L(s) = 1 | − 2·2-s + 21·5-s − 8·7-s + 8·8-s − 42·10-s + 36·11-s + 49·13-s + 16·14-s − 16·16-s − 42·17-s − 224·19-s − 72·22-s + 180·23-s + 125·25-s − 98·26-s − 135·29-s − 308·31-s + 84·34-s − 168·35-s − 2·37-s + 448·38-s + 168·40-s − 42·41-s − 20·43-s − 360·46-s + 84·47-s + 343·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.87·5-s − 0.431·7-s + 0.353·8-s − 1.32·10-s + 0.986·11-s + 1.04·13-s + 0.305·14-s − 1/4·16-s − 0.599·17-s − 2.70·19-s − 0.697·22-s + 1.63·23-s + 25-s − 0.739·26-s − 0.864·29-s − 1.78·31-s + 0.423·34-s − 0.811·35-s − 0.00888·37-s + 1.91·38-s + 0.664·40-s − 0.159·41-s − 0.0709·43-s − 1.15·46-s + 0.260·47-s + 49-s + ⋯ |
Λ(s)=(=(26244s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(26244s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
26244
= 22⋅38
|
Sign: |
1
|
Analytic conductor: |
91.3612 |
Root analytic conductor: |
3.09165 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 26244, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.967821143 |
L(21) |
≈ |
1.967821143 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT+p2T2 |
| 3 | | 1 |
good | 5 | C22 | 1−21T+316T2−21p3T3+p6T4 |
| 7 | C22 | 1+8T−279T2+8p3T3+p6T4 |
| 11 | C22 | 1−36T−35T2−36p3T3+p6T4 |
| 13 | C22 | 1−49T+204T2−49p3T3+p6T4 |
| 17 | C2 | (1+21T+p3T2)2 |
| 19 | C2 | (1+112T+p3T2)2 |
| 23 | C22 | 1−180T+20233T2−180p3T3+p6T4 |
| 29 | C22 | 1+135T−6164T2+135p3T3+p6T4 |
| 31 | C2 | (1+19T+p3T2)(1+289T+p3T2) |
| 37 | C2 | (1+T+p3T2)2 |
| 41 | C22 | 1+42T−67157T2+42p3T3+p6T4 |
| 43 | C22 | 1+20T−79107T2+20p3T3+p6T4 |
| 47 | C22 | 1−84T−96767T2−84p3T3+p6T4 |
| 53 | C2 | (1−174T+p3T2)2 |
| 59 | C22 | 1−504T+48637T2−504p3T3+p6T4 |
| 61 | C22 | 1−385T−78756T2−385p3T3+p6T4 |
| 67 | C22 | 1+272T−226779T2+272p3T3+p6T4 |
| 71 | C2 | (1−888T+p3T2)2 |
| 73 | C2 | (1−371T+p3T2)2 |
| 79 | C22 | 1−652T−67935T2−652p3T3+p6T4 |
| 83 | C22 | 1−84T−564731T2−84p3T3+p6T4 |
| 89 | C2 | (1+21T+p3T2)2 |
| 97 | C22 | 1−1246T+639843T2−1246p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.19636071814474684010336587790, −12.37365569412686385313093478142, −11.32444565377788754001933627804, −10.83286639728749434244102639692, −10.79647128807278007024727004397, −9.951693221786258885633588973802, −9.575941390545464730437556384030, −8.972271204568524115182737871001, −8.871044944957653067071524676734, −8.344339804060036266096892806714, −7.27378153000945299767131004090, −6.63646743232648757435686047849, −6.41257781912142378158782433183, −5.74627633160831347732966629430, −5.19645933390127768821127762017, −4.13320893001743525914837271162, −3.61725175184557564453483206474, −2.07105184789143414197317796633, −2.03371887894989969365295511358, −0.75160116229901187165317760534,
0.75160116229901187165317760534, 2.03371887894989969365295511358, 2.07105184789143414197317796633, 3.61725175184557564453483206474, 4.13320893001743525914837271162, 5.19645933390127768821127762017, 5.74627633160831347732966629430, 6.41257781912142378158782433183, 6.63646743232648757435686047849, 7.27378153000945299767131004090, 8.344339804060036266096892806714, 8.871044944957653067071524676734, 8.972271204568524115182737871001, 9.575941390545464730437556384030, 9.951693221786258885633588973802, 10.79647128807278007024727004397, 10.83286639728749434244102639692, 11.32444565377788754001933627804, 12.37365569412686385313093478142, 13.19636071814474684010336587790