gp: [N,k,chi] = [162,4,Mod(55,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.55");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,-2,0,-4,21]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 162 Z ) × \left(\mathbb{Z}/162\mathbb{Z}\right)^\times ( Z / 1 6 2 Z ) × .
n n n
83 83 8 3
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 2 − 21 T 5 + 441 T_{5}^{2} - 21T_{5} + 441 T 5 2 − 2 1 T 5 + 4 4 1
T5^2 - 21*T5 + 441
acting on S 4 n e w ( 162 , [ χ ] ) S_{4}^{\mathrm{new}}(162, [\chi]) S 4 n e w ( 1 6 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − 21 T + 441 T^{2} - 21T + 441 T 2 − 2 1 T + 4 4 1
T^2 - 21*T + 441
7 7 7
T 2 + 8 T + 64 T^{2} + 8T + 64 T 2 + 8 T + 6 4
T^2 + 8*T + 64
11 11 1 1
T 2 − 36 T + 1296 T^{2} - 36T + 1296 T 2 − 3 6 T + 1 2 9 6
T^2 - 36*T + 1296
13 13 1 3
T 2 − 49 T + 2401 T^{2} - 49T + 2401 T 2 − 4 9 T + 2 4 0 1
T^2 - 49*T + 2401
17 17 1 7
( T + 21 ) 2 (T + 21)^{2} ( T + 2 1 ) 2
(T + 21)^2
19 19 1 9
( T + 112 ) 2 (T + 112)^{2} ( T + 1 1 2 ) 2
(T + 112)^2
23 23 2 3
T 2 − 180 T + 32400 T^{2} - 180T + 32400 T 2 − 1 8 0 T + 3 2 4 0 0
T^2 - 180*T + 32400
29 29 2 9
T 2 + 135 T + 18225 T^{2} + 135T + 18225 T 2 + 1 3 5 T + 1 8 2 2 5
T^2 + 135*T + 18225
31 31 3 1
T 2 + 308 T + 94864 T^{2} + 308T + 94864 T 2 + 3 0 8 T + 9 4 8 6 4
T^2 + 308*T + 94864
37 37 3 7
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
41 41 4 1
T 2 + 42 T + 1764 T^{2} + 42T + 1764 T 2 + 4 2 T + 1 7 6 4
T^2 + 42*T + 1764
43 43 4 3
T 2 + 20 T + 400 T^{2} + 20T + 400 T 2 + 2 0 T + 4 0 0
T^2 + 20*T + 400
47 47 4 7
T 2 − 84 T + 7056 T^{2} - 84T + 7056 T 2 − 8 4 T + 7 0 5 6
T^2 - 84*T + 7056
53 53 5 3
( T − 174 ) 2 (T - 174)^{2} ( T − 1 7 4 ) 2
(T - 174)^2
59 59 5 9
T 2 − 504 T + 254016 T^{2} - 504T + 254016 T 2 − 5 0 4 T + 2 5 4 0 1 6
T^2 - 504*T + 254016
61 61 6 1
T 2 − 385 T + 148225 T^{2} - 385T + 148225 T 2 − 3 8 5 T + 1 4 8 2 2 5
T^2 - 385*T + 148225
67 67 6 7
T 2 + 272 T + 73984 T^{2} + 272T + 73984 T 2 + 2 7 2 T + 7 3 9 8 4
T^2 + 272*T + 73984
71 71 7 1
( T − 888 ) 2 (T - 888)^{2} ( T − 8 8 8 ) 2
(T - 888)^2
73 73 7 3
( T − 371 ) 2 (T - 371)^{2} ( T − 3 7 1 ) 2
(T - 371)^2
79 79 7 9
T 2 − 652 T + 425104 T^{2} - 652T + 425104 T 2 − 6 5 2 T + 4 2 5 1 0 4
T^2 - 652*T + 425104
83 83 8 3
T 2 − 84 T + 7056 T^{2} - 84T + 7056 T 2 − 8 4 T + 7 0 5 6
T^2 - 84*T + 7056
89 89 8 9
( T + 21 ) 2 (T + 21)^{2} ( T + 2 1 ) 2
(T + 21)^2
97 97 9 7
T 2 − 1246 T + 1552516 T^{2} - 1246 T + 1552516 T 2 − 1 2 4 6 T + 1 5 5 2 5 1 6
T^2 - 1246*T + 1552516
show more
show less