L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−1 − 1.73i)5-s + (−2.5 − 0.866i)7-s + 0.999·8-s + (−0.999 + 1.73i)10-s + (1.5 − 2.59i)11-s − 13-s + (0.500 + 2.59i)14-s + (−0.5 − 0.866i)16-s + (2.5 − 4.33i)17-s + (−0.5 − 0.866i)19-s + 1.99·20-s − 3·22-s + (0.500 − 0.866i)25-s + (0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.447 − 0.774i)5-s + (−0.944 − 0.327i)7-s + 0.353·8-s + (−0.316 + 0.547i)10-s + (0.452 − 0.783i)11-s − 0.277·13-s + (0.133 + 0.694i)14-s + (−0.125 − 0.216i)16-s + (0.606 − 1.05i)17-s + (−0.114 − 0.198i)19-s + 0.447·20-s − 0.639·22-s + (0.100 − 0.173i)25-s + (0.0980 + 0.169i)26-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(−0.605−0.795i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(−0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
−0.605−0.795i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(235,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), −0.605−0.795i)
|
Particular Values
L(1) |
≈ |
0.3519825429 |
L(21) |
≈ |
0.3519825429 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(2.5+0.866i)T |
| 13 | 1+T |
good | 5 | 1+(1+1.73i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−1.5+2.59i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.5+4.33i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.5+0.866i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1−T+29T2 |
| 31 | 1+(2−3.46i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+10T+41T2 |
| 43 | 1+10T+43T2 |
| 47 | 1+(0.5+0.866i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.5+2.59i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.5−4.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.5−4.33i)T+(−33.5−58.0i)T2 |
| 71 | 1−T+71T2 |
| 73 | 1+(6−10.3i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3−5.19i)T+(−39.5+68.4i)T2 |
| 83 | 1+16T+83T2 |
| 89 | 1+(7+12.1i)T+(−44.5+77.0i)T2 |
| 97 | 1−4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.807796729808393443257251890951, −8.422914580404262706192026121184, −7.31988821201935264494538366897, −6.62591983017440734858880239501, −5.43841329984929617584811183333, −4.54349973780420823816767985945, −3.55717248041186480767429172934, −2.86002270774807233345622454742, −1.22598226868610572368503868820, −0.16674946465191759335621931487,
1.79578229148379102515830178648, 3.16616201891322676865941832381, 3.94444374604613115678851810630, 5.13708092626654107699565717982, 6.14422389392412965132372362609, 6.73559753646165973976409876730, 7.39737822914420692905312622843, 8.228579190416011302502578097491, 9.081777044823750947308039423967, 9.938101877606767922038269098005