L(s) = 1 | − 4·2-s + 16·4-s − 2.39·5-s − 51.6·7-s − 64·8-s + 9.57·10-s + 670.·11-s − 846.·13-s + 206.·14-s + 256·16-s − 1.13e3·17-s + 1.00e3·19-s − 38.3·20-s − 2.68e3·22-s + 2.40e3·23-s − 3.11e3·25-s + 3.38e3·26-s − 827.·28-s + 3.76e3·29-s + 4.03e3·31-s − 1.02e3·32-s + 4.54e3·34-s + 123.·35-s − 1.45e4·37-s − 4.00e3·38-s + 153.·40-s − 7.88e3·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.0428·5-s − 0.398·7-s − 0.353·8-s + 0.0302·10-s + 1.67·11-s − 1.38·13-s + 0.281·14-s + 0.250·16-s − 0.952·17-s + 0.637·19-s − 0.0214·20-s − 1.18·22-s + 0.946·23-s − 0.998·25-s + 0.982·26-s − 0.199·28-s + 0.832·29-s + 0.753·31-s − 0.176·32-s + 0.673·34-s + 0.0170·35-s − 1.74·37-s − 0.450·38-s + 0.0151·40-s − 0.732·41-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(162s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4T |
| 3 | 1 |
good | 5 | 1+2.39T+3.12e3T2 |
| 7 | 1+51.6T+1.68e4T2 |
| 11 | 1−670.T+1.61e5T2 |
| 13 | 1+846.T+3.71e5T2 |
| 17 | 1+1.13e3T+1.41e6T2 |
| 19 | 1−1.00e3T+2.47e6T2 |
| 23 | 1−2.40e3T+6.43e6T2 |
| 29 | 1−3.76e3T+2.05e7T2 |
| 31 | 1−4.03e3T+2.86e7T2 |
| 37 | 1+1.45e4T+6.93e7T2 |
| 41 | 1+7.88e3T+1.15e8T2 |
| 43 | 1+2.03e4T+1.47e8T2 |
| 47 | 1+1.61e4T+2.29e8T2 |
| 53 | 1+5.54e3T+4.18e8T2 |
| 59 | 1+6.41e3T+7.14e8T2 |
| 61 | 1−8.88e3T+8.44e8T2 |
| 67 | 1+4.29e4T+1.35e9T2 |
| 71 | 1+6.33e4T+1.80e9T2 |
| 73 | 1+1.28e4T+2.07e9T2 |
| 79 | 1+2.92e3T+3.07e9T2 |
| 83 | 1+4.75e4T+3.93e9T2 |
| 89 | 1−8.47e4T+5.58e9T2 |
| 97 | 1−1.11e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.61298425393125072477097267809, −10.18230866603900699321846591041, −9.442414125922546825429919912384, −8.540636407442362719359062707768, −7.13806529114169311531517972716, −6.46618867659138973536813763792, −4.78352265788203075760844385039, −3.21747633950733596213687698259, −1.62572664444521784498626883956, 0,
1.62572664444521784498626883956, 3.21747633950733596213687698259, 4.78352265788203075760844385039, 6.46618867659138973536813763792, 7.13806529114169311531517972716, 8.540636407442362719359062707768, 9.442414125922546825429919912384, 10.18230866603900699321846591041, 11.61298425393125072477097267809