Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [18,6,Mod(7,18)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("18.7");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 18.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
2.00000 | − | 3.46410i | −14.6969 | − | 5.19615i | −8.00000 | − | 13.8564i | −28.1969 | − | 48.8385i | −47.3939 | + | 40.5194i | 11.1515 | − | 19.3150i | −64.0000 | 189.000 | + | 152.735i | −225.576 | ||||||||||||||||
7.2 | 2.00000 | − | 3.46410i | 14.6969 | − | 5.19615i | −8.00000 | − | 13.8564i | 1.19694 | + | 2.07316i | 11.3939 | − | 61.3040i | 25.8485 | − | 44.7709i | −64.0000 | 189.000 | − | 152.735i | 9.57551 | |||||||||||||||||
13.1 | 2.00000 | + | 3.46410i | −14.6969 | + | 5.19615i | −8.00000 | + | 13.8564i | −28.1969 | + | 48.8385i | −47.3939 | − | 40.5194i | 11.1515 | + | 19.3150i | −64.0000 | 189.000 | − | 152.735i | −225.576 | |||||||||||||||||
13.2 | 2.00000 | + | 3.46410i | 14.6969 | + | 5.19615i | −8.00000 | + | 13.8564i | 1.19694 | − | 2.07316i | 11.3939 | + | 61.3040i | 25.8485 | + | 44.7709i | −64.0000 | 189.000 | + | 152.735i | 9.57551 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 18.6.c.a | ✓ | 4 |
3.b | odd | 2 | 1 | 54.6.c.a | 4 | ||
4.b | odd | 2 | 1 | 144.6.i.a | 4 | ||
9.c | even | 3 | 1 | inner | 18.6.c.a | ✓ | 4 |
9.c | even | 3 | 1 | 162.6.a.e | 2 | ||
9.d | odd | 6 | 1 | 54.6.c.a | 4 | ||
9.d | odd | 6 | 1 | 162.6.a.f | 2 | ||
12.b | even | 2 | 1 | 432.6.i.a | 4 | ||
36.f | odd | 6 | 1 | 144.6.i.a | 4 | ||
36.h | even | 6 | 1 | 432.6.i.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.6.c.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
18.6.c.a | ✓ | 4 | 9.c | even | 3 | 1 | inner |
54.6.c.a | 4 | 3.b | odd | 2 | 1 | ||
54.6.c.a | 4 | 9.d | odd | 6 | 1 | ||
144.6.i.a | 4 | 4.b | odd | 2 | 1 | ||
144.6.i.a | 4 | 36.f | odd | 6 | 1 | ||
162.6.a.e | 2 | 9.c | even | 3 | 1 | ||
162.6.a.f | 2 | 9.d | odd | 6 | 1 | ||
432.6.i.a | 4 | 12.b | even | 2 | 1 | ||
432.6.i.a | 4 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .