Properties

Label 162.5.d.d
Level 162162
Weight 55
Character orbit 162.d
Analytic conductor 16.74616.746
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,5,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 162.d (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.745934019616.7459340196
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 36 3^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β3q2+(8β1+8)q4+(5β6+22β5)q5+(13β2+13β1)q7+(16β516β3)q8+(10β478)q10+(10β710β6+59β3)q11++(1352β7++5338β3)q98+O(q100) q - 2 \beta_{3} q^{2} + ( - 8 \beta_1 + 8) q^{4} + ( - 5 \beta_{6} + 22 \beta_{5}) q^{5} + ( - 13 \beta_{2} + 13 \beta_1) q^{7} + (16 \beta_{5} - 16 \beta_{3}) q^{8} + (10 \beta_{4} - 78) q^{10} + (10 \beta_{7} - 10 \beta_{6} + 59 \beta_{3}) q^{11}+ \cdots + (1352 \beta_{7} + \cdots + 5338 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+32q4+52q7624q10572q13256q16248q19864q22+1892q25+832q283584q31+1608q3418800q372496q403020q434320q46+46304q97+O(q100) 8 q + 32 q^{4} + 52 q^{7} - 624 q^{10} - 572 q^{13} - 256 q^{16} - 248 q^{19} - 864 q^{22} + 1892 q^{25} + 832 q^{28} - 3584 q^{31} + 1608 q^{34} - 18800 q^{37} - 2496 q^{40} - 3020 q^{43} - 4320 q^{46}+ \cdots - 46304 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β2\beta_{2}== 3ζ246+3ζ242 3\zeta_{24}^{6} + 3\zeta_{24}^{2} Copy content Toggle raw display
β3\beta_{3}== ζ247+ζ24 -\zeta_{24}^{7} + \zeta_{24} Copy content Toggle raw display
β4\beta_{4}== 3ζ246+6ζ242 -3\zeta_{24}^{6} + 6\zeta_{24}^{2} Copy content Toggle raw display
β5\beta_{5}== ζ247+ζ245+ζ243 -\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} Copy content Toggle raw display
β6\beta_{6}== ζ247ζ245+2ζ243+3ζ24 \zeta_{24}^{7} - \zeta_{24}^{5} + 2\zeta_{24}^{3} + 3\zeta_{24} Copy content Toggle raw display
β7\beta_{7}== 3ζ247+2ζ245ζ243+ζ24 3\zeta_{24}^{7} + 2\zeta_{24}^{5} - \zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
ζ24\zeta_{24}== (β7+β6β5+5β3)/9 ( \beta_{7} + \beta_{6} - \beta_{5} + 5\beta_{3} ) / 9 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β4+β2)/9 ( \beta_{4} + \beta_{2} ) / 9 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (β7+2β6+4β55β3)/9 ( -\beta_{7} + 2\beta_{6} + 4\beta_{5} - 5\beta_{3} ) / 9 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β1 \beta_1 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (2β7β6+4β5+β3)/9 ( 2\beta_{7} - \beta_{6} + 4\beta_{5} + \beta_{3} ) / 9 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== (β4+2β2)/9 ( -\beta_{4} + 2\beta_{2} ) / 9 Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7+β6β54β3)/9 ( \beta_{7} + \beta_{6} - \beta_{5} - 4\beta_{3} ) / 9 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/162Z)×\left(\mathbb{Z}/162\mathbb{Z}\right)^\times.

