Properties

Label 162.6.a.e
Level $162$
Weight $6$
Character orbit 162.a
Self dual yes
Analytic conductor $25.982$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9821788097\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 18)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (2 \beta + 27) q^{5} + (\beta - 37) q^{7} - 64 q^{8} + ( - 8 \beta - 108) q^{10} + ( - 43 \beta + 39) q^{11} + (20 \beta - 553) q^{13} + ( - 4 \beta + 148) q^{14} + 256 q^{16}+ \cdots + (296 \beta + 60888) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 54 q^{5} - 74 q^{7} - 128 q^{8} - 216 q^{10} + 78 q^{11} - 1106 q^{13} + 296 q^{14} + 512 q^{16} + 492 q^{17} - 1640 q^{19} + 864 q^{20} - 312 q^{22} + 5538 q^{23} - 3064 q^{25}+ \cdots + 121776 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
−4.00000 0 16.0000 −2.39388 0 −51.6969 −64.0000 0 9.57551
1.2 −4.00000 0 16.0000 56.3939 0 −22.3031 −64.0000 0 −225.576
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.a.e 2
3.b odd 2 1 162.6.a.f 2
9.c even 3 2 18.6.c.a 4
9.d odd 6 2 54.6.c.a 4
36.f odd 6 2 144.6.i.a 4
36.h even 6 2 432.6.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.6.c.a 4 9.c even 3 2
54.6.c.a 4 9.d odd 6 2
144.6.i.a 4 36.f odd 6 2
162.6.a.e 2 1.a even 1 1 trivial
162.6.a.f 2 3.b odd 2 1
432.6.i.a 4 36.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 54T_{5} - 135 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(162))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 54T - 135 \) Copy content Toggle raw display
$7$ \( T^{2} + 74T + 1153 \) Copy content Toggle raw display
$11$ \( T^{2} - 78T - 397863 \) Copy content Toggle raw display
$13$ \( T^{2} + 1106 T + 219409 \) Copy content Toggle raw display
$17$ \( T^{2} - 492 T - 1848060 \) Copy content Toggle raw display
$19$ \( T^{2} + 1640 T - 2648816 \) Copy content Toggle raw display
$23$ \( T^{2} - 5538 T + 7532361 \) Copy content Toggle raw display
$29$ \( T^{2} - 3894 T + 469593 \) Copy content Toggle raw display
$31$ \( T^{2} + 4718 T - 35307719 \) Copy content Toggle raw display
$37$ \( T^{2} + 4796 T - 141621212 \) Copy content Toggle raw display
$41$ \( T^{2} + 15354 T + 58893993 \) Copy content Toggle raw display
$43$ \( T^{2} + 32858 T + 254513617 \) Copy content Toggle raw display
$47$ \( T^{2} + 24954 T + 142283313 \) Copy content Toggle raw display
$53$ \( T^{2} + 16332 T + 59839812 \) Copy content Toggle raw display
$59$ \( T^{2} + 21966 T + 99734553 \) Copy content Toggle raw display
$61$ \( T^{2} + 3050 T - 105947399 \) Copy content Toggle raw display
$67$ \( T^{2} + 36758 T - 265336415 \) Copy content Toggle raw display
$71$ \( T^{2} + 73848 T + 665096112 \) Copy content Toggle raw display
$73$ \( T^{2} + 51188 T + 491562436 \) Copy content Toggle raw display
$79$ \( T^{2} - 14926 T - 52271015 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2054767617 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 7978887036 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 9106027655 \) Copy content Toggle raw display
show more
show less