Properties

Label 162.6.a.e
Level 162162
Weight 66
Character orbit 162.a
Self dual yes
Analytic conductor 25.98225.982
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(1,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 162.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 25.982178809725.9821788097
Analytic rank: 11
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x26 x^{2} - 6 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 18)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=66\beta = 6\sqrt{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4q2+16q4+(2β+27)q5+(β37)q764q8+(8β108)q10+(43β+39)q11+(20β553)q13+(4β+148)q14+256q16++(296β+60888)q98+O(q100) q - 4 q^{2} + 16 q^{4} + (2 \beta + 27) q^{5} + (\beta - 37) q^{7} - 64 q^{8} + ( - 8 \beta - 108) q^{10} + ( - 43 \beta + 39) q^{11} + (20 \beta - 553) q^{13} + ( - 4 \beta + 148) q^{14} + 256 q^{16}+ \cdots + (296 \beta + 60888) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q2+32q4+54q574q7128q8216q10+78q111106q13+296q14+512q16+492q171640q19+864q20312q22+5538q233064q25++121776q98+O(q100) 2 q - 8 q^{2} + 32 q^{4} + 54 q^{5} - 74 q^{7} - 128 q^{8} - 216 q^{10} + 78 q^{11} - 1106 q^{13} + 296 q^{14} + 512 q^{16} + 492 q^{17} - 1640 q^{19} + 864 q^{20} - 312 q^{22} + 5538 q^{23} - 3064 q^{25}+ \cdots + 121776 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.44949
2.44949
−4.00000 0 16.0000 −2.39388 0 −51.6969 −64.0000 0 9.57551
1.2 −4.00000 0 16.0000 56.3939 0 −22.3031 −64.0000 0 −225.576
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.6.a.e 2
3.b odd 2 1 162.6.a.f 2
9.c even 3 2 18.6.c.a 4
9.d odd 6 2 54.6.c.a 4
36.f odd 6 2 144.6.i.a 4
36.h even 6 2 432.6.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.6.c.a 4 9.c even 3 2
54.6.c.a 4 9.d odd 6 2
144.6.i.a 4 36.f odd 6 2
162.6.a.e 2 1.a even 1 1 trivial
162.6.a.f 2 3.b odd 2 1
432.6.i.a 4 36.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5254T5135 T_{5}^{2} - 54T_{5} - 135 acting on S6new(Γ0(162))S_{6}^{\mathrm{new}}(\Gamma_0(162)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T254T135 T^{2} - 54T - 135 Copy content Toggle raw display
77 T2+74T+1153 T^{2} + 74T + 1153 Copy content Toggle raw display
1111 T278T397863 T^{2} - 78T - 397863 Copy content Toggle raw display
1313 T2+1106T+219409 T^{2} + 1106 T + 219409 Copy content Toggle raw display
1717 T2492T1848060 T^{2} - 492 T - 1848060 Copy content Toggle raw display
1919 T2+1640T2648816 T^{2} + 1640 T - 2648816 Copy content Toggle raw display
2323 T25538T+7532361 T^{2} - 5538 T + 7532361 Copy content Toggle raw display
2929 T23894T+469593 T^{2} - 3894 T + 469593 Copy content Toggle raw display
3131 T2+4718T35307719 T^{2} + 4718 T - 35307719 Copy content Toggle raw display
3737 T2+4796T141621212 T^{2} + 4796 T - 141621212 Copy content Toggle raw display
4141 T2+15354T+58893993 T^{2} + 15354 T + 58893993 Copy content Toggle raw display
4343 T2+32858T+254513617 T^{2} + 32858 T + 254513617 Copy content Toggle raw display
4747 T2+24954T+142283313 T^{2} + 24954 T + 142283313 Copy content Toggle raw display
5353 T2+16332T+59839812 T^{2} + 16332 T + 59839812 Copy content Toggle raw display
5959 T2+21966T+99734553 T^{2} + 21966 T + 99734553 Copy content Toggle raw display
6161 T2+3050T105947399 T^{2} + 3050 T - 105947399 Copy content Toggle raw display
6767 T2+36758T265336415 T^{2} + 36758 T - 265336415 Copy content Toggle raw display
7171 T2+73848T+665096112 T^{2} + 73848 T + 665096112 Copy content Toggle raw display
7373 T2+51188T+491562436 T^{2} + 51188 T + 491562436 Copy content Toggle raw display
7979 T214926T52271015 T^{2} - 14926 T - 52271015 Copy content Toggle raw display
8383 T2++2054767617 T^{2} + \cdots + 2054767617 Copy content Toggle raw display
8989 T2+7978887036 T^{2} + \cdots - 7978887036 Copy content Toggle raw display
9797 T2+9106027655 T^{2} + \cdots - 9106027655 Copy content Toggle raw display
show more
show less