L(s) = 1 | + (−2.5 − 4.33i)5-s + (−11.3 + 19.5i)7-s + (5.48 − 9.50i)11-s + (37.9 + 65.6i)13-s − 15.9·17-s + 58.8·19-s + (−28.3 − 49.0i)23-s + (−12.5 + 21.6i)25-s + (−2.80 + 4.86i)29-s + (60.3 + 104. i)31-s + 113.·35-s + 236.·37-s + (−98.0 − 169. i)41-s + (−9.09 + 15.7i)43-s + (−155. + 270. i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.610 + 1.05i)7-s + (0.150 − 0.260i)11-s + (0.808 + 1.40i)13-s − 0.227·17-s + 0.710·19-s + (−0.256 − 0.444i)23-s + (−0.100 + 0.173i)25-s + (−0.0179 + 0.0311i)29-s + (0.349 + 0.605i)31-s + 0.546·35-s + 1.04·37-s + (−0.373 − 0.647i)41-s + (−0.0322 + 0.0558i)43-s + (−0.483 + 0.838i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.071309694\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.071309694\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
good | 7 | \( 1 + (11.3 - 19.5i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-5.48 + 9.50i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-37.9 - 65.6i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 15.9T + 4.91e3T^{2} \) |
| 19 | \( 1 - 58.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + (28.3 + 49.0i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (2.80 - 4.86i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-60.3 - 104. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 236.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (98.0 + 169. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (9.09 - 15.7i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (155. - 270. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 33.3T + 1.48e5T^{2} \) |
| 59 | \( 1 + (260. + 451. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-75.1 + 130. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (253. + 438. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 961.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 251.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (417. - 722. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (345. - 598. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.00e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (642. - 1.11e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.207636112411087743972495632279, −8.715721947607096883102270565926, −7.904879381912537539958506740624, −6.70977277628900024237777444623, −6.21577575414845140683503603751, −5.28058387724147035095702971681, −4.31663946479509068026272547726, −3.39858832375687694422553744538, −2.34326440294617030359863329646, −1.20316334822528967394845319659,
0.25984707521403966053905458945, 1.24769914146808889867007860958, 2.82908572314313599213347925021, 3.56206085598588991731149537214, 4.35368256992059494133438665970, 5.56856064245986030874901804803, 6.33264718740796266837256038499, 7.21665043314003426501084571143, 7.78754962661797053564475840894, 8.626551080591181642046947264208