Properties

Label 18.6.c.a
Level 1818
Weight 66
Character orbit 18.c
Analytic conductor 2.8872.887
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,6,Mod(7,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.7");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 18.c (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.886908756632.88690875663
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2233 2^{2}\cdot 3^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4β1q2+(β3+6β13)q3+(16β116)q4+(2β32β2+27β127)q5+(4β2+12β124)q6+(β2+37β1)q7++(468β38361β2++111456)q99+O(q100) q + 4 \beta_1 q^{2} + (\beta_{3} + 6 \beta_1 - 3) q^{3} + (16 \beta_1 - 16) q^{4} + (2 \beta_{3} - 2 \beta_{2} + 27 \beta_1 - 27) q^{5} + (4 \beta_{2} + 12 \beta_1 - 24) q^{6} + (\beta_{2} + 37 \beta_1) q^{7}+ \cdots + (468 \beta_{3} - 8361 \beta_{2} + \cdots + 111456) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q232q454q572q6+74q7256q8+756q9432q1078q11288q12+1106q13296q14+378q15512q16+984q17+1512q183280q19++319626q99+O(q100) 4 q + 8 q^{2} - 32 q^{4} - 54 q^{5} - 72 q^{6} + 74 q^{7} - 256 q^{8} + 756 q^{9} - 432 q^{10} - 78 q^{11} - 288 q^{12} + 1106 q^{13} - 296 q^{14} + 378 q^{15} - 512 q^{16} + 984 q^{17} + 1512 q^{18} - 3280 q^{19}+ \cdots + 319626 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β2\beta_{2}== 3ν3+6ν 3\nu^{3} + 6\nu Copy content Toggle raw display
β3\beta_{3}== 3ν3+12ν -3\nu^{3} + 12\nu Copy content Toggle raw display
ν\nu== (β3+β2)/18 ( \beta_{3} + \beta_{2} ) / 18 Copy content Toggle raw display
ν2\nu^{2}== 2β1 2\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (β3+2β2)/9 ( -\beta_{3} + 2\beta_{2} ) / 9 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/18Z)×\left(\mathbb{Z}/18\mathbb{Z}\right)^\times.

nn 1111
χ(n)\chi(n) 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
7.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
2.00000 3.46410i −14.6969 5.19615i −8.00000 13.8564i −28.1969 48.8385i −47.3939 + 40.5194i 11.1515 19.3150i −64.0000 189.000 + 152.735i −225.576
7.2 2.00000 3.46410i 14.6969 5.19615i −8.00000 13.8564i 1.19694 + 2.07316i 11.3939 61.3040i 25.8485 44.7709i −64.0000 189.000 152.735i 9.57551
13.1 2.00000 + 3.46410i −14.6969 + 5.19615i −8.00000 + 13.8564i −28.1969 + 48.8385i −47.3939 40.5194i 11.1515 + 19.3150i −64.0000 189.000 152.735i −225.576
13.2 2.00000 + 3.46410i 14.6969 + 5.19615i −8.00000 + 13.8564i 1.19694 2.07316i 11.3939 + 61.3040i 25.8485 + 44.7709i −64.0000 189.000 + 152.735i 9.57551
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.6.c.a 4
3.b odd 2 1 54.6.c.a 4
4.b odd 2 1 144.6.i.a 4
9.c even 3 1 inner 18.6.c.a 4
9.c even 3 1 162.6.a.e 2
9.d odd 6 1 54.6.c.a 4
9.d odd 6 1 162.6.a.f 2
12.b even 2 1 432.6.i.a 4
36.f odd 6 1 144.6.i.a 4
36.h even 6 1 432.6.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.6.c.a 4 1.a even 1 1 trivial
18.6.c.a 4 9.c even 3 1 inner
54.6.c.a 4 3.b odd 2 1
54.6.c.a 4 9.d odd 6 1
144.6.i.a 4 4.b odd 2 1
144.6.i.a 4 36.f odd 6 1
162.6.a.e 2 9.c even 3 1
162.6.a.f 2 9.d odd 6 1
432.6.i.a 4 12.b even 2 1
432.6.i.a 4 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+54T53+3051T527290T5+18225 T_{5}^{4} + 54T_{5}^{3} + 3051T_{5}^{2} - 7290T_{5} + 18225 acting on S6new(18,[χ])S_{6}^{\mathrm{new}}(18, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
33 T4378T2+59049 T^{4} - 378 T^{2} + 59049 Copy content Toggle raw display
55 T4+54T3++18225 T^{4} + 54 T^{3} + \cdots + 18225 Copy content Toggle raw display
77 T474T3++1329409 T^{4} - 74 T^{3} + \cdots + 1329409 Copy content Toggle raw display
1111 T4++158294966769 T^{4} + \cdots + 158294966769 Copy content Toggle raw display
1313 T4++48140309281 T^{4} + \cdots + 48140309281 Copy content Toggle raw display
1717 (T2492T1848060)2 (T^{2} - 492 T - 1848060)^{2} Copy content Toggle raw display
1919 (T2+1640T2648816)2 (T^{2} + 1640 T - 2648816)^{2} Copy content Toggle raw display
2323 T4++56736462234321 T^{4} + \cdots + 56736462234321 Copy content Toggle raw display
2929 T4++220517585649 T^{4} + \cdots + 220517585649 Copy content Toggle raw display
3131 T4++12 ⁣ ⁣61 T^{4} + \cdots + 12\!\cdots\!61 Copy content Toggle raw display
3737 (T2+4796T141621212)2 (T^{2} + 4796 T - 141621212)^{2} Copy content Toggle raw display
4141 T4++34 ⁣ ⁣49 T^{4} + \cdots + 34\!\cdots\!49 Copy content Toggle raw display
4343 T4++64 ⁣ ⁣89 T^{4} + \cdots + 64\!\cdots\!89 Copy content Toggle raw display
4747 T4++20 ⁣ ⁣69 T^{4} + \cdots + 20\!\cdots\!69 Copy content Toggle raw display
5353 (T2+16332T+59839812)2 (T^{2} + 16332 T + 59839812)^{2} Copy content Toggle raw display
5959 T4++99 ⁣ ⁣09 T^{4} + \cdots + 99\!\cdots\!09 Copy content Toggle raw display
6161 T4++11 ⁣ ⁣01 T^{4} + \cdots + 11\!\cdots\!01 Copy content Toggle raw display
6767 T4++70 ⁣ ⁣25 T^{4} + \cdots + 70\!\cdots\!25 Copy content Toggle raw display
7171 (T2+73848T+665096112)2 (T^{2} + 73848 T + 665096112)^{2} Copy content Toggle raw display
7373 (T2+51188T+491562436)2 (T^{2} + 51188 T + 491562436)^{2} Copy content Toggle raw display
7979 T4++27 ⁣ ⁣25 T^{4} + \cdots + 27\!\cdots\!25 Copy content Toggle raw display
8383 T4++42 ⁣ ⁣89 T^{4} + \cdots + 42\!\cdots\!89 Copy content Toggle raw display
8989 (T2+9300T7978887036)2 (T^{2} + 9300 T - 7978887036)^{2} Copy content Toggle raw display
9797 T4++82 ⁣ ⁣25 T^{4} + \cdots + 82\!\cdots\!25 Copy content Toggle raw display
show more
show less