\)
\(72\) −193.534 −0.316781
\(73\) −868.090 −1.39181 −0.695906 0.718133i \(-0.744997\pi\)
−0.695906 + 0.718133i \(0.744997\pi\)
\(74\) −393.549 −0.618232
\(75\) 520.404 0.801214
\(76\) 416.549 0.628704
\(77\) 0 0
\(78\) −221.307 −0.321257
\(79\) 152.702 0.217472 0.108736 0.994071i \(-0.465320\pi\)
0.108736 + 0.994071i \(0.465320\pi\)
\(80\) 157.470 0.220071
\(81\) 81.0000 0.111111
\(82\) 5.33871 0.00718977
\(83\) 100.924 0.133469 0.0667343 0.997771i \(-0.478742\pi\)
0.0667343 + 0.997771i \(0.478742\pi\)
\(84\) 0 0
\(85\) −343.368 −0.438159
\(86\) −196.475 −0.246354
\(87\) 476.573 0.587287
\(88\) −236.542 −0.286540
\(89\) 1063.23 1.26631 0.633156 0.774024i \(-0.281759\pi\)
0.633156 + 0.774024i \(0.281759\pi\)
\(90\) 248.774 0.291368
\(91\) 0 0
\(92\) 887.848 1.00614
\(93\) −512.303 −0.571219
\(94\) −625.547 −0.686385
\(95\) −1322.85 −1.42865
\(96\) 559.843 0.595195
\(97\) −1415.50 −1.48167 −0.740836 0.671686i \(-0.765570\pi\)
−0.740836 + 0.671686i \(0.765570\pi\)
\(98\) 0 0
\(99\) 99.0000 0.100504
\(100\) −943.677 −0.943677
\(101\) 774.140 0.762671 0.381336 0.924437i \(-0.375464\pi\)
0.381336 + 0.924437i \(0.375464\pi\)
\(102\) −95.3997 −0.0926076
\(103\) −759.159 −0.726235 −0.363118 0.931743i \(-0.618288\pi\)
−0.363118 + 0.931743i \(0.618288\pi\)
\(104\) 991.460 0.934814
\(105\) 0 0
\(106\) −657.523 −0.602493
\(107\) −1181.22 −1.06722 −0.533612 0.845729i \(-0.679166\pi\)
−0.533612 + 0.845729i \(0.679166\pi\)
\(108\) −146.882 −0.130868
\(109\) 738.091 0.648590 0.324295 0.945956i \(-0.394873\pi\)
0.324295 + 0.945956i \(0.394873\pi\)
\(110\) 304.058 0.263552
\(111\) −737.914 −0.630989
\(112\) 0 0
\(113\) 620.181 0.516298 0.258149 0.966105i \(-0.416887\pi\)
0.258149 + 0.966105i \(0.416887\pi\)
\(114\) −367.534 −0.301954
\(115\) −2819.57 −2.28632
\(116\) −864.195 −0.691711
\(117\) −414.956 −0.327886
\(118\) −654.031 −0.510241
\(119\) 0 0
\(120\) −1114.51 −0.847840
\(121\) 121.000 0.0909091
\(122\) 35.1591 0.0260914
\(123\) 10.0102 0.00733813
\(124\) 928.988 0.672787
\(125\) 837.342 0.599153
\(126\) 0 0
\(127\) −2291.79 −1.60129 −0.800645 0.599139i \(-0.795510\pi\)
−0.800645 + 0.599139i \(0.795510\pi\)
\(128\) −1131.86 −0.781589
\(129\) −368.395 −0.251437
\(130\) −1274.45 −0.859820
\(131\) 1491.77 0.994938 0.497469 0.867482i \(-0.334263\pi\)
0.497469 + 0.867482i \(0.334263\pi\)
\(132\) −179.522 −0.118374
\(133\) 0 0
\(134\) 989.465 0.637886
\(135\) 466.458 0.297380
\(136\) 427.393 0.269475
\(137\) 2590.79 1.61566 0.807831 0.589414i \(-0.200641\pi\)
0.807831 + 0.589414i \(0.200641\pi\)
\(138\) −783.376 −0.483228
\(139\) −2674.14 −1.63178 −0.815890 0.578207i \(-0.803752\pi\)
−0.815890 + 0.578207i \(0.803752\pi\)
\(140\) 0 0
\(141\) −1172.92 −0.700548
\(142\) 1486.45 0.878449
\(143\) −507.168 −0.296584
\(144\) 82.0335 0.0474731
\(145\) 2744.46 1.57183
\(146\) −1388.93 −0.787318
\(147\) 0 0
\(148\) 1338.10 0.743184
\(149\) 822.355 0.452147 0.226074 0.974110i \(-0.427411\pi\)
0.226074 + 0.974110i \(0.427411\pi\)
\(150\) 832.635 0.453229
\(151\) −138.803 −0.0748053 −0.0374027 0.999300i \(-0.511908\pi\)
−0.0374027 + 0.999300i \(0.511908\pi\)
\(152\) 1646.56 0.878644
\(153\) −178.877 −0.0945184
\(154\) 0 0
\(155\) −2950.22 −1.52882
\(156\) 752.462 0.386187
\(157\) 634.746 0.322664 0.161332 0.986900i \(-0.448421\pi\)
0.161332 + 0.986900i \(0.448421\pi\)
\(158\) 244.320 0.123019
\(159\) −1232.87 −0.614925
\(160\) 3223.99 1.59299
\(161\) 0 0
\(162\) 129.598 0.0628531
\(163\) −608.367 −0.292337 −0.146169 0.989260i \(-0.546694\pi\)
−0.146169 + 0.989260i \(0.546694\pi\)
\(164\) −18.1520 −0.00864291
\(165\) 570.115 0.268990
\(166\) 161.477 0.0755003
\(167\) 1545.50 0.716135 0.358067 0.933696i \(-0.383436\pi\)
0.358067 + 0.933696i \(0.383436\pi\)
\(168\) 0 0
\(169\) −71.2185 −0.0324163
\(170\) −549.382 −0.247857
\(171\) −689.136 −0.308184
\(172\) 668.031 0.296145
\(173\) −126.598 −0.0556362 −0.0278181 0.999613i \(-0.508856\pi\)
−0.0278181 + 0.999613i \(0.508856\pi\)
\(174\) 762.506 0.332215
\(175\) 0 0
\(176\) 100.263 0.0429410
\(177\) −1226.32 −0.520769
\(178\) 1701.14 0.716325
\(179\) −144.263 −0.0602387 −0.0301194 0.999546i \(-0.509589\pi\)
−0.0301194 + 0.999546i \(0.509589\pi\)
\(180\) −845.854 −0.350257
