Properties

Label 1638.2.j.a.235.1
Level $1638$
Weight $2$
Character 1638.235
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1638.235
Dual form 1638.2.j.a.1171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{5} +(-2.50000 - 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 + 1.73205i) q^{10} +(1.50000 - 2.59808i) q^{11} -1.00000 q^{13} +(0.500000 + 2.59808i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.50000 - 4.33013i) q^{17} +(-0.500000 - 0.866025i) q^{19} +2.00000 q^{20} -3.00000 q^{22} +(0.500000 - 0.866025i) q^{25} +(0.500000 + 0.866025i) q^{26} +(2.00000 - 1.73205i) q^{28} +1.00000 q^{29} +(-2.00000 + 3.46410i) q^{31} +(-0.500000 + 0.866025i) q^{32} -5.00000 q^{34} +(1.00000 + 5.19615i) q^{35} +(1.00000 + 1.73205i) q^{37} +(-0.500000 + 0.866025i) q^{38} +(-1.00000 - 1.73205i) q^{40} -10.0000 q^{41} -10.0000 q^{43} +(1.50000 + 2.59808i) q^{44} +(-0.500000 - 0.866025i) q^{47} +(5.50000 + 4.33013i) q^{49} -1.00000 q^{50} +(0.500000 - 0.866025i) q^{52} +(-1.50000 + 2.59808i) q^{53} -6.00000 q^{55} +(-2.50000 - 0.866025i) q^{56} +(-0.500000 - 0.866025i) q^{58} +(1.50000 - 2.59808i) q^{59} +(2.50000 + 4.33013i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(1.00000 + 1.73205i) q^{65} +(-2.50000 + 4.33013i) q^{67} +(2.50000 + 4.33013i) q^{68} +(4.00000 - 3.46410i) q^{70} +1.00000 q^{71} +(-6.00000 + 10.3923i) q^{73} +(1.00000 - 1.73205i) q^{74} +1.00000 q^{76} +(-6.00000 + 5.19615i) q^{77} +(3.00000 + 5.19615i) q^{79} +(-1.00000 + 1.73205i) q^{80} +(5.00000 + 8.66025i) q^{82} -16.0000 q^{83} -10.0000 q^{85} +(5.00000 + 8.66025i) q^{86} +(1.50000 - 2.59808i) q^{88} +(-7.00000 - 12.1244i) q^{89} +(2.50000 + 0.866025i) q^{91} +(-0.500000 + 0.866025i) q^{94} +(-1.00000 + 1.73205i) q^{95} +4.00000 q^{97} +(1.00000 - 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 2 q^{5} - 5 q^{7} + 2 q^{8} - 2 q^{10} + 3 q^{11} - 2 q^{13} + q^{14} - q^{16} + 5 q^{17} - q^{19} + 4 q^{20} - 6 q^{22} + q^{25} + q^{26} + 4 q^{28} + 2 q^{29} - 4 q^{31} - q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i \(-0.314250\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 + 1.73205i −0.316228 + 0.547723i
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0.500000 + 2.59808i 0.133631 + 0.694365i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.50000 4.33013i 0.606339 1.05021i −0.385499 0.922708i \(-0.625971\pi\)
0.991838 0.127502i \(-0.0406959\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0.500000 + 0.866025i 0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 2.00000 1.73205i 0.377964 0.327327i
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) 1.00000 + 5.19615i 0.169031 + 0.878310i
\(36\) 0 0
\(37\) 1.00000 + 1.73205i 0.164399 + 0.284747i 0.936442 0.350823i \(-0.114098\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 0 0
\(40\) −1.00000 1.73205i −0.158114 0.273861i
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 1.50000 + 2.59808i 0.226134 + 0.391675i
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 0.866025i −0.0729325 0.126323i 0.827253 0.561830i \(-0.189902\pi\)
−0.900185 + 0.435507i \(0.856569\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0.500000 0.866025i 0.0693375 0.120096i
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −2.50000 0.866025i −0.334077 0.115728i
\(57\) 0 0
