L(s) = 1 | + (−2.44 − 1.41i)2-s + (3.99 + 6.92i)4-s + (7.97 − 4.60i)5-s + (−27.2 + 47.2i)7-s − 22.6i·8-s − 26.0·10-s + (34.3 + 19.8i)11-s + (−107. − 186. i)13-s + (133. − 77.1i)14-s + (−32.0 + 55.4i)16-s + 28.2i·17-s − 254.·19-s + (63.7 + 36.8i)20-s + (−56.0 − 97.0i)22-s + (801. − 462. i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.318 − 0.184i)5-s + (−0.556 + 0.964i)7-s − 0.353i·8-s − 0.260·10-s + (0.283 + 0.163i)11-s + (−0.638 − 1.10i)13-s + (0.681 − 0.393i)14-s + (−0.125 + 0.216i)16-s + 0.0976i·17-s − 0.704·19-s + (0.159 + 0.0920i)20-s + (−0.115 − 0.200i)22-s + (1.51 − 0.875i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(−0.996+0.0871i)Λ(5−s)
Λ(s)=(=(162s/2ΓC(s+2)L(s)(−0.996+0.0871i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
−0.996+0.0871i
|
Analytic conductor: |
16.7459 |
Root analytic conductor: |
4.09217 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :2), −0.996+0.0871i)
|
Particular Values
L(25) |
≈ |
0.2008958067 |
L(21) |
≈ |
0.2008958067 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.44+1.41i)T |
| 3 | 1 |
good | 5 | 1+(−7.97+4.60i)T+(312.5−541.i)T2 |
| 7 | 1+(27.2−47.2i)T+(−1.20e3−2.07e3i)T2 |
| 11 | 1+(−34.3−19.8i)T+(7.32e3+1.26e4i)T2 |
| 13 | 1+(107.+186.i)T+(−1.42e4+2.47e4i)T2 |
| 17 | 1−28.2iT−8.35e4T2 |
| 19 | 1+254.T+1.30e5T2 |
| 23 | 1+(−801.+462.i)T+(1.39e5−2.42e5i)T2 |
| 29 | 1+(1.16e3+672.i)T+(3.53e5+6.12e5i)T2 |
| 31 | 1+(588.+1.01e3i)T+(−4.61e5+7.99e5i)T2 |
| 37 | 1+2.34e3T+1.87e6T2 |
| 41 | 1+(1.25e3−726.i)T+(1.41e6−2.44e6i)T2 |
| 43 | 1+(837.−1.45e3i)T+(−1.70e6−2.96e6i)T2 |
| 47 | 1+(2.87e3+1.66e3i)T+(2.43e6+4.22e6i)T2 |
| 53 | 1−1.74e3iT−7.89e6T2 |
| 59 | 1+(709.−409.i)T+(6.05e6−1.04e7i)T2 |
| 61 | 1+(393.−682.i)T+(−6.92e6−1.19e7i)T2 |
| 67 | 1+(1.42e3+2.47e3i)T+(−1.00e7+1.74e7i)T2 |
| 71 | 1+7.90e3iT−2.54e7T2 |
| 73 | 1−7.11e3T+2.83e7T2 |
| 79 | 1+(−1.73e3+3.00e3i)T+(−1.94e7−3.37e7i)T2 |
| 83 | 1+(996.+575.i)T+(2.37e7+4.11e7i)T2 |
| 89 | 1+1.07e4iT−6.27e7T2 |
| 97 | 1+(4.98e3−8.63e3i)T+(−4.42e7−7.66e7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67122680763188498093976212416, −10.56194184894103124609509602276, −9.547649152978127748430078526344, −8.861558154636838606347031689796, −7.66359067579579335905545687218, −6.35288848028217649174576634986, −5.15669432275966114804094319915, −3.28135416269961450335083021817, −2.01184541473869320880390228628, −0.088888185955104982266063468310,
1.70035321516695241219496604682, 3.58845529223399943831746453426, 5.17391955478848289890213021080, 6.76450054630091061041283340742, 7.12085325586985075994172141967, 8.709203332036485648526146100805, 9.579456297712314060416143514952, 10.48302867601768463882267130022, 11.41046220677126944928942752632, 12.72376247643983986350725226299