\(181\) −2925.01 −1.20118 −0.600591 0.799556i \(-0.705068\pi\)
−0.600591 + 0.799556i \(0.705068\pi\)
\(182\) 0 0
\(183\) 65.9241 0.0266298
\(184\) 3509.54 1.40612
\(185\) −4249.46 −1.68879
\(186\) −819.675 −0.323126
\(187\) −218.627 −0.0854951
\(188\) 2126.91 0.825111
\(189\) 0 0
\(190\) −2116.54 −0.808156
\(191\) −3771.70 −1.42885 −0.714426 0.699711i \(-0.753312\pi\)
−0.714426 + 0.699711i \(0.753312\pi\)
\(192\) 676.981 0.254463
\(193\) −1282.92 −0.478480 −0.239240 0.970960i \(-0.576898\pi\)
−0.239240 + 0.970960i \(0.576898\pi\)
\(194\) −2264.77 −0.838149
\(195\) −2389.62 −0.877561
\(196\) 0 0
\(197\) 3052.31 1.10390 0.551949 0.833878i \(-0.313884\pi\)
0.551949 + 0.833878i \(0.313884\pi\)
\(198\) 158.398 0.0568528
\(199\) −5040.28 −1.79546 −0.897729 0.440547i \(-0.854784\pi\)
−0.897729 + 0.440547i \(0.854784\pi\)
\(200\) −3730.22 −1.31883
\(201\) 1855.27 0.651048
\(202\) 1238.61 0.431426
\(203\) 0 0
\(204\) 324.367 0.111325
\(205\) 57.6462 0.0196399
\(206\) −1214.64 −0.410815
\(207\) −1468.85 −0.493198
\(208\) −420.250 −0.140092
\(209\) −842.277 −0.278763
\(210\) 0 0
\(211\) 3556.28 1.16031 0.580153 0.814508i \(-0.302993\pi\)
0.580153 + 0.814508i \(0.302993\pi\)
\(212\) 2235.63 0.724264
\(213\) 2787.12 0.896575
\(214\) −1889.93 −0.603706
\(215\) −2121.49 −0.672952
\(216\) −580.603 −0.182894
\(217\) 0 0
\(218\) 1180.93 0.366893
\(219\) −2604.27 −0.803563
\(220\) −1033.82 −0.316819
\(221\) 916.369 0.278922
\(222\) −1180.65 −0.356937
\(223\) −1767.85 −0.530870 −0.265435 0.964129i \(-0.585516\pi\)
−0.265435 + 0.964129i \(0.585516\pi\)
\(224\) 0 0
\(225\) 1561.21 0.462581
\(226\) 992.277 0.292059
\(227\) −4836.74 −1.41421 −0.707105 0.707109i \(-0.749999\pi\)
−0.707105 + 0.707109i \(0.749999\pi\)
\(228\) 1249.65 0.362982
\(229\) −4941.30 −1.42590 −0.712949 0.701216i \(-0.752641\pi\)
−0.712949 + 0.701216i \(0.752641\pi\)
\(230\) −4511.26 −1.29332
\(231\) 0 0
\(232\) −3416.04 −0.966700
\(233\) 4822.14 1.35583 0.677916 0.735140i \(-0.262883\pi\)
0.677916 + 0.735140i \(0.262883\pi\)
\(234\) −663.921 −0.185478
\(235\) −6754.51 −1.87496
\(236\) 2223.76 0.613366
\(237\) 458.106 0.125558
\(238\) 0 0
\(239\) 4821.80 1.30501 0.652503 0.757786i \(-0.273719\pi\)
0.652503 + 0.757786i \(0.273719\pi\)
\(240\) 472.409 0.127058
\(241\) −1544.41 −0.412798 −0.206399 0.978468i \(-0.566175\pi\)
−0.206399 + 0.978468i \(0.566175\pi\)
\(242\) 193.598 0.0514253
\(243\) 243.000 0.0641500
\(244\) −119.544 −0.0313648
\(245\) 0 0
\(246\) 16.0161 0.00415102
\(247\) 3530.38 0.909445
\(248\) 3672.16 0.940252
\(249\) 302.773 0.0770581
\(250\) 1339.73 0.338928
\(251\) 7568.20 1.90319 0.951595 0.307354i \(-0.0994436\pi\)
0.951595 + 0.307354i \(0.0994436\pi\)
\(252\) 0 0
\(253\) −1795.26 −0.446115
\(254\) −3666.82 −0.905815
\(255\) −1030.10 −0.252971
\(256\) −3616.24 −0.882871
\(257\) −1415.19 −0.343490 −0.171745 0.985141i \(-0.554941\pi\)
−0.171745 + 0.985141i \(0.554941\pi\)
\(258\) −589.425 −0.142233
\(259\) 0 0
\(260\) 4333.23 1.03360
\(261\) 1429.72 0.339070
\(262\) 2386.81 0.562815
\(263\) −7875.57 −1.84650 −0.923248 0.384204i \(-0.874476\pi\)
−0.923248 + 0.384204i \(0.874476\pi\)
\(264\) −709.626 −0.165434
\(265\) −7099.79 −1.64580
\(266\) 0 0
\(267\) 3189.68 0.731105
\(268\) −3364.27 −0.766810
\(269\) 2062.01 0.467371 0.233685 0.972312i \(-0.424921\pi\)
0.233685 + 0.972312i \(0.424921\pi\)
\(270\) 746.323 0.168221
\(271\) 8247.07 1.84861 0.924306 0.381651i \(-0.124645\pi\)
0.924306 + 0.381651i \(0.124645\pi\)
\(272\) −181.159 −0.0403837
\(273\) 0 0
\(274\) 4145.21 0.913945
\(275\) 1908.15 0.418420
\(276\) 2663.55 0.580893
\(277\) −6637.33 −1.43971 −0.719853 0.694126i \(-0.755791\pi\)
−0.719853 + 0.694126i \(0.755791\pi\)
\(278\) −4278.57 −0.923062
\(279\) −1536.91 −0.329793
\(280\) 0 0
\(281\) 5600.82 1.18903 0.594515 0.804085i \(-0.297344\pi\)
0.594515 + 0.804085i \(0.297344\pi\)
\(282\) −1876.64 −0.396285
\(283\) 934.745 0.196342 0.0981711 0.995170i \(-0.468701\pi\)
0.0981711 + 0.995170i \(0.468701\pi\)
\(284\) −5054.04 −1.05599
\(285\) −3968.56 −0.824831
\(286\) −811.459 −0.167771
\(287\) 0 0
\(288\) 1679.53 0.343636
\(289\) −4517.98 −0.919596
\(290\) 4391.08 0.889148
\(291\) −4246.50 −0.855444
\(292\) 4722.47 0.946444
\(293\) −9169.86 −1.82836 −0.914179 0.405311i \(-0.867163\pi\)
−0.914179 + 0.405311i \(0.867163\pi\)
\(294\) 0 0
\(295\) −7062.08 −1.39380
\(296\) 5289.33 1.03864
\(297\) 297.000 0.0580259
\(298\) 1315.75 0.255770
\(299\) 7524.78 1.45542
\(300\) −2831.03 −0.544832
\(301\) 0 0
\(302\) −222.081 −0.0423157
\(303\) 2322.42 0.440328
\(304\) −697.929 −0.131674
\(305\) 379.640 0.0712725
\(306\) −286.199 −0.0534670
\(307\) 6193.71 1.15144 0.575722 0.817645i \(-0.304721\pi\)
0.575722 + 0.817645i \(0.304721\pi\)
\(308\) 0 0
\(309\) −2277.48 −0.419292
\(310\) −4720.29 −0.864822
\(311\) 3373.58 0.615106 0.307553 0.951531i \(-0.400490\pi\)
0.307553 + 0.951531i \(0.400490\pi\)
\(312\) 2974.38 0.539715
\(313\) −7175.09 −1.29572 −0.647860 0.761760i \(-0.724336\pi\)
−0.647860 + 0.761760i \(0.724336\pi\)
\(314\) 1015.58 0.182524
\(315\) 0 0
\(316\) −830.709 −0.147883
\(317\) −6302.06 −1.11659 −0.558295 0.829643i \(-0.688544\pi\)
−0.558295 + 0.829643i \(0.688544\pi\)
\(318\) −1972.57 −0.347850
\(319\) 1747.43 0.306700
\(320\) 3898.56 0.681050
\(321\) −3543.66 −0.616162
\(322\) 0 0
\(323\) 1521.86 0.262162
\(324\) −440.645 −0.0755565
\(325\) −7997.94 −1.36506
\(326\) −973.375 −0.165369
\(327\) 2214.27 0.374463
\(328\) −71.7526 −0.0120789
\(329\) 0 0
\(330\) 912.173 0.152162
\(331\) −7404.03 −1.22949 −0.614747 0.788725i \(-0.710742\pi\)
−0.614747 + 0.788725i \(0.710742\pi\)
\(332\) −549.035 −0.0907597
\(333\) −2213.74 −0.364301
\(334\) 2472.77 0.405102
\(335\) 10684.0 1.74248
\(336\) 0 0
\(337\) 7008.68 1.13290 0.566450 0.824096i \(-0.308316\pi\)
0.566450 + 0.824096i \(0.308316\pi\)
\(338\) −113.948 −0.0183372
\(339\) 1860.54 0.298085
\(340\) 1867.94 0.297952
\(341\) −1878.45 −0.298309
\(342\) −1102.60 −0.174333
\(343\) 0 0
\(344\) 2640.64 0.413877
\(345\) −8458.72 −1.32001
\(346\) −202.554 −0.0314722
\(347\) −10025.8 −1.55104 −0.775521 0.631322i \(-0.782513\pi\)
−0.775521 + 0.631322i \(0.782513\pi\)
\(348\) −2592.59 −0.399360
\(349\) 10746.5 1.64827 0.824136 0.566391i \(-0.191661\pi\)
0.824136 + 0.566391i \(0.191661\pi\)
\(350\) 0 0
\(351\) −1244.87 −0.189305
\(352\) 2052.76 0.310830
\(353\) 606.136 0.0913919 0.0456960 0.998955i \(-0.485449\pi\)
0.0456960 + 0.998955i \(0.485449\pi\)
\(354\) −1962.09 −0.294588
\(355\) 16050.3 2.39961
\(356\) −5784.02 −0.861102
\(357\) 0 0
\(358\) −230.818 −0.0340757
\(359\) 8527.32 1.25363 0.626817 0.779166i \(-0.284357\pi\)
0.626817 + 0.779166i \(0.284357\pi\)
\(360\) −3343.54 −0.489501
\(361\) −995.934 −0.145201
\(362\) −4679.95 −0.679483
\(363\) 363.000 0.0524864
\(364\) 0 0
\(365\) −14997.3 −2.15067
\(366\) 105.477 0.0150639
\(367\) −5504.16 −0.782874 −0.391437 0.920205i \(-0.628022\pi\)
−0.391437 + 0.920205i \(0.628022\pi\)
\(368\) −1487.59 −0.210723
\(369\) 30.0306 0.00423667
\(370\) −6799.05 −0.955312
\(371\) 0 0
\(372\) 2786.96 0.388434
\(373\) −7091.36 −0.984387 −0.492194 0.870486i \(-0.663805\pi\)
−0.492194 + 0.870486i \(0.663805\pi\)
\(374\) −349.799 −0.0483627
\(375\) 2512.03 0.345921
\(376\) 8407.39 1.15313
\(377\) −7324.32 −1.00059
\(378\) 0 0
\(379\) −77.3370 −0.0104816 −0.00524081 0.999986i \(-0.501668\pi\)
−0.00524081 + 0.999986i \(0.501668\pi\)
\(380\) 7196.40 0.971493
\(381\) −6875.38 −0.924505
\(382\) −6034.65 −0.808271
\(383\) −4843.75 −0.646224 −0.323112 0.946361i \(-0.604729\pi\)
−0.323112 + 0.946361i \(0.604729\pi\)
\(384\) −3395.59 −0.451251
\(385\) 0 0
\(386\) −2052.65 −0.270666
\(387\) −1105.19 −0.145167
\(388\) 7700.41 1.00755
\(389\) 9882.00 1.28801 0.644007 0.765020i \(-0.277271\pi\)
0.644007 + 0.765020i \(0.277271\pi\)
\(390\) −3823.35 −0.496417
\(391\) 3243.74 0.419547
\(392\) 0 0
\(393\) 4475.32 0.574428
\(394\) 4883.63 0.624451
\(395\) 2638.11 0.336045
\(396\) −538.566 −0.0683434
\(397\) 10135.5 1.28133 0.640663 0.767823i \(-0.278660\pi\)
0.640663 + 0.767823i \(0.278660\pi\)
\(398\) −8064.35 −1.01565
\(399\) 0 0
\(400\) 1581.13 0.197641
\(401\) 9220.96 1.14831 0.574155 0.818746i \(-0.305331\pi\)
0.574155 + 0.818746i \(0.305331\pi\)
\(402\) 2968.40 0.368284
\(403\) 7873.45 0.973212
\(404\) −4211.37 −0.518623
\(405\) 1399.37 0.171692
\(406\) 0 0
\(407\) −2705.69 −0.329523
\(408\) 1282.18 0.155582
\(409\) 5710.89 0.690429 0.345214 0.938524i \(-0.387806\pi\)
0.345214 + 0.938524i \(0.387806\pi\)