\(58\) −0.500000 0.866025i −0.0656532 0.113715i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) −2.50000 + 4.33013i −0.305424 + 0.529009i −0.977356 0.211604i \(-0.932131\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 2.50000 + 4.33013i 0.303170 + 0.525105i
\(69\) 0 0
\(70\) 4.00000 3.46410i 0.478091 0.414039i
\(71\) 1.00000 0.118678 0.0593391 0.998238i \(-0.481101\pi\)
0.0593391 + 0.998238i \(0.481101\pi\)
\(72\) 0 0
\(73\) −6.00000 + 10.3923i −0.702247 + 1.21633i 0.265429 + 0.964130i \(0.414486\pi\)
−0.967676 + 0.252197i \(0.918847\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −6.00000 + 5.19615i −0.683763 + 0.592157i
\(78\) 0 0
\(79\) 3.00000 + 5.19615i 0.337526 + 0.584613i 0.983967 0.178352i \(-0.0570765\pi\)
−0.646440 + 0.762964i \(0.723743\pi\)
\(80\) −1.00000 + 1.73205i −0.111803 + 0.193649i
\(81\) 0 0
\(82\) 5.00000 + 8.66025i 0.552158 + 0.956365i
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) −10.0000 −1.08465
\(86\) 5.00000 + 8.66025i 0.539164 + 0.933859i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) −7.00000 12.1244i −0.741999 1.28518i −0.951584 0.307389i \(-0.900545\pi\)
0.209585 0.977790i \(-0.432789\pi\)
\(90\) 0 0
\(91\) 2.50000 + 0.866025i 0.262071 + 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) −0.500000 + 0.866025i −0.0515711 + 0.0893237i
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 1.00000 6.92820i 0.101015 0.699854i
\(99\) 0 0
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 1.00000 1.73205i 0.0995037 0.172345i −0.811976 0.583691i \(-0.801608\pi\)
0.911479 + 0.411346i \(0.134941\pi\)
\(102\) 0 0
\(103\) 1.00000 + 1.73205i 0.0985329 + 0.170664i 0.911078 0.412235i \(-0.135252\pi\)
−0.812545 + 0.582899i \(0.801918\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 6.00000 + 10.3923i 0.580042 + 1.00466i 0.995474 + 0.0950377i \(0.0302972\pi\)
−0.415432 + 0.909624i \(0.636370\pi\)
\(108\) 0 0
\(109\) 8.00000 13.8564i 0.766261 1.32720i −0.173316 0.984866i \(-0.555448\pi\)
0.939577 0.342337i \(-0.111218\pi\)
\(110\) 3.00000 + 5.19615i 0.286039 + 0.495434i
\(111\) 0 0
\(112\) 0.500000 + 2.59808i 0.0472456 + 0.245495i
\(113\) −15.0000 −1.41108 −0.705541 0.708669i \(-0.749296\pi\)
−0.705541 + 0.708669i \(0.749296\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) 0 0
\(118\) −3.00000 −0.276172
\(119\) −10.0000 + 8.66025i −0.916698 + 0.793884i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 2.50000 4.33013i 0.226339 0.392031i
\(123\) 0 0
\(124\) −2.00000 3.46410i −0.179605 0.311086i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.00000 1.73205i 0.0877058 0.151911i
\(131\) −2.00000 3.46410i −0.174741 0.302660i 0.765331 0.643637i \(-0.222575\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(132\) 0 0
\(133\) 0.500000 + 2.59808i 0.0433555 + 0.225282i
\(134\) 5.00000 0.431934
\(135\) 0 0
\(136\) 2.50000 4.33013i 0.214373 0.371305i
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) −5.00000 1.73205i −0.422577 0.146385i
\(141\) 0 0
\(142\) −0.500000 0.866025i −0.0419591 0.0726752i
\(143\) −1.50000 + 2.59808i −0.125436 + 0.217262i
\(144\) 0 0
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 12.0000 0.993127
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 4.00000 + 6.92820i 0.327693 + 0.567581i 0.982054 0.188602i \(-0.0603956\pi\)
−0.654361 + 0.756182i \(0.727062\pi\)
\(150\) 0 0
\(151\) −9.50000 + 16.4545i −0.773099 + 1.33905i 0.162758 + 0.986666i \(0.447961\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) −0.500000 0.866025i −0.0405554 0.0702439i
\(153\) 0 0
\(154\) 7.50000 + 2.59808i 0.604367 + 0.209359i
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −10.5000 + 18.1865i −0.837991 + 1.45144i 0.0535803 + 0.998564i \(0.482937\pi\)
−0.891572 + 0.452880i \(0.850397\pi\)
\(158\) 3.00000 5.19615i 0.238667 0.413384i
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) −9.50000 16.4545i −0.744097 1.28881i −0.950615 0.310372i \(-0.899546\pi\)
0.206518 0.978443i \(-0.433787\pi\)
\(164\) 5.00000 8.66025i 0.390434 0.676252i
\(165\) 0 0
\(166\) 8.00000 + 13.8564i 0.620920 + 1.07547i
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 5.00000 + 8.66025i 0.383482 + 0.664211i
\(171\) 0 0
\(172\) 5.00000 8.66025i 0.381246 0.660338i
\(173\) 1.50000 + 2.59808i 0.114043 + 0.197528i 0.917397 0.397974i \(-0.130287\pi\)
−0.803354 + 0.595502i \(0.796953\pi\)
\(174\) 0 0
\(175\) −2.00000 + 1.73205i −0.151186 + 0.130931i
\(176\) −3.00000 −0.226134
\(177\) 0 0
\(178\) −7.00000 + 12.1244i −0.524672 + 0.908759i
\(179\) 1.00000 1.73205i 0.0747435 0.129460i −0.826231 0.563331i \(-0.809520\pi\)
0.900975 + 0.433872i \(0.142853\pi\)
\(180\) 0 0
\(181\) 3.00000 0.222988 0.111494 0.993765i \(-0.464436\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(182\) −0.500000 2.59808i −0.0370625 0.192582i
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 3.46410i 0.147043 0.254686i
\(186\) 0 0
\(187\) −7.50000 12.9904i −0.548454 0.949951i
\(188\) 1.00000 0.0729325
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 10.0000 + 17.3205i 0.723575 + 1.25327i 0.959558 + 0.281511i \(0.0908356\pi\)
−0.235983 + 0.971757i \(0.575831\pi\)
\(192\) 0 0
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) −2.00000 3.46410i −0.143592 0.248708i
\(195\) 0 0
\(196\) −6.50000 + 2.59808i −0.464286 + 0.185577i
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) −2.50000 0.866025i −0.175466 0.0607831i
\(204\) 0 0
\(205\) 10.0000 + 17.3205i 0.698430 + 1.20972i
\(206\) 1.00000 1.73205i 0.0696733 0.120678i
\(207\) 0 0
\(208\) 0.500000 + 0.866025i 0.0346688 + 0.0600481i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 10.0000 + 17.3205i 0.681994 + 1.18125i
\(216\) 0 0
\(217\) 8.00000 6.92820i 0.543075 0.470317i
\(218\) −16.0000 −1.08366
\(219\) 0 0
\(220\) 3.00000 5.19615i 0.202260 0.350325i
\(221\) −2.50000 + 4.33013i −0.168168 + 0.291276i
\(222\) 0 0
\(223\) 11.0000 0.736614 0.368307 0.929704i \(-0.379937\pi\)
0.368307 + 0.929704i \(0.379937\pi\)
\(224\) 2.00000 1.73205i 0.133631 0.115728i
\(225\) 0 0
\(226\) 7.50000 + 12.9904i 0.498893 + 0.864107i
\(227\) 4.00000 6.92820i 0.265489 0.459841i −0.702202 0.711977i \(-0.747800\pi\)
0.967692 + 0.252136i \(0.0811332\pi\)
\(228\) 0 0
\(229\) −3.00000 5.19615i −0.198246 0.343371i 0.749714 0.661762i \(-0.230191\pi\)
−0.947960 + 0.318390i \(0.896858\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 5.50000 + 9.52628i 0.360317 + 0.624087i 0.988013 0.154371i \(-0.0493352\pi\)
−0.627696 + 0.778459i \(0.716002\pi\)
\(234\) 0 0
\(235\) −1.00000 + 1.73205i −0.0652328 + 0.112987i
\(236\) 1.50000 + 2.59808i 0.0976417 + 0.169120i
\(237\) 0 0
\(238\) 12.5000 + 4.33013i 0.810255 + 0.280680i
\(239\) −21.0000 −1.35838 −0.679189 0.733964i \(-0.737668\pi\)
−0.679189 + 0.733964i \(0.737668\pi\)
\(240\) 0 0