nn 8383
χ(n)\chi(n) 1β11 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
53.1
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
−2.44949 + 1.41421i 0 4.00000 6.92820i 7.97262 + 4.60300i 0 −27.2750 47.2417i 22.6274i 0 −26.0385
53.2 −2.44949 + 1.41421i 0 4.00000 6.92820i 39.7924 + 22.9742i 0 40.2750 + 69.7583i 22.6274i 0 −129.962
53.3 2.44949 1.41421i 0 4.00000 6.92820i −39.7924 22.9742i 0 40.2750 + 69.7583i 22.6274i 0 −129.962
53.4 2.44949 1.41421i 0 4.00000 6.92820i −7.97262 4.60300i 0 −27.2750 47.2417i 22.6274i 0 −26.0385
107.1 −2.44949 1.41421i 0 4.00000 + 6.92820i 7.97262 4.60300i 0 −27.2750 + 47.2417i 22.6274i 0 −26.0385
107.2 −2.44949 1.41421i 0 4.00000 + 6.92820i 39.7924 22.9742i 0 40.2750 69.7583i 22.6274i 0 −129.962
107.3 2.44949 + 1.41421i 0 4.00000 + 6.92820i −39.7924 + 22.9742i 0 40.2750 69.7583i 22.6274i 0 −129.962
107.4 2.44949 + 1.41421i 0 4.00000 + 6.92820i −7.97262 + 4.60300i 0 −27.2750 + 47.2417i 22.6274i 0 −26.0385
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.5.d.d 8
3.b odd 2 1 inner 162.5.d.d 8
9.c even 3 1 162.5.b.a 4
9.c even 3 1 inner 162.5.d.d 8
9.d odd 6 1 162.5.b.a 4
9.d odd 6 1 inner 162.5.d.d 8
36.f odd 6 1 1296.5.e.b 4
36.h even 6 1 1296.5.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
162.5.b.a 4 9.c even 3 1
162.5.b.a 4 9.d odd 6 1
162.5.d.d 8 1.a even 1 1 trivial
162.5.d.d 8 3.b odd 2 1 inner
162.5.d.d 8 9.c even 3 1 inner
162.5.d.d 8 9.d odd 6 1 inner
1296.5.e.b 4 36.f odd 6 1
1296.5.e.b 4 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T582196T56+4643487T54392928084T52+32015587041 T_{5}^{8} - 2196T_{5}^{6} + 4643487T_{5}^{4} - 392928084T_{5}^{2} + 32015587041 acting on S5new(162,[χ])S_{5}^{\mathrm{new}}(162, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T48T2+64)2 (T^{4} - 8 T^{2} + 64)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8++32015587041 T^{8} + \cdots + 32015587041 Copy content Toggle raw display
77 (T426T3++19307236)2 (T^{4} - 26 T^{3} + \cdots + 19307236)^{2} Copy content Toggle raw display
1111 T8++403540761128976 T^{8} + \cdots + 403540761128976 Copy content Toggle raw display
1313 (T4+286T3++229734649)2 (T^{4} + 286 T^{3} + \cdots + 229734649)^{2} Copy content Toggle raw display
1717 (T4+66348T2+52229529)2 (T^{4} + 66348 T^{2} + 52229529)^{2} Copy content Toggle raw display
1919 (T2+62T48962)4 (T^{2} + 62 T - 48962)^{4} Copy content Toggle raw display
2323 T8++64 ⁣ ⁣00 T^{8} + \cdots + 64\!\cdots\!00 Copy content Toggle raw display
2929 T8++15 ⁣ ⁣01 T^{8} + \cdots + 15\!\cdots\!01 Copy content Toggle raw display
3131 (T4+1792T3++524297639056)2 (T^{4} + 1792 T^{3} + \cdots + 524297639056)^{2} Copy content Toggle raw display
3737 (T2+4700T+5522473)4 (T^{2} + 4700 T + 5522473)^{4} Copy content Toggle raw display
4141 T8++28 ⁣ ⁣16 T^{8} + \cdots + 28\!\cdots\!16 Copy content Toggle raw display
4343 (T4+1510T3++76097636164)2 (T^{4} + 1510 T^{3} + \cdots + 76097636164)^{2} Copy content Toggle raw display
4747 T8++14 ⁣ ⁣36 T^{8} + \cdots + 14\!\cdots\!36 Copy content Toggle raw display
5353 (T4+3072204T2+100670405796)2 (T^{4} + 3072204 T^{2} + 100670405796)^{2} Copy content Toggle raw display
5959 T8++48 ⁣ ⁣36 T^{8} + \cdots + 48\!\cdots\!36 Copy content Toggle raw display
6161 (T4++5076599303161)2 (T^{4} + \cdots + 5076599303161)^{2} Copy content Toggle raw display
6767 (T4++646328217156196)2 (T^{4} + \cdots + 646328217156196)^{2} Copy content Toggle raw display
7171 (T4++790866794501316)2 (T^{4} + \cdots + 790866794501316)^{2} Copy content Toggle raw display
7373 (T2+896T56958971)4 (T^{2} + 896 T - 56958971)^{4} Copy content Toggle raw display
7979 (T4++195836458128964)2 (T^{4} + \cdots + 195836458128964)^{2} Copy content Toggle raw display
8383 T8++20 ⁣ ⁣76 T^{8} + \cdots + 20\!\cdots\!76 Copy content Toggle raw display
8989 (T4++20 ⁣ ⁣09)2 (T^{4} + \cdots + 20\!\cdots\!09)^{2} Copy content Toggle raw display
9797 (T4++17 ⁣ ⁣76)2 (T^{4} + \cdots + 17\!\cdots\!76)^{2} Copy content Toggle raw display
show more
show less