\(410\) 92.2327 0.0111099
\(411\) 7772.36 0.932803
\(412\) 4129.88 0.493846
\(413\) 0 0
\(414\) −2350.13 −0.278992
\(415\) 1743.59 0.206240
\(416\) −8604.07 −1.01406
\(417\) −8022.41 −0.942108
\(418\) −1347.63 −0.157690
\(419\) −4520.73 −0.527093 −0.263547 0.964647i \(-0.584892\pi\)
−0.263547 + 0.964647i \(0.584892\pi\)
\(420\) 0 0
\(421\) 3798.26 0.439705 0.219853 0.975533i \(-0.429442\pi\)
0.219853 + 0.975533i \(0.429442\pi\)
\(422\) 5689.98 0.656359
\(423\) −3518.75 −0.404462
\(424\) 8837.15 1.01219
\(425\) −3447.71 −0.393502
\(426\) 4459.34 0.507173
\(427\) 0 0
\(428\) 6425.92 0.725721
\(429\) −1521.50 −0.171233
\(430\) −3394.35 −0.380674
\(431\) −3468.51 −0.387638 −0.193819 0.981037i \(-0.562088\pi\)
−0.193819 + 0.981037i \(0.562088\pi\)
\(432\) 246.100 0.0274086
\(433\) 9859.98 1.09432 0.547160 0.837028i \(-0.315709\pi\)
0.547160 + 0.837028i \(0.315709\pi\)
\(434\) 0 0
\(435\) 8233.37 0.907494
\(436\) −4015.26 −0.441046
\(437\) 12496.8 1.36796
\(438\) −4166.78 −0.454558
\(439\) −8464.33 −0.920228 −0.460114 0.887860i \(-0.652192\pi\)
−0.460114 + 0.887860i \(0.652192\pi\)
\(440\) −4086.55 −0.442770
\(441\) 0 0
\(442\) 1466.17 0.157780
\(443\) −7825.41 −0.839270 −0.419635 0.907693i \(-0.637842\pi\)
−0.419635 + 0.907693i \(0.637842\pi\)
\(444\) 4014.30 0.429077
\(445\) 18368.5 1.95675
\(446\) −2828.52 −0.300302
\(447\) 2467.06 0.261047
\(448\) 0 0
\(449\) 1050.94 0.110461 0.0552303 0.998474i \(-0.482411\pi\)
0.0552303 + 0.998474i \(0.482411\pi\)
\(450\) 2497.91 0.261672
\(451\) 36.7041 0.00383221
\(452\) −3373.83 −0.351087
\(453\) −416.408 −0.0431889
\(454\) −7738.68 −0.799988
\(455\) 0 0
\(456\) 4939.69 0.507285
\(457\) 14397.2 1.47369 0.736843 0.676064i \(-0.236316\pi\)
0.736843 + 0.676064i \(0.236316\pi\)
\(458\) −7905.98 −0.806599
\(459\) −536.630 −0.0545702
\(460\) 15338.7 1.55472
\(461\) 5755.83 0.581509 0.290755 0.956798i \(-0.406094\pi\)
0.290755 + 0.956798i \(0.406094\pi\)
\(462\) 0 0
\(463\) −10056.0 −1.00938 −0.504689 0.863302i \(-0.668393\pi\)
−0.504689 + 0.863302i \(0.668393\pi\)
\(464\) 1447.96 0.144870
\(465\) −8850.67 −0.882666
\(466\) 7715.32 0.766964
\(467\) −2607.32 −0.258356 −0.129178 0.991621i \(-0.541234\pi\)
−0.129178 + 0.991621i \(0.541234\pi\)
\(468\) 2257.39 0.222965
\(469\) 0 0
\(470\) −10807.1 −1.06062
\(471\) 1904.24 0.186290
\(472\) 8790.21 0.857208
\(473\) −1350.78 −0.131309
\(474\) 732.960 0.0710253
\(475\) −13282.5 −1.28304
\(476\) 0 0
\(477\) −3698.61 −0.355027
\(478\) 7714.79 0.738214
\(479\) 5944.97 0.567083 0.283541 0.958960i \(-0.408491\pi\)
0.283541 + 0.958960i \(0.408491\pi\)
\(480\) 9671.96 0.919714
\(481\) 11340.8 1.07504
\(482\) −2471.03 −0.233511
\(483\) 0 0
\(484\) −658.248 −0.0618189
\(485\) −24454.5 −2.28953
\(486\) 388.795 0.0362883
\(487\) 15895.1 1.47901 0.739504 0.673152i \(-0.235060\pi\)
0.739504 + 0.673152i \(0.235060\pi\)
\(488\) −472.540 −0.0438338
\(489\) −1825.10 −0.168781
\(490\) 0 0
\(491\) 3655.59 0.335997 0.167999 0.985787i \(-0.446270\pi\)
0.167999 + 0.985787i \(0.446270\pi\)
\(492\) −54.4561 −0.00498998
\(493\) −3157.32 −0.288435
\(494\) 5648.54 0.514453
\(495\) 1710.35 0.155302
\(496\) −1556.52 −0.140907
\(497\) 0 0
\(498\) 484.431 0.0435901
\(499\) 21171.9 1.89937 0.949684 0.313208i \(-0.101404\pi\)
0.949684 + 0.313208i \(0.101404\pi\)
\(500\) −4555.19 −0.407429
\(501\) 4636.50 0.413460
\(502\) 12109.0 1.07659
\(503\) 12270.3 1.08768 0.543842 0.839188i \(-0.316969\pi\)
0.543842 + 0.839188i \(0.316969\pi\)
\(504\) 0 0
\(505\) 13374.2 1.17850
\(506\) −2872.38 −0.252357
\(507\) −213.656 −0.0187155
\(508\) 12467.5 1.08889
\(509\) 3168.41 0.275908 0.137954 0.990439i \(-0.455947\pi\)
0.137954 + 0.990439i \(0.455947\pi\)
\(510\) −1648.15 −0.143100
\(511\) 0 0
\(512\) 3268.99 0.282168
\(513\) −2067.41 −0.177930
\(514\) −2264.27 −0.194305
\(515\) −13115.4 −1.12220
\(516\) 2004.09 0.170979
\(517\) −4300.69 −0.365849
\(518\) 0 0
\(519\) −379.794 −0.0321216
\(520\) 17128.7 1.44450
\(521\) 1305.16 0.109751 0.0548755 0.998493i \(-0.482524\pi\)
0.0548755 + 0.998493i \(0.482524\pi\)
\(522\) 2287.52 0.191805
\(523\) −707.998 −0.0591943 −0.0295971 0.999562i \(-0.509422\pi\)
−0.0295971 + 0.999562i \(0.509422\pi\)
\(524\) −8115.35 −0.676566
\(525\) 0 0