\(241\) −2.00000 + 3.46410i −0.128831 + 0.223142i −0.923224 0.384262i \(-0.874456\pi\)
0.794393 + 0.607404i \(0.207789\pi\)
\(242\) 1.00000 1.73205i 0.0642824 0.111340i
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) 2.00000 13.8564i 0.127775 0.885253i
\(246\) 0 0
\(247\) 0.500000 + 0.866025i 0.0318142 + 0.0551039i
\(248\) −2.00000 + 3.46410i −0.127000 + 0.219971i
\(249\) 0 0
\(250\) 6.00000 + 10.3923i 0.379473 + 0.657267i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) 0 0
\(259\) −1.00000 5.19615i −0.0621370 0.322873i
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −2.00000 + 3.46410i −0.123560 + 0.214013i
\(263\) −3.00000 + 5.19615i −0.184988 + 0.320408i −0.943572 0.331166i \(-0.892558\pi\)
0.758585 + 0.651575i \(0.225891\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 2.00000 1.73205i 0.122628 0.106199i
\(267\) 0 0
\(268\) −2.50000 4.33013i −0.152712 0.264505i
\(269\) −4.50000 + 7.79423i −0.274370 + 0.475223i −0.969976 0.243201i \(-0.921803\pi\)
0.695606 + 0.718423i \(0.255136\pi\)
\(270\) 0 0
\(271\) −5.50000 9.52628i −0.334101 0.578680i 0.649211 0.760609i \(-0.275099\pi\)
−0.983312 + 0.181928i \(0.941766\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) 13.5000 23.3827i 0.811136 1.40493i −0.100933 0.994893i \(-0.532183\pi\)
0.912069 0.410036i \(-0.134484\pi\)
\(278\) −1.00000 1.73205i −0.0599760 0.103882i
\(279\) 0 0
\(280\) 1.00000 + 5.19615i 0.0597614 + 0.310530i
\(281\) −16.0000 −0.954480 −0.477240 0.878773i \(-0.658363\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) −0.500000 + 0.866025i −0.0296695 + 0.0513892i
\(285\) 0 0
\(286\) 3.00000 0.177394
\(287\) 25.0000 + 8.66025i 1.47570 + 0.511199i
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) −1.00000 + 1.73205i −0.0587220 + 0.101710i
\(291\) 0 0
\(292\) −6.00000 10.3923i −0.351123 0.608164i
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 1.00000 + 1.73205i 0.0581238 + 0.100673i
\(297\) 0 0
\(298\) 4.00000 6.92820i 0.231714 0.401340i
\(299\) 0 0
\(300\) 0 0
\(301\) 25.0000 + 8.66025i 1.44098 + 0.499169i
\(302\) 19.0000 1.09333
\(303\) 0 0
\(304\) −0.500000 + 0.866025i −0.0286770 + 0.0496700i
\(305\) 5.00000 8.66025i 0.286299 0.495885i
\(306\) 0 0
\(307\) −27.0000 −1.54097 −0.770486 0.637457i \(-0.779986\pi\)
−0.770486 + 0.637457i \(0.779986\pi\)
\(308\) −1.50000 7.79423i −0.0854704 0.444117i
\(309\) 0 0
\(310\) −4.00000 6.92820i −0.227185 0.393496i
\(311\) 7.00000 12.1244i 0.396934 0.687509i −0.596412 0.802678i \(-0.703408\pi\)
0.993346 + 0.115169i \(0.0367410\pi\)
\(312\) 0 0
\(313\) −17.0000 29.4449i −0.960897 1.66432i −0.720257 0.693708i \(-0.755976\pi\)
−0.240640 0.970614i \(-0.577357\pi\)
\(314\) 21.0000 1.18510
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) 0 0
\(319\) 1.50000 2.59808i 0.0839839 0.145464i
\(320\) −1.00000 1.73205i −0.0559017 0.0968246i
\(321\) 0 0
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) 0 0
\(325\) −0.500000 + 0.866025i −0.0277350 + 0.0480384i
\(326\) −9.50000 + 16.4545i −0.526156 + 0.911330i
\(327\) 0 0
\(328\) −10.0000 −0.552158
\(329\) 0.500000 + 2.59808i 0.0275659 + 0.143237i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 8.00000 13.8564i 0.439057 0.760469i
\(333\) 0 0
\(334\) 10.5000 + 18.1865i 0.574534 + 0.995123i
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −17.0000 −0.926049 −0.463025 0.886345i \(-0.653236\pi\)
−0.463025 + 0.886345i \(0.653236\pi\)
