L(s) = 1 | + (−1 − 1.73i)2-s + (−1.99 + 3.46i)4-s + (10.5 − 18.1i)5-s + (−4 − 6.92i)7-s + 7.99·8-s − 42·10-s + (18 + 31.1i)11-s + (24.5 − 42.4i)13-s + (−7.99 + 13.8i)14-s + (−8 − 13.8i)16-s − 21·17-s − 112·19-s + (42 + 72.7i)20-s + (36 − 62.3i)22-s + (90 − 155. i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.939 − 1.62i)5-s + (−0.215 − 0.374i)7-s + 0.353·8-s − 1.32·10-s + (0.493 + 0.854i)11-s + (0.522 − 0.905i)13-s + (−0.152 + 0.264i)14-s + (−0.125 − 0.216i)16-s − 0.299·17-s − 1.35·19-s + (0.469 + 0.813i)20-s + (0.348 − 0.604i)22-s + (0.815 − 1.41i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(−0.766+0.642i)Λ(4−s)
Λ(s)=(=(162s/2ΓC(s+3/2)L(s)(−0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
−0.766+0.642i
|
Analytic conductor: |
9.55830 |
Root analytic conductor: |
3.09165 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :3/2), −0.766+0.642i)
|
Particular Values
L(2) |
≈ |
0.479782−1.31819i |
L(21) |
≈ |
0.479782−1.31819i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+1.73i)T |
| 3 | 1 |
good | 5 | 1+(−10.5+18.1i)T+(−62.5−108.i)T2 |
| 7 | 1+(4+6.92i)T+(−171.5+297.i)T2 |
| 11 | 1+(−18−31.1i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(−24.5+42.4i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+21T+4.91e3T2 |
| 19 | 1+112T+6.85e3T2 |
| 23 | 1+(−90+155.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(67.5+116.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(154−266.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+T+5.06e4T2 |
| 41 | 1+(21−36.3i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(10+17.3i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(−42−72.7i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1−174T+1.48e5T2 |
| 59 | 1+(−252+436.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−192.5−333.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(136−235.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−888T+3.57e5T2 |
| 73 | 1−371T+3.89e5T2 |
| 79 | 1+(−326−564.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(−42−72.7i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1+21T+7.04e5T2 |
| 97 | 1+(−623−1.07e3i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.37365569412686385313093478142, −10.79647128807278007024727004397, −9.951693221786258885633588973802, −8.972271204568524115182737871001, −8.344339804060036266096892806714, −6.63646743232648757435686047849, −5.19645933390127768821127762017, −4.13320893001743525914837271162, −2.07105184789143414197317796633, −0.75160116229901187165317760534,
2.03371887894989969365295511358, 3.61725175184557564453483206474, 5.74627633160831347732966629430, 6.41257781912142378158782433183, 7.27378153000945299767131004090, 8.871044944957653067071524676734, 9.575941390545464730437556384030, 10.83286639728749434244102639692, 11.32444565377788754001933627804, 13.19636071814474684010336587790