\(526\) −12600.8 −1.04452
\(527\) 3394.04 0.280544
\(528\) 300.789 0.0247920
\(529\) 14469.0 1.18920
\(530\) −11359.5 −0.930992
\(531\) −3678.97 −0.300666
\(532\) 0 0
\(533\) −153.844 −0.0125023
\(534\) 5103.42 0.413570
\(535\) −20407.0 −1.64911
\(536\) −13298.5 −1.07165
\(537\) −432.789 −0.0347788
\(538\) 3299.17 0.264382
\(539\) 0 0
\(540\) −2537.56 −0.202221
\(541\) −5424.05 −0.431050 −0.215525 0.976498i \(-0.569146\pi\)
−0.215525 + 0.976498i \(0.569146\pi\)
\(542\) 13195.1 1.04572
\(543\) −8775.02 −0.693503
\(544\) −3708.99 −0.292319
\(545\) 12751.4 1.00222
\(546\) 0 0
\(547\) −15353.7 −1.20014 −0.600071 0.799947i \(-0.704861\pi\)
−0.600071 + 0.799947i \(0.704861\pi\)
\(548\) −14094.0 −1.09866
\(549\) 197.772 0.0153747
\(550\) 3053.00 0.236691
\(551\) −12163.8 −0.940465
\(552\) 10528.6 0.811826
\(553\) 0 0
\(554\) −10619.6 −0.814410
\(555\) −12748.4 −0.975024
\(556\) 14547.5 1.10962
\(557\) 13685.2 1.04104 0.520519 0.853850i \(-0.325738\pi\)
0.520519 + 0.853850i \(0.325738\pi\)
\(558\) −2459.02 −0.186557
\(559\) 5661.77 0.428385
\(560\) 0 0
\(561\) −655.881 −0.0493606
\(562\) 8961.21 0.672608
\(563\) 1565.67 0.117203 0.0586015 0.998281i \(-0.481336\pi\)
0.0586015 + 0.998281i \(0.481336\pi\)
\(564\) 6380.73 0.476378
\(565\) 10714.4 0.797801
\(566\) 1495.57 0.111066
\(567\) 0 0
\(568\) −19977.9 −1.47580
\(569\) 20508.1 1.51097 0.755487 0.655164i \(-0.227400\pi\)
0.755487 + 0.655164i \(0.227400\pi\)
\(570\) −6349.61 −0.466589
\(571\) 971.535 0.0712040 0.0356020 0.999366i \(-0.488665\pi\)
0.0356020 + 0.999366i \(0.488665\pi\)
\(572\) 2759.03 0.201680
\(573\) −11315.1 −0.824949
\(574\) 0 0
\(575\) −28310.9 −2.05330
\(576\) 2030.94 0.146914
\(577\) −13961.1 −1.00729 −0.503647 0.863910i \(-0.668009\pi\)
−0.503647 + 0.863910i \(0.668009\pi\)
\(578\) −7228.67 −0.520196
\(579\) −3848.77 −0.276251
\(580\) −14930.0 −1.06885
\(581\) 0 0
\(582\) −6794.31 −0.483906
\(583\) −4520.53 −0.321134
\(584\) 18667.3 1.32270
\(585\) −7168.87 −0.506660
\(586\) −14671.6 −1.03426
\(587\) 23834.3 1.67589 0.837946 0.545753i \(-0.183756\pi\)
0.837946 + 0.545753i \(0.183756\pi\)
\(588\) 0 0
\(589\) 13075.8 0.914735
\(590\) −11299.2 −0.788440
\(591\) 9156.93 0.637336
\(592\) −2241.99 −0.155651
\(593\) −25102.9 −1.73837 −0.869184 0.494489i \(-0.835355\pi\)
−0.869184 + 0.494489i \(0.835355\pi\)
\(594\) 475.194 0.0328240
\(595\) 0 0
\(596\) −4473.66 −0.307464
\(597\) −15120.9 −1.03661
\(598\) 12039.5 0.823297
\(599\) −12122.2 −0.826875 −0.413437 0.910533i \(-0.635672\pi\)
−0.413437 + 0.910533i \(0.635672\pi\)
\(600\) −11190.7 −0.761429
\(601\) −20672.9 −1.40310 −0.701552 0.712619i \(-0.747509\pi\)
−0.701552 + 0.712619i \(0.747509\pi\)
\(602\) 0 0
\(603\) 5565.81 0.375883
\(604\) 755.096 0.0508682
\(605\) 2090.42 0.140476
\(606\) 3715.82 0.249084
\(607\) 3571.58 0.238824 0.119412 0.992845i \(-0.461899\pi\)
0.119412 + 0.992845i \(0.461899\pi\)
\(608\) −14289.2 −0.953129
\(609\) 0 0
\(610\) 607.416 0.0403173
\(611\) 18026.2 1.19356
\(612\) 973.101 0.0642733
\(613\) −25996.1 −1.71284 −0.856420 0.516280i \(-0.827317\pi\)
−0.856420 + 0.516280i \(0.827317\pi\)
\(614\) 9909.81 0.651347
\(615\) 172.938 0.0113391
\(616\) 0 0
\(617\) 7266.40 0.474123 0.237062 0.971495i \(-0.423816\pi\)
0.237062 + 0.971495i \(0.423816\pi\)
\(618\) −3643.92 −0.237184
\(619\) −16227.6 −1.05371 −0.526853 0.849957i \(-0.676628\pi\)
−0.526853 + 0.849957i \(0.676628\pi\)
\(620\) 16049.4 1.03961
\(621\) −4406.55 −0.284748
\(622\) 5397.65 0.347952
\(623\) 0 0
\(624\) −1260.75 −0.0808821
\(625\) −7217.38 −0.461912
\(626\) −11480.0 −0.732960
\(627\) −2526.83 −0.160944
\(628\) −3453.06 −0.219414
\(629\) 4888.73 0.309899
\(630\) 0 0
\(631\) −3162.02 −0.199490 −0.0997450 0.995013i \(-0.531803\pi\)
−0.0997450 + 0.995013i \(0.531803\pi\)
\(632\) −3283.68 −0.206674
\(633\) 10668.8 0.669903
\(634\) −10083.2 −0.631630
\(635\) −39593.5 −2.47436
\(636\) 6706.90 0.418154
\(637\) 0 0
\(638\) 2795.86 0.173494
\(639\) 8361.36 0.517638
\(640\) −19554.3 −1.20774
\(641\) −8679.48 −0.534819 −0.267409 0.963583i \(-0.586168\pi\)
−0.267409 + 0.963583i \(0.586168\pi\)
\(642\) −5669.79 −0.348550
\(643\) 19226.2 1.17917 0.589586 0.807705i \(-0.299291\pi\)
0.589586 + 0.807705i \(0.299291\pi\)
\(644\) 0 0