\(338\) −0.500000 0.866025i −0.0271964 0.0471056i
\(339\) 0 0
\(340\) 5.00000 8.66025i 0.271163 0.469668i
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) 1.50000 2.59808i 0.0806405 0.139673i
\(347\) 1.00000 1.73205i 0.0536828 0.0929814i −0.837935 0.545770i \(-0.816237\pi\)
0.891618 + 0.452788i \(0.149571\pi\)
\(348\) 0 0
\(349\) 36.0000 1.92704 0.963518 0.267644i \(-0.0862451\pi\)
0.963518 + 0.267644i \(0.0862451\pi\)
\(350\) 2.50000 + 0.866025i 0.133631 + 0.0462910i
\(351\) 0 0
\(352\) 1.50000 + 2.59808i 0.0799503 + 0.138478i
\(353\) 7.00000 12.1244i 0.372572 0.645314i −0.617388 0.786659i \(-0.711809\pi\)
0.989960 + 0.141344i \(0.0451425\pi\)
\(354\) 0 0
\(355\) −1.00000 1.73205i −0.0530745 0.0919277i
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) −2.00000 −0.105703
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) −1.50000 2.59808i −0.0788382 0.136552i
\(363\) 0 0
\(364\) −2.00000 + 1.73205i −0.104828 + 0.0907841i
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −13.0000 + 22.5167i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220423i \(0.929256\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 6.00000 5.19615i 0.311504 0.269771i
\(372\) 0 0
\(373\) −6.50000 11.2583i −0.336557 0.582934i 0.647225 0.762299i \(-0.275929\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) −7.50000 + 12.9904i −0.387816 + 0.671717i
\(375\) 0 0
\(376\) −0.500000 0.866025i −0.0257855 0.0446619i
\(377\) −1.00000 −0.0515026
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −1.00000 1.73205i −0.0512989 0.0888523i
\(381\) 0 0
\(382\) 10.0000 17.3205i 0.511645 0.886194i
\(383\) −16.0000 27.7128i −0.817562 1.41606i −0.907474 0.420109i \(-0.861992\pi\)
0.0899119 0.995950i \(-0.471341\pi\)
\(384\) 0 0
\(385\) 15.0000 + 5.19615i 0.764471 + 0.264820i
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −2.00000 + 3.46410i −0.101535 + 0.175863i
\(389\) 4.50000 7.79423i 0.228159 0.395183i −0.729103 0.684403i \(-0.760063\pi\)
0.957263 + 0.289220i \(0.0933960\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5.50000 + 4.33013i 0.277792 + 0.218704i
\(393\) 0 0
\(394\) −12.0000 20.7846i −0.604551 1.04711i
\(395\) 6.00000 10.3923i 0.301893 0.522894i
\(396\) 0 0
\(397\) −18.0000 31.1769i −0.903394 1.56472i −0.823058 0.567957i \(-0.807734\pi\)
−0.0803356 0.996768i \(-0.525599\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −18.0000 31.1769i −0.898877 1.55690i −0.828932 0.559350i \(-0.811051\pi\)
−0.0699455 0.997551i \(-0.522283\pi\)
\(402\) 0 0
\(403\) 2.00000 3.46410i 0.0996271 0.172559i
\(404\) 1.00000 + 1.73205i 0.0497519 + 0.0861727i
\(405\) 0 0
\(406\) 0.500000 + 2.59808i 0.0248146 + 0.128940i
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 15.0000 25.9808i 0.741702 1.28467i −0.210017 0.977698i \(-0.567352\pi\)
0.951720 0.306968i \(-0.0993146\pi\)
\(410\) 10.0000 17.3205i 0.493865 0.855399i
\(411\) 0 0
\(412\) −2.00000 −0.0985329
\(413\) −6.00000 + 5.19615i −0.295241 + 0.255686i
\(414\) 0 0
\(415\) 16.0000 + 27.7128i 0.785409 + 1.36037i
\(416\) 0.500000 0.866025i 0.0245145 0.0424604i
\(417\) 0 0
\(418\) 1.50000 + 2.59808i 0.0733674 + 0.127076i
\(419\) −10.0000 −0.488532 −0.244266 0.969708i \(-0.578547\pi\)
−0.244266 + 0.969708i \(0.578547\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 8.00000 + 13.8564i 0.389434 + 0.674519i
\(423\) 0 0
\(424\) −1.50000 + 2.59808i −0.0728464 + 0.126174i
