Properties

Label 2-18-9.4-c5-0-0
Degree $2$
Conductor $18$
Sign $-0.754 - 0.656i$
Analytic cond. $2.88690$
Root an. cond. $1.69909$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2 + 3.46i)2-s + (−14.6 + 5.19i)3-s + (−7.99 + 13.8i)4-s + (−28.1 + 48.8i)5-s + (−47.3 − 40.5i)6-s + (11.1 + 19.3i)7-s − 63.9·8-s + (189 − 152. i)9-s − 225.·10-s + (296. + 513. i)11-s + (45.5 − 245. i)12-s + (129. − 224. i)13-s + (−44.6 + 77.2i)14-s + (160. − 864. i)15-s + (−128 − 221. i)16-s + 1.62e3·17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.942 + 0.333i)3-s + (−0.249 + 0.433i)4-s + (−0.504 + 0.873i)5-s + (−0.537 − 0.459i)6-s + (0.0860 + 0.148i)7-s − 0.353·8-s + (0.777 − 0.628i)9-s − 0.713·10-s + (0.738 + 1.27i)11-s + (0.0913 − 0.491i)12-s + (0.212 − 0.368i)13-s + (−0.0608 + 0.105i)14-s + (0.184 − 0.991i)15-s + (−0.125 − 0.216i)16-s + 1.36·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.754 - 0.656i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.754 - 0.656i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.754 - 0.656i$
Analytic conductor: \(2.88690\)
Root analytic conductor: \(1.69909\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :5/2),\ -0.754 - 0.656i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.358642 + 0.957765i\)
\(L(\frac12)\) \(\approx\) \(0.358642 + 0.957765i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-2 - 3.46i)T \)
3 \( 1 + (14.6 - 5.19i)T \)
good5 \( 1 + (28.1 - 48.8i)T + (-1.56e3 - 2.70e3i)T^{2} \)
7 \( 1 + (-11.1 - 19.3i)T + (-8.40e3 + 1.45e4i)T^{2} \)
11 \( 1 + (-296. - 513. i)T + (-8.05e4 + 1.39e5i)T^{2} \)
13 \( 1 + (-129. + 224. i)T + (-1.85e5 - 3.21e5i)T^{2} \)
17 \( 1 - 1.62e3T + 1.41e6T^{2} \)
19 \( 1 + 2.64e3T + 2.47e6T^{2} \)
23 \( 1 + (1.56e3 - 2.71e3i)T + (-3.21e6 - 5.57e6i)T^{2} \)
29 \( 1 + (62.2 + 107. i)T + (-1.02e7 + 1.77e7i)T^{2} \)
31 \( 1 + (-4.37e3 + 7.57e3i)T + (-1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 - 9.74e3T + 6.93e7T^{2} \)
41 \( 1 + (-3.73e3 + 6.47e3i)T + (-5.79e7 - 1.00e8i)T^{2} \)
43 \( 1 + (-6.25e3 - 1.08e4i)T + (-7.35e7 + 1.27e8i)T^{2} \)
47 \( 1 + (-4.40e3 - 7.63e3i)T + (-1.14e8 + 1.98e8i)T^{2} \)
53 \( 1 + 1.07e4T + 4.18e8T^{2} \)
59 \( 1 + (-7.77e3 + 1.34e4i)T + (-3.57e8 - 6.19e8i)T^{2} \)
61 \( 1 + (-5.96e3 - 1.03e4i)T + (-4.22e8 + 7.31e8i)T^{2} \)
67 \( 1 + (3.08e3 - 5.35e3i)T + (-6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 + 1.04e4T + 1.80e9T^{2} \)
73 \( 1 + 3.83e4T + 2.07e9T^{2} \)
79 \( 1 + (8.92e3 + 1.54e4i)T + (-1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + (-2.16e4 - 3.74e4i)T + (-1.96e9 + 3.41e9i)T^{2} \)
89 \( 1 + 9.40e4T + 5.58e9T^{2} \)
97 \( 1 + (-4.07e4 - 7.05e4i)T + (-4.29e9 + 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.80723027863276360141257158981, −16.85083147702780095971127397093, −15.37356826798086773340906034448, −14.71215661462253925266403506559, −12.62411716956373630162670812521, −11.45150232959813451227415718304, −9.893578548057804709635961400549, −7.48744271895944263411487098725, −6.08349614267157565472955749215, −4.13378035640076703048240740136, 0.874351368839317877182743688301, 4.34834546863170708381835743615, 6.13022856964328002006875292662, 8.486321866727081155140317189704, 10.57559409097599858330115099374, 11.83865182996358570874042275611, 12.69221572029100091838100060267, 14.18963639247044396136160532301, 16.21422977660534182139442444076, 16.98047680108832992097513354983

Graph of the $Z$-function along the critical line