\(645\) −6364.48 −0.388529
\(646\) 2434.94 0.148299
\(647\) −11211.6 −0.681258 −0.340629 0.940198i \(-0.610640\pi\)
−0.340629 + 0.940198i \(0.610640\pi\)
\(648\) −1741.81 −0.105594
\(649\) −4496.52 −0.271963
\(650\) −12796.5 −0.772188
\(651\) 0 0
\(652\) 3309.56 0.198792
\(653\) −12404.5 −0.743378 −0.371689 0.928357i \(-0.621221\pi\)
−0.371689 + 0.928357i \(0.621221\pi\)
\(654\) 3542.79 0.211826
\(655\) 25772.2 1.53741
\(656\) 30.4138 0.00181015
\(657\) −7812.81 −0.463937
\(658\) 0 0
\(659\) 20954.9 1.23868 0.619339 0.785124i \(-0.287401\pi\)
0.619339 + 0.785124i \(0.287401\pi\)
\(660\) −3101.46 −0.182916
\(661\) 20349.0 1.19741 0.598703 0.800971i \(-0.295683\pi\)
0.598703 + 0.800971i \(0.295683\pi\)
\(662\) −11846.3 −0.695498
\(663\) 2749.11 0.161035
\(664\) −2170.26 −0.126841
\(665\) 0 0
\(666\) −3541.94 −0.206077
\(667\) −25926.4 −1.50506
\(668\) −8407.63 −0.486977
\(669\) −5303.55 −0.306498
\(670\) 17094.2 0.985683
\(671\) 241.722 0.0139070
\(672\) 0 0
\(673\) 31712.5 1.81639 0.908193 0.418553i \(-0.137462\pi\)
0.908193 + 0.418553i \(0.137462\pi\)
\(674\) 11213.7 0.640857
\(675\) 4683.63 0.267071
\(676\) 387.433 0.0220433
\(677\) −1195.61 −0.0678744 −0.0339372 0.999424i \(-0.510805\pi\)
−0.0339372 + 0.999424i \(0.510805\pi\)
\(678\) 2976.83 0.168620
\(679\) 0 0
\(680\) 7383.73 0.416402
\(681\) −14510.2 −0.816494
\(682\) −3005.47 −0.168747
\(683\) 16709.8 0.936140 0.468070 0.883691i \(-0.344949\pi\)
0.468070 + 0.883691i \(0.344949\pi\)
\(684\) 3748.94 0.209568
\(685\) 44759.0 2.49657
\(686\) 0 0
\(687\) −14823.9 −0.823242
\(688\) −1119.29 −0.0620238
\(689\) 18947.7 1.04768
\(690\) −13533.8 −0.746699
\(691\) 11154.4 0.614088 0.307044 0.951695i \(-0.400660\pi\)
0.307044 + 0.951695i \(0.400660\pi\)
\(692\) 688.701 0.0378331
\(693\) 0 0
\(694\) −16041.0 −0.877391
\(695\) −46199.0 −2.52148
\(696\) −10248.1 −0.558124
\(697\) −66.3182 −0.00360399
\(698\) 17194.2 0.932392
\(699\) 14466.4 0.782790
\(700\) 0 0
\(701\) 10388.9 0.559749 0.279874 0.960037i \(-0.409707\pi\)
0.279874 + 0.960037i \(0.409707\pi\)
\(702\) −1991.76 −0.107086
\(703\) 18834.2 1.01045
\(704\) 2482.26 0.132889
\(705\) −20263.5 −1.08251
\(706\) 969.805 0.0516984
\(707\) 0 0
\(708\) 6671.28 0.354127
\(709\) −4288.90 −0.227183 −0.113592 0.993528i \(-0.536236\pi\)
−0.113592 + 0.993528i \(0.536236\pi\)
\(710\) 25680.2 1.35741
\(711\) 1374.32 0.0724908
\(712\) −22863.4 −1.20343
\(713\) 27870.2 1.46388
\(714\) 0 0
\(715\) −8761.95 −0.458291
\(716\) 784.800 0.0409628
\(717\) 14465.4 0.753446
\(718\) 13643.5 0.709153
\(719\) −31876.4 −1.65339 −0.826697 0.562647i \(-0.809783\pi\)
−0.826697 + 0.562647i \(0.809783\pi\)
\(720\) 1417.23 0.0733569
\(721\) 0 0
\(722\) −1593.47 −0.0821371
\(723\) −4633.24 −0.238329
\(724\) 15912.2 0.816814
\(725\) 27556.7 1.41163
\(726\) 580.793 0.0296904
\(727\) −14030.2 −0.715754 −0.357877 0.933769i \(-0.616499\pi\)
−0.357877 + 0.933769i \(0.616499\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −23995.4 −1.21659
\(731\) 2440.64 0.123489
\(732\) −358.631 −0.0181085
\(733\) 5466.09 0.275436 0.137718 0.990471i \(-0.456023\pi\)
0.137718 + 0.990471i \(0.456023\pi\)
\(734\) −8806.54 −0.442855
\(735\) 0 0
\(736\) −30456.5 −1.52533
\(737\) 6802.66 0.339999
\(738\) 48.0484 0.00239659
\(739\) 28957.0 1.44141 0.720704 0.693243i \(-0.243819\pi\)
0.720704 + 0.693243i \(0.243819\pi\)
\(740\) 23117.3 1.14839
\(741\) 10591.1 0.525068
\(742\) 0 0
\(743\) −17742.1 −0.876037 −0.438019 0.898966i \(-0.644320\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(744\) 11016.5 0.542855
\(745\) 14207.2 0.698672
\(746\) −11346.0 −0.556846
\(747\) 908.320 0.0444895
\(748\) 1189.35 0.0581374
\(749\) 0 0
\(750\) 4019.19 0.195680
\(751\) 30053.7 1.46029 0.730143 0.683294i \(-0.239453\pi\)
0.730143 + 0.683294i \(0.239453\pi\)
\(752\) −3563.64 −0.172809
\(753\) 22704.6 1.09881
\(754\) −11718.8 −0.566011
\(755\) −2397.99 −0.115592
\(756\) 0 0
\(757\) −8581.32 −0.412012 −0.206006 0.978551i \(-0.566047\pi\)
−0.206006 + 0.978551i \(0.566047\pi\)
\(758\) −123.738 −0.00592923
\(759\) −5385.78 −0.257565
\(760\) 28446.4 1.35771
\(761\) −30413.3 −1.44873 −0.724363 0.689419i \(-0.757866\pi\)
−0.724363 + 0.689419i \(0.757866\pi\)
\(762\) −11000.5 −0.522972
\(763\) 0 0
\(764\) 20518.3 0.971632
\(765\) −3090.31 −0.146053
\(766\) −7749.90 −0.365555
\(767\) 18847.0 0.887258
\(768\) −10848.7 −0.509726
\(769\) 24735.2 1.15992 0.579958 0.814646i \(-0.303069\pi\)
0.579958 + 0.814646i \(0.303069\pi\)
\(770\) 0 0
\(771\) −4245.56 −0.198314
\(772\) 6979.18 0.325371
\(773\) −25108.1 −1.16827 −0.584137 0.811655i \(-0.698567\pi\)
−0.584137 + 0.811655i \(0.698567\pi\)
\(774\) −1768.27 −0.0821180
\(775\) −29622.7 −1.37301
\(776\) 30438.7 1.40810
\(777\) 0 0
\(778\) 15811.0 0.728601
\(779\) −255.496 −0.0117511
\(780\) 12999.7 0.596749
\(781\) 10219.4 0.468221
\(782\) 5189.92 0.237329
\(783\) 4289.15 0.195762
\(784\) 0 0
\(785\) 10966.0 0.498591
\(786\) 7160.42 0.324941
\(787\) 36364.0 1.64706 0.823531 0.567271i \(-0.192001\pi\)
0.823531 + 0.567271i \(0.192001\pi\)
\(788\) −16604.8 −0.750660
\(789\) −23626.7 −1.06608
\(790\) 4220.93 0.190094
\(791\) 0 0
\(792\) −2128.88 −0.0955132
\(793\) −1013.17 −0.0453704
\(794\) 16216.6 0.724818
\(795\) −21299.4 −0.950202
\(796\) 27419.5 1.22093
\(797\) 18605.4 0.826897 0.413448 0.910528i \(-0.364324\pi\)
0.413448 + 0.910528i \(0.364324\pi\)
\(798\) 0 0
\(799\) 7770.63 0.344062
\(800\) 32371.6 1.43063
\(801\) 9569.04 0.422104
\(802\) 14753.3 0.649574
\(803\) −9548.99 −0.419647
\(804\) −10092.8 −0.442718
\(805\) 0 0
\(806\) 12597.4 0.550525
\(807\) 6186.02 0.269837
\(808\) −16647.0 −0.724800
\(809\) 26846.8 1.16673 0.583364 0.812211i \(-0.301736\pi\)
0.583364 + 0.812211i \(0.301736\pi\)
\(810\) 2238.97 0.0971227
\(811\) 32344.3 1.40045 0.700224 0.713924i \(-0.253084\pi\)
0.700224 + 0.713924i \(0.253084\pi\)
\(812\) 0 0
\(813\) 24741.2 1.06730
\(814\) −4329.04 −0.186404
\(815\) −10510.3 −0.451729
\(816\) −543.477 −0.0233156
\(817\) 9402.76 0.402645
\(818\) 9137.31 0.390561
\(819\) 0 0
\(820\) −313.599 −0.0133553
\(821\) 16953.3 0.720677 0.360338 0.932822i \(-0.382661\pi\)
0.360338 + 0.932822i \(0.382661\pi\)
\(822\) 12435.6 0.527667
\(823\) 37814.0 1.60159 0.800797 0.598936i \(-0.204410\pi\)
0.800797 + 0.598936i \(0.204410\pi\)
\(824\) 16324.8 0.690173
\(825\) 5724.44 0.241575
\(826\) 0 0
\(827\) −11894.6 −0.500141 −0.250071 0.968228i \(-0.580454\pi\)
−0.250071 + 0.968228i \(0.580454\pi\)
\(828\) 7990.64 0.335379
\(829\) −30744.7 −1.28807 −0.644033 0.764998i \(-0.722740\pi\)
−0.644033 + 0.764998i \(0.722740\pi\)
\(830\) 2789.71 0.116665
\(831\) −19912.0 −0.831215
\(832\) −10404.3 −0.433540
\(833\) 0 0
\(834\) −12835.7 −0.532930
\(835\) 26700.4 1.10659
\(836\) 4582.04 0.189561
\(837\) −4610.73 −0.190406
\(838\) −7233.08 −0.298165
\(839\) 24677.8 1.01546 0.507731 0.861516i \(-0.330484\pi\)
0.507731 + 0.861516i \(0.330484\pi\)
\(840\) 0 0
\(841\) 846.708 0.0347168
\(842\) 6077.14 0.248732
\(843\) 16802.5 0.686486
\(844\) −19346.4 −0.789017
\(845\) −1230.39 −0.0500907
\(846\) −5629.92 −0.228795
\(847\) 0 0
\(848\) −3745.80 −0.151688
\(849\) 2804.24 0.113358
\(850\) −5516.26 −0.222595
\(851\) 40143.9 1.61706
\(852\) −15162.1 −0.609678
\(853\) 1855.69 0.0744873 0.0372437 0.999306i \(-0.488142\pi\)
0.0372437 + 0.999306i \(0.488142\pi\)
\(854\) 0 0
\(855\) −11905.7 −0.476217
\(856\) 25400.8 1.01423
\(857\) −3984.84 −0.158832 −0.0794162 0.996842i \(-0.525306\pi\)
−0.0794162 + 0.996842i \(0.525306\pi\)
\(858\) −2434.38 −0.0968627
\(859\) 12526.1 0.497538 0.248769 0.968563i \(-0.419974\pi\)
0.248769 + 0.968563i \(0.419974\pi\)
\(860\) 11541.1 0.457613
\(861\) 0 0
\(862\) −5549.54 −0.219279
\(863\) −22040.9 −0.869387 −0.434693 0.900579i \(-0.643143\pi\)
−0.434693 + 0.900579i \(0.643143\pi\)
\(864\) 5038.58 0.198398
\(865\) −2187.14 −0.0859709
\(866\) 15775.8 0.619033
\(867\) −13553.9 −0.530929
\(868\) 0 0
\(869\) 1679.72 0.0655704
\(870\) 13173.2 0.513350
\(871\) −28513.2 −1.10922
\(872\) −15871.8 −0.616383
\(873\) −12739.5 −0.493891
\(874\) 19994.5 0.773828
\(875\) 0 0
\(876\) 14167.4 0.546430
\(877\) 21039.5 0.810096 0.405048 0.914295i \(-0.367255\pi\)
0.405048 + 0.914295i \(0.367255\pi\)
\(878\) −13542.7 −0.520553
\(879\) −27509.6 −1.05560
\(880\) 1732.17 0.0663538
\(881\) −33610.9 −1.28533 −0.642667 0.766146i \(-0.722172\pi\)
−0.642667 + 0.766146i \(0.722172\pi\)
\(882\) 0 0
\(883\) −4618.52 −0.176020 −0.0880099 0.996120i \(-0.528051\pi\)