\(425\) −2.50000 4.33013i −0.121268 0.210042i
\(426\) 0 0
\(427\) −2.50000 12.9904i −0.120983 0.628649i
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 10.0000 17.3205i 0.482243 0.835269i
\(431\) −4.00000 + 6.92820i −0.192673 + 0.333720i −0.946135 0.323772i \(-0.895049\pi\)
0.753462 + 0.657491i \(0.228382\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) −10.0000 3.46410i −0.480015 0.166282i
\(435\) 0 0
\(436\) 8.00000 + 13.8564i 0.383131 + 0.663602i
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 34.6410i −0.954548 1.65333i −0.735399 0.677634i \(-0.763005\pi\)
−0.219149 0.975691i \(-0.570328\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 5.00000 0.237826
\(443\) −9.00000 15.5885i −0.427603 0.740630i 0.569057 0.822298i \(-0.307309\pi\)
−0.996660 + 0.0816684i \(0.973975\pi\)
\(444\) 0 0
\(445\) −14.0000 + 24.2487i −0.663664 + 1.14950i
\(446\) −5.50000 9.52628i −0.260433 0.451082i
\(447\) 0 0
\(448\) −2.50000 0.866025i −0.118114 0.0409159i
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) −15.0000 + 25.9808i −0.706322 + 1.22339i
\(452\) 7.50000 12.9904i 0.352770 0.611016i
\(453\) 0 0
\(454\) −8.00000 −0.375459
\(455\) −1.00000 5.19615i −0.0468807 0.243599i
\(456\) 0 0
\(457\) 8.00000 + 13.8564i 0.374224 + 0.648175i 0.990211 0.139581i \(-0.0445757\pi\)
−0.615986 + 0.787757i \(0.711242\pi\)
\(458\) −3.00000 + 5.19615i −0.140181 + 0.242800i
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) −0.500000 0.866025i −0.0232119 0.0402042i
\(465\) 0 0
\(466\) 5.50000 9.52628i 0.254783 0.441296i
\(467\) −12.0000 20.7846i −0.555294 0.961797i −0.997881 0.0650714i \(-0.979272\pi\)
0.442587 0.896726i \(-0.354061\pi\)
\(468\) 0 0
\(469\) 10.0000 8.66025i 0.461757 0.399893i
\(470\) 2.00000 0.0922531
\(471\) 0 0
\(472\) 1.50000 2.59808i 0.0690431 0.119586i
\(473\) −15.0000 + 25.9808i −0.689701 + 1.19460i
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) −2.50000 12.9904i −0.114587 0.595413i
\(477\) 0 0
\(478\) 10.5000 + 18.1865i 0.480259 + 0.831833i
\(479\) −16.5000 + 28.5788i −0.753904 + 1.30580i 0.192013 + 0.981392i \(0.438498\pi\)
−0.945917 + 0.324408i \(0.894835\pi\)
\(480\) 0 0
\(481\) −1.00000 1.73205i −0.0455961 0.0789747i
\(482\) 4.00000 0.182195
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −4.00000 6.92820i −0.181631 0.314594i
\(486\) 0 0
\(487\) −5.50000 + 9.52628i −0.249229 + 0.431677i −0.963312 0.268384i \(-0.913510\pi\)
0.714083 + 0.700061i \(0.246844\pi\)
\(488\) 2.50000 + 4.33013i 0.113170 + 0.196016i
\(489\) 0 0
\(490\) −13.0000 + 5.19615i −0.587280 + 0.234738i
\(491\) −22.0000 −0.992846 −0.496423 0.868081i \(-0.665354\pi\)
−0.496423 + 0.868081i \(0.665354\pi\)
\(492\) 0 0
\(493\) 2.50000 4.33013i 0.112594 0.195019i
\(494\) 0.500000 0.866025i 0.0224961 0.0389643i
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −2.50000 0.866025i −0.112140 0.0388465i
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) 6.00000 10.3923i 0.268328 0.464758i
\(501\) 0 0
\(502\) −9.00000 15.5885i −0.401690 0.695747i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.0000 24.2487i −0.620539 1.07481i −0.989385 0.145315i \(-0.953580\pi\)
0.368846 0.929490i \(-0.379753\pi\)
\(510\) 0 0
\(511\) 24.0000 20.7846i 1.06170 0.919457i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.00000 5.19615i 0.132324 0.229192i
\(515\) 2.00000 3.46410i 0.0881305 0.152647i
