Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [162,5,Mod(53,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.53");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 162.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
−2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | 7.97262 | + | 4.60300i | 0 | −27.2750 | − | 47.2417i | 22.6274i | 0 | −26.0385 | ||||||||||||||||||||||||||||||||||
53.2 | −2.44949 | + | 1.41421i | 0 | 4.00000 | − | 6.92820i | 39.7924 | + | 22.9742i | 0 | 40.2750 | + | 69.7583i | 22.6274i | 0 | −129.962 | |||||||||||||||||||||||||||||||||||
53.3 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | −39.7924 | − | 22.9742i | 0 | 40.2750 | + | 69.7583i | − | 22.6274i | 0 | −129.962 | ||||||||||||||||||||||||||||||||||
53.4 | 2.44949 | − | 1.41421i | 0 | 4.00000 | − | 6.92820i | −7.97262 | − | 4.60300i | 0 | −27.2750 | − | 47.2417i | − | 22.6274i | 0 | −26.0385 | ||||||||||||||||||||||||||||||||||
107.1 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | 7.97262 | − | 4.60300i | 0 | −27.2750 | + | 47.2417i | − | 22.6274i | 0 | −26.0385 | ||||||||||||||||||||||||||||||||||
107.2 | −2.44949 | − | 1.41421i | 0 | 4.00000 | + | 6.92820i | 39.7924 | − | 22.9742i | 0 | 40.2750 | − | 69.7583i | − | 22.6274i | 0 | −129.962 | ||||||||||||||||||||||||||||||||||
107.3 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | −39.7924 | + | 22.9742i | 0 | 40.2750 | − | 69.7583i | 22.6274i | 0 | −129.962 | |||||||||||||||||||||||||||||||||||
107.4 | 2.44949 | + | 1.41421i | 0 | 4.00000 | + | 6.92820i | −7.97262 | + | 4.60300i | 0 | −27.2750 | + | 47.2417i | 22.6274i | 0 | −26.0385 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 162.5.d.d | 8 | |
3.b | odd | 2 | 1 | inner | 162.5.d.d | 8 | |
9.c | even | 3 | 1 | 162.5.b.a | ✓ | 4 | |
9.c | even | 3 | 1 | inner | 162.5.d.d | 8 | |
9.d | odd | 6 | 1 | 162.5.b.a | ✓ | 4 | |
9.d | odd | 6 | 1 | inner | 162.5.d.d | 8 | |
36.f | odd | 6 | 1 | 1296.5.e.b | 4 | ||
36.h | even | 6 | 1 | 1296.5.e.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.5.b.a | ✓ | 4 | 9.c | even | 3 | 1 | |
162.5.b.a | ✓ | 4 | 9.d | odd | 6 | 1 | |
162.5.d.d | 8 | 1.a | even | 1 | 1 | trivial | |
162.5.d.d | 8 | 3.b | odd | 2 | 1 | inner | |
162.5.d.d | 8 | 9.c | even | 3 | 1 | inner | |
162.5.d.d | 8 | 9.d | odd | 6 | 1 | inner | |
1296.5.e.b | 4 | 36.f | odd | 6 | 1 | ||
1296.5.e.b | 4 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .