L(s) = 1 | + (2 + 3.46i)2-s + (−14.6 + 5.19i)3-s + (−7.99 + 13.8i)4-s + (−28.1 + 48.8i)5-s + (−47.3 − 40.5i)6-s + (11.1 + 19.3i)7-s − 63.9·8-s + (189 − 152. i)9-s − 225.·10-s + (296. + 513. i)11-s + (45.5 − 245. i)12-s + (129. − 224. i)13-s + (−44.6 + 77.2i)14-s + (160. − 864. i)15-s + (−128 − 221. i)16-s + 1.62e3·17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.942 + 0.333i)3-s + (−0.249 + 0.433i)4-s + (−0.504 + 0.873i)5-s + (−0.537 − 0.459i)6-s + (0.0860 + 0.148i)7-s − 0.353·8-s + (0.777 − 0.628i)9-s − 0.713·10-s + (0.738 + 1.27i)11-s + (0.0913 − 0.491i)12-s + (0.212 − 0.368i)13-s + (−0.0608 + 0.105i)14-s + (0.184 − 0.991i)15-s + (−0.125 − 0.216i)16-s + 1.36·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.754−0.656i)Λ(6−s)
Λ(s)=(=(18s/2ΓC(s+5/2)L(s)(−0.754−0.656i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.754−0.656i
|
Analytic conductor: |
2.88690 |
Root analytic conductor: |
1.69909 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :5/2), −0.754−0.656i)
|
Particular Values
L(3) |
≈ |
0.358642+0.957765i |
L(21) |
≈ |
0.358642+0.957765i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2−3.46i)T |
| 3 | 1+(14.6−5.19i)T |
good | 5 | 1+(28.1−48.8i)T+(−1.56e3−2.70e3i)T2 |
| 7 | 1+(−11.1−19.3i)T+(−8.40e3+1.45e4i)T2 |
| 11 | 1+(−296.−513.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+(−129.+224.i)T+(−1.85e5−3.21e5i)T2 |
| 17 | 1−1.62e3T+1.41e6T2 |
| 19 | 1+2.64e3T+2.47e6T2 |
| 23 | 1+(1.56e3−2.71e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+(62.2+107.i)T+(−1.02e7+1.77e7i)T2 |
| 31 | 1+(−4.37e3+7.57e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1−9.74e3T+6.93e7T2 |
| 41 | 1+(−3.73e3+6.47e3i)T+(−5.79e7−1.00e8i)T2 |
| 43 | 1+(−6.25e3−1.08e4i)T+(−7.35e7+1.27e8i)T2 |
| 47 | 1+(−4.40e3−7.63e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+1.07e4T+4.18e8T2 |
| 59 | 1+(−7.77e3+1.34e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−5.96e3−1.03e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(3.08e3−5.35e3i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+1.04e4T+1.80e9T2 |
| 73 | 1+3.83e4T+2.07e9T2 |
| 79 | 1+(8.92e3+1.54e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+(−2.16e4−3.74e4i)T+(−1.96e9+3.41e9i)T2 |
| 89 | 1+9.40e4T+5.58e9T2 |
| 97 | 1+(−4.07e4−7.05e4i)T+(−4.29e9+7.43e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.80723027863276360141257158981, −16.85083147702780095971127397093, −15.37356826798086773340906034448, −14.71215661462253925266403506559, −12.62411716956373630162670812521, −11.45150232959813451227415718304, −9.893578548057804709635961400549, −7.48744271895944263411487098725, −6.08349614267157565472955749215, −4.13378035640076703048240740136,
0.874351368839317877182743688301, 4.34834546863170708381835743615, 6.13022856964328002006875292662, 8.486321866727081155140317189704, 10.57559409097599858330115099374, 11.83865182996358570874042275611, 12.69221572029100091838100060267, 14.18963639247044396136160532301, 16.21422977660534182139442444076, 16.98047680108832992097513354983