−0.0880099 + 0.996120i \(0.528051\pi\)
\(884\) −4985.11 −0.189669
\(885\) −21186.2 −0.804709
\(886\) −12520.5 −0.474757
\(887\) 40095.6 1.51779 0.758895 0.651213i \(-0.225740\pi\)
0.758895 + 0.651213i \(0.225740\pi\)
\(888\) 15868.0 0.599656
\(889\) 0 0
\(890\) 29389.3 1.10689
\(891\) 891.000 0.0335013
\(892\) 9617.22 0.360996
\(893\) 29937.0 1.12184
\(894\) 3947.25 0.147669
\(895\) −2492.32 −0.0930828
\(896\) 0 0
\(897\) 22574.4 0.840285
\(898\) 1681.48 0.0624852
\(899\) −27127.7 −1.00641
\(900\) −8493.09 −0.314559
\(901\) 8167.85 0.302009
\(902\) 58.7258 0.00216780
\(903\) 0 0
\(904\) −13336.3 −0.490661
\(905\) −50533.1 −1.85611
\(906\) −666.244 −0.0244310
\(907\) −52281.2 −1.91397 −0.956984 0.290141i \(-0.906298\pi\)
−0.956984 + 0.290141i \(0.906298\pi\)
\(908\) 26312.2 0.961674
\(909\) 6967.26 0.254224
\(910\) 0 0
\(911\) 30635.6 1.11416 0.557081 0.830458i \(-0.311921\pi\)
0.557081 + 0.830458i \(0.311921\pi\)
\(912\) −2093.79 −0.0760221
\(913\) 1110.17 0.0402423
\(914\) 23035.3 0.833632
\(915\) 1138.92 0.0411492
\(916\) 26881.0 0.969622
\(917\) 0 0
\(918\) −858.597 −0.0308692
\(919\) −14574.9 −0.523159 −0.261579 0.965182i \(-0.584243\pi\)
−0.261579 + 0.965182i \(0.584243\pi\)
\(920\) 60631.6 2.17279
\(921\) 18581.1 0.664787
\(922\) 9209.21 0.328947
\(923\) −42834.5 −1.52754
\(924\) 0 0
\(925\) −42668.1 −1.51667
\(926\) −16089.4 −0.570983
\(927\) −6832.44 −0.242078
\(928\) 29645.1 1.04865
\(929\) 18955.8 0.669451 0.334726 0.942316i \(-0.391356\pi\)
0.334726 + 0.942316i \(0.391356\pi\)
\(930\) −14160.9 −0.499305
\(931\) 0 0
\(932\) −26232.7 −0.921976
\(933\) 10120.7 0.355132
\(934\) −4171.66 −0.146147
\(935\) −3777.05 −0.132110
\(936\) 8923.14 0.311605
\(937\) −6520.68 −0.227344 −0.113672 0.993518i \(-0.536261\pi\)
−0.113672 + 0.993518i \(0.536261\pi\)
\(938\) 0 0
\(939\) −21525.3 −0.748084
\(940\) 36745.0 1.27499
\(941\) −12631.4 −0.437589 −0.218795 0.975771i \(-0.570212\pi\)
−0.218795 + 0.975771i \(0.570212\pi\)
\(942\) 3046.74 0.105380
\(943\) −544.573 −0.0188057
\(944\) −3725.91 −0.128462
\(945\) 0 0
\(946\) −2161.22 −0.0742785
\(947\) −35170.9 −1.20686 −0.603432 0.797415i \(-0.706200\pi\)
−0.603432 + 0.797415i \(0.706200\pi\)
\(948\) −2492.13 −0.0853803
\(949\) 40024.3 1.36907
\(950\) −21251.8 −0.725789
\(951\) −18906.2 −0.644663
\(952\) 0 0
\(953\) 39539.0 1.34396 0.671980 0.740570i \(-0.265444\pi\)
0.671980 + 0.740570i \(0.265444\pi\)
\(954\) −5917.71 −0.200831
\(955\) −65160.8 −2.20791
\(956\) −26230.9 −0.887415
\(957\) 5242.30 0.177074
\(958\) 9511.83 0.320786
\(959\) 0 0
\(960\) 11695.7 0.393204
\(961\) −629.373 −0.0211263
\(962\) 18145.1 0.608129
\(963\) −10631.0 −0.355741
\(964\) 8401.70 0.280706
\(965\) −22164.0 −0.739363
\(966\) 0 0
\(967\) −29986.0 −0.997194 −0.498597 0.866834i \(-0.666151\pi\)
−0.498597 + 0.866834i \(0.666151\pi\)
\(968\) −2601.96 −0.0863949
\(969\) 4565.57 0.151359
\(970\) −39126.7 −1.29514
\(971\) 14879.8 0.491777 0.245889 0.969298i \(-0.420920\pi\)
0.245889 + 0.969298i \(0.420920\pi\)
\(972\) −1321.94 −0.0436225
\(973\) 0 0
\(974\) 25431.9 0.836643
\(975\) −23993.8 −0.788121
\(976\) 200.296 0.00656896
\(977\) 40864.1 1.33813 0.669067 0.743202i \(-0.266694\pi\)
0.669067 + 0.743202i \(0.266694\pi\)
\(978\) −2920.13 −0.0954758
\(979\) 11695.5 0.381807
\(980\) 0 0
\(981\) 6642.82 0.216197
\(982\) 5848.88 0.190066
\(983\) −48180.6 −1.56330 −0.781650 0.623718i \(-0.785621\pi\)
−0.781650 + 0.623718i \(0.785621\pi\)
\(984\) −215.258 −0.00697374
\(985\) 52732.4 1.70578
\(986\) −5051.65 −0.163162
\(987\) 0 0
\(988\) −19205.5 −0.618430
\(989\) 20041.4 0.644367
\(990\) 2736.52 0.0878508
\(991\) −22380.4 −0.717392 −0.358696 0.933454i \(-0.616779\pi\)
−0.358696 + 0.933454i \(0.616779\pi\)
\(992\) −31867.7 −1.01996
\(993\) −22212.1 −0.709848
\(994\) 0 0
\(995\) −87077.1 −2.77440
\(996\) −1647.11 −0.0524002
\(997\) 12425.1 0.394691 0.197346 0.980334i \(-0.436768\pi\)
0.197346 + 0.980334i \(0.436768\pi\)
\(998\) 33874.6 1.07443
\(999\) −6641.23 −0.210330
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.n.1.4 5
7.6 odd 2 231.4.a.k.1.4 5
21.20 even 2 693.4.a.p.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.k.1.4 5 7.6 odd 2
693.4.a.p.1.2 5 21.20 even 2
1617.4.a.n.1.4 5 1.1 even 1 trivial