L(s) = 1 | + (−2.5 − 4.33i)5-s + (−11.3 + 19.5i)7-s + (5.48 − 9.50i)11-s + (37.9 + 65.6i)13-s − 15.9·17-s + 58.8·19-s + (−28.3 − 49.0i)23-s + (−12.5 + 21.6i)25-s + (−2.80 + 4.86i)29-s + (60.3 + 104. i)31-s + 113.·35-s + 236.·37-s + (−98.0 − 169. i)41-s + (−9.09 + 15.7i)43-s + (−155. + 270. i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.610 + 1.05i)7-s + (0.150 − 0.260i)11-s + (0.808 + 1.40i)13-s − 0.227·17-s + 0.710·19-s + (−0.256 − 0.444i)23-s + (−0.100 + 0.173i)25-s + (−0.0179 + 0.0311i)29-s + (0.349 + 0.605i)31-s + 0.546·35-s + 1.04·37-s + (−0.373 − 0.647i)41-s + (−0.0322 + 0.0558i)43-s + (−0.483 + 0.838i)47-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.766−0.642i)Λ(4−s)
Λ(s)=(=(1620s/2ΓC(s+3/2)L(s)(−0.766−0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.766−0.642i
|
Analytic conductor: |
95.5830 |
Root analytic conductor: |
9.77666 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(541,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :3/2), −0.766−0.642i)
|
Particular Values
L(2) |
≈ |
1.071309694 |
L(21) |
≈ |
1.071309694 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(2.5+4.33i)T |
good | 7 | 1+(11.3−19.5i)T+(−171.5−297.i)T2 |
| 11 | 1+(−5.48+9.50i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(−37.9−65.6i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+15.9T+4.91e3T2 |
| 19 | 1−58.8T+6.85e3T2 |
| 23 | 1+(28.3+49.0i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(2.80−4.86i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(−60.3−104.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1−236.T+5.06e4T2 |
| 41 | 1+(98.0+169.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(9.09−15.7i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(155.−270.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−33.3T+1.48e5T2 |
| 59 | 1+(260.+451.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−75.1+130.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(253.+438.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−961.T+3.57e5T2 |
| 73 | 1+251.T+3.89e5T2 |
| 79 | 1+(417.−722.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(345.−598.i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+1.00e3T+7.04e5T2 |
| 97 | 1+(642.−1.11e3i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.207636112411087743972495632279, −8.715721947607096883102270565926, −7.904879381912537539958506740624, −6.70977277628900024237777444623, −6.21577575414845140683503603751, −5.28058387724147035095702971681, −4.31663946479509068026272547726, −3.39858832375687694422553744538, −2.34326440294617030359863329646, −1.20316334822528967394845319659,
0.25984707521403966053905458945, 1.24769914146808889867007860958, 2.82908572314313599213347925021, 3.56206085598588991731149537214, 4.35368256992059494133438665970, 5.56856064245986030874901804803, 6.33264718740796266837256038499, 7.21665043314003426501084571143, 7.78754962661797053564475840894, 8.626551080591181642046947264208