Properties

Label 18.6.c.a
Level $18$
Weight $6$
Character orbit 18.c
Analytic conductor $2.887$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,6,Mod(7,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.7");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 18.c (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.88690875663\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_1 q^{2} + (\beta_{3} + 6 \beta_1 - 3) q^{3} + (16 \beta_1 - 16) q^{4} + (2 \beta_{3} - 2 \beta_{2} + 27 \beta_1 - 27) q^{5} + (4 \beta_{2} + 12 \beta_1 - 24) q^{6} + (\beta_{2} + 37 \beta_1) q^{7}+ \cdots + (468 \beta_{3} - 8361 \beta_{2} + \cdots + 111456) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} - 32 q^{4} - 54 q^{5} - 72 q^{6} + 74 q^{7} - 256 q^{8} + 756 q^{9} - 432 q^{10} - 78 q^{11} - 288 q^{12} + 1106 q^{13} - 296 q^{14} + 378 q^{15} - 512 q^{16} + 984 q^{17} + 1512 q^{18} - 3280 q^{19}+ \cdots + 319626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\nu^{3} + 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -3\nu^{3} + 12\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
2.00000 3.46410i −14.6969 5.19615i −8.00000 13.8564i −28.1969 48.8385i −47.3939 + 40.5194i 11.1515 19.3150i −64.0000 189.000 + 152.735i −225.576
7.2 2.00000 3.46410i 14.6969 5.19615i −8.00000 13.8564i 1.19694 + 2.07316i 11.3939 61.3040i 25.8485 44.7709i −64.0000 189.000 152.735i 9.57551
13.1 2.00000 + 3.46410i −14.6969 + 5.19615i −8.00000 + 13.8564i −28.1969 + 48.8385i −47.3939 40.5194i 11.1515 + 19.3150i −64.0000 189.000 152.735i −225.576
13.2 2.00000 + 3.46410i 14.6969 + 5.19615i −8.00000 + 13.8564i 1.19694 2.07316i 11.3939 + 61.3040i 25.8485 + 44.7709i −64.0000 189.000 + 152.735i 9.57551
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.6.c.a 4
3.b odd 2 1 54.6.c.a 4
4.b odd 2 1 144.6.i.a 4
9.c even 3 1 inner 18.6.c.a 4
9.c even 3 1 162.6.a.e 2
9.d odd 6 1 54.6.c.a 4
9.d odd 6 1 162.6.a.f 2
12.b even 2 1 432.6.i.a 4
36.f odd 6 1 144.6.i.a 4
36.h even 6 1 432.6.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.6.c.a 4 1.a even 1 1 trivial
18.6.c.a 4 9.c even 3 1 inner
54.6.c.a 4 3.b odd 2 1
54.6.c.a 4 9.d odd 6 1
144.6.i.a 4 4.b odd 2 1
144.6.i.a 4 36.f odd 6 1
162.6.a.e 2 9.c even 3 1
162.6.a.f 2 9.d odd 6 1
432.6.i.a 4 12.b even 2 1
432.6.i.a 4 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 54T_{5}^{3} + 3051T_{5}^{2} - 7290T_{5} + 18225 \) acting on \(S_{6}^{\mathrm{new}}(18, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 378 T^{2} + 59049 \) Copy content Toggle raw display
$5$ \( T^{4} + 54 T^{3} + \cdots + 18225 \) Copy content Toggle raw display
$7$ \( T^{4} - 74 T^{3} + \cdots + 1329409 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 158294966769 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 48140309281 \) Copy content Toggle raw display
$17$ \( (T^{2} - 492 T - 1848060)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1640 T - 2648816)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 56736462234321 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 220517585649 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 12\!\cdots\!61 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4796 T - 141621212)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 34\!\cdots\!49 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 64\!\cdots\!89 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 20\!\cdots\!69 \) Copy content Toggle raw display
$53$ \( (T^{2} + 16332 T + 59839812)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 99\!\cdots\!09 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 11\!\cdots\!01 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 70\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( (T^{2} + 73848 T + 665096112)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 51188 T + 491562436)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 27\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 42\!\cdots\!89 \) Copy content Toggle raw display
$89$ \( (T^{2} + 9300 T - 7978887036)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 82\!\cdots\!25 \) Copy content Toggle raw display
show more
show less