Properties

Label 2-162-1.1-c5-0-13
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $25.9821$
Root an. cond. $5.09727$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s − 2.39·5-s − 51.6·7-s − 64·8-s + 9.57·10-s + 670.·11-s − 846.·13-s + 206.·14-s + 256·16-s − 1.13e3·17-s + 1.00e3·19-s − 38.3·20-s − 2.68e3·22-s + 2.40e3·23-s − 3.11e3·25-s + 3.38e3·26-s − 827.·28-s + 3.76e3·29-s + 4.03e3·31-s − 1.02e3·32-s + 4.54e3·34-s + 123.·35-s − 1.45e4·37-s − 4.00e3·38-s + 153.·40-s − 7.88e3·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.0428·5-s − 0.398·7-s − 0.353·8-s + 0.0302·10-s + 1.67·11-s − 1.38·13-s + 0.281·14-s + 0.250·16-s − 0.952·17-s + 0.637·19-s − 0.0214·20-s − 1.18·22-s + 0.946·23-s − 0.998·25-s + 0.982·26-s − 0.199·28-s + 0.832·29-s + 0.753·31-s − 0.176·32-s + 0.673·34-s + 0.0170·35-s − 1.74·37-s − 0.450·38-s + 0.0151·40-s − 0.732·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(25.9821\)
Root analytic conductor: \(5.09727\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
good5 \( 1 + 2.39T + 3.12e3T^{2} \)
7 \( 1 + 51.6T + 1.68e4T^{2} \)
11 \( 1 - 670.T + 1.61e5T^{2} \)
13 \( 1 + 846.T + 3.71e5T^{2} \)
17 \( 1 + 1.13e3T + 1.41e6T^{2} \)
19 \( 1 - 1.00e3T + 2.47e6T^{2} \)
23 \( 1 - 2.40e3T + 6.43e6T^{2} \)
29 \( 1 - 3.76e3T + 2.05e7T^{2} \)
31 \( 1 - 4.03e3T + 2.86e7T^{2} \)
37 \( 1 + 1.45e4T + 6.93e7T^{2} \)
41 \( 1 + 7.88e3T + 1.15e8T^{2} \)
43 \( 1 + 2.03e4T + 1.47e8T^{2} \)
47 \( 1 + 1.61e4T + 2.29e8T^{2} \)
53 \( 1 + 5.54e3T + 4.18e8T^{2} \)
59 \( 1 + 6.41e3T + 7.14e8T^{2} \)
61 \( 1 - 8.88e3T + 8.44e8T^{2} \)
67 \( 1 + 4.29e4T + 1.35e9T^{2} \)
71 \( 1 + 6.33e4T + 1.80e9T^{2} \)
73 \( 1 + 1.28e4T + 2.07e9T^{2} \)
79 \( 1 + 2.92e3T + 3.07e9T^{2} \)
83 \( 1 + 4.75e4T + 3.93e9T^{2} \)
89 \( 1 - 8.47e4T + 5.58e9T^{2} \)
97 \( 1 - 1.11e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.61298425393125072477097267809, −10.18230866603900699321846591041, −9.442414125922546825429919912384, −8.540636407442362719359062707768, −7.13806529114169311531517972716, −6.46618867659138973536813763792, −4.78352265788203075760844385039, −3.21747633950733596213687698259, −1.62572664444521784498626883956, 0, 1.62572664444521784498626883956, 3.21747633950733596213687698259, 4.78352265788203075760844385039, 6.46618867659138973536813763792, 7.13806529114169311531517972716, 8.540636407442362719359062707768, 9.442414125922546825429919912384, 10.18230866603900699321846591041, 11.61298425393125072477097267809

Graph of the $Z$-function along the critical line