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) −4.00000 + 3.46410i −0.175750 + 0.152204i
\(519\) 0 0
\(520\) 1.00000 + 1.73205i 0.0438529 + 0.0759555i
\(521\) 21.0000 36.3731i 0.920027 1.59353i 0.120656 0.992694i \(-0.461500\pi\)
0.799370 0.600839i \(-0.205167\pi\)
\(522\) 0 0
\(523\) −3.00000 5.19615i −0.131181 0.227212i 0.792951 0.609285i \(-0.208544\pi\)
−0.924132 + 0.382073i \(0.875210\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 6.00000 0.261612
\(527\) 10.0000 + 17.3205i 0.435607 + 0.754493i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −3.00000 5.19615i −0.130312 0.225706i
\(531\) 0 0
\(532\) −2.50000 0.866025i −0.108389 0.0375470i
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 12.0000 20.7846i 0.518805 0.898597i
\(536\) −2.50000 + 4.33013i −0.107984 + 0.187033i
\(537\) 0 0
\(538\) 9.00000 0.388018
\(539\) 19.5000 7.79423i 0.839924 0.335721i
\(540\) 0 0
\(541\) 17.0000 + 29.4449i 0.730887 + 1.26593i 0.956504 + 0.291718i \(0.0942267\pi\)
−0.225617 + 0.974216i \(0.572440\pi\)
\(542\) −5.50000 + 9.52628i −0.236245 + 0.409189i
\(543\) 0 0
\(544\) 2.50000 + 4.33013i 0.107187 + 0.185653i
\(545\) −32.0000 −1.37073
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 9.00000 + 15.5885i 0.384461 + 0.665906i
\(549\) 0 0
\(550\) −1.50000 + 2.59808i −0.0639602 + 0.110782i
\(551\) −0.500000 0.866025i −0.0213007 0.0368939i
\(552\) 0 0
\(553\) −3.00000 15.5885i −0.127573 0.662889i
\(554\) −27.0000 −1.14712
\(555\) 0 0
\(556\) −1.00000 + 1.73205i −0.0424094 + 0.0734553i
\(557\) 9.00000 15.5885i 0.381342 0.660504i −0.609912 0.792469i \(-0.708795\pi\)
0.991254 + 0.131965i \(0.0421286\pi\)
\(558\) 0 0
\(559\) 10.0000 0.422955
\(560\) 4.00000 3.46410i 0.169031 0.146385i
\(561\) 0 0
\(562\) 8.00000 + 13.8564i 0.337460 + 0.584497i
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 0 0
\(565\) 15.0000 + 25.9808i 0.631055 + 1.09302i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 1.00000 0.0419591
\(569\) 9.50000 + 16.4545i 0.398261 + 0.689808i 0.993511 0.113732i \(-0.0362806\pi\)
−0.595251 + 0.803540i \(0.702947\pi\)
\(570\) 0 0
\(571\) −18.0000 + 31.1769i −0.753277 + 1.30471i 0.192950 + 0.981209i \(0.438194\pi\)
−0.946227 + 0.323505i \(0.895139\pi\)
\(572\) −1.50000 2.59808i −0.0627182 0.108631i
\(573\) 0 0
\(574\) −5.00000 25.9808i −0.208696 1.08442i
\(575\) 0 0
\(576\) 0 0
\(577\) −19.0000 + 32.9090i −0.790980 + 1.37002i 0.134380 + 0.990930i \(0.457096\pi\)
−0.925361 + 0.379088i \(0.876238\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 40.0000 + 13.8564i 1.65948 + 0.574861i
\(582\) 0 0
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) −6.00000 + 10.3923i −0.248282 + 0.430037i
\(585\) 0 0
\(586\) −6.00000 10.3923i −0.247858 0.429302i
\(587\) −31.0000 −1.27951 −0.639753 0.768580i \(-0.720964\pi\)
−0.639753 + 0.768580i \(0.720964\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 3.00000 + 5.19615i 0.123508 + 0.213922i
\(591\) 0 0
\(592\) 1.00000 1.73205i 0.0410997 0.0711868i
\(593\) 7.00000 + 12.1244i 0.287456 + 0.497888i 0.973202 0.229953i \(-0.0738573\pi\)
−0.685746 + 0.727841i \(0.740524\pi\)
\(594\) 0 0
\(595\) 25.0000 + 8.66025i 1.02490 + 0.355036i
\(596\) −8.00000 −0.327693
\(597\) 0 0
\(598\) 0 0
\(599\) −19.0000 + 32.9090i −0.776319 + 1.34462i 0.157731 + 0.987482i \(0.449582\pi\)
−0.934050 + 0.357142i \(0.883751\pi\)
\(600\) 0 0
\(601\) −19.0000 −0.775026 −0.387513 0.921864i \(-0.626666\pi\)
−0.387513 + 0.921864i \(0.626666\pi\)
\(602\) −5.00000 25.9808i −0.203785 1.05890i
\(603\) 0 0
\(604\) −9.50000 16.4545i −0.386550 0.669523i
\(605\) 2.00000 3.46410i 0.0813116 0.140836i
\(606\) 0 0
\(607\) 6.00000 + 10.3923i 0.243532 + 0.421811i 0.961718 0.274041i \(-0.0883604\pi\)
−0.718186 + 0.695852i \(0.755027\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 0.500000 + 0.866025i 0.0202278 + 0.0350356i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) 13.5000 + 23.3827i 0.544816 + 0.943648i
\(615\) 0 0
\(616\) −6.00000 + 5.19615i −0.241747 + 0.209359i
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 2.00000 3.46410i 0.0803868 0.139234i −0.823029 0.567999i \(-0.807718\pi\)
0.903416 + 0.428765i \(0.141051\pi\)
\(620\) −4.00000 + 6.92820i −0.160644 + 0.278243i
\(621\) 0 0
\(622\) −14.0000 −0.561349
\(623\) 7.00000 + 36.3731i 0.280449 + 1.45726i
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) −17.0000 + 29.4449i −0.679457 + 1.17685i
\(627\) 0 0
\(628\) −10.5000 18.1865i −0.418996 0.725722i
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 3.00000 + 5.19615i 0.119334 + 0.206692i
\(633\) 0 0
\(634\) −3.00000 + 5.19615i −0.119145 + 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) −5.50000 4.33013i −0.217918 0.171566i
\(638\) −3.00000 −0.118771
\(639\) 0 0
\(640\) −1.00000 + 1.73205i −0.0395285 + 0.0684653i
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.50000 + 4.33013i 0.0983612 + 0.170367i
\(647\) −19.0000 + 32.9090i −0.746967 + 1.29378i 0.202303 + 0.979323i \(0.435157\pi\)
−0.949270 + 0.314462i \(0.898176\pi\)
\(648\) 0 0
\(649\) −4.50000 7.79423i −0.176640 0.305950i
\(650\) 1.00000 0.0392232
\(651\) 0 0
\(652\) 19.0000 0.744097
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 5.00000 + 8.66025i 0.195217 + 0.338126i
\(657\) 0 0
\(658\) 2.00000 1.73205i 0.0779681 0.0675224i
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 13.0000 22.5167i 0.505641 0.875797i −0.494337 0.869270i \(-0.664589\pi\)
0.999979 0.00652642i \(-0.00207744\pi\)
\(662\) 10.0000 17.3205i 0.388661 0.673181i
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) 4.00000 3.46410i 0.155113 0.134332i
\(666\) 0 0
\(667\) 0 0
\(668\) 10.5000 18.1865i 0.406257 0.703658i
\(669\) 0 0
\(670\) −5.00000 8.66025i −0.193167 0.334575i
\(671\) 15.0000 0.579069
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 8.50000 + 14.7224i 0.327408 + 0.567087i
\(675\) 0 0
\(676\) −0.500000 + 0.866025i −0.0192308 + 0.0333087i
\(677\) −1.50000 2.59808i −0.0576497 0.0998522i 0.835760 0.549095i \(-0.185027\pi\)
−0.893410 + 0.449242i \(0.851694\pi\)
\(678\) 0 0
\(679\) −10.0000 3.46410i −0.383765 0.132940i
\(680\) −10.0000 −0.383482
\(681\) 0 0
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) −8.50000 + 16.4545i −0.324532 + 0.628235i
\(687\) 0 0
\(688\) 5.00000 + 8.66025i 0.190623 + 0.330169i
\(689\) 1.50000 2.59808i 0.0571454 0.0989788i
\(690\) 0 0
\(691\) 8.50000 + 14.7224i 0.323355 + 0.560068i 0.981178 0.193105i \(-0.0618558\pi\)
−0.657823 + 0.753173i \(0.728522\pi\)
\(692\) −3.00000 −0.114043
\(693\) 0 0
\(694\) −2.00000 −0.0759190
\(695\) −2.00000 3.46410i −0.0758643 0.131401i
\(696\) 0 0
\(697\) −25.0000 + 43.3013i −0.946943 + 1.64015i
\(698\) −18.0000 31.1769i −0.681310 1.18006i
\(699\) 0 0
\(700\) −0.500000 2.59808i −0.0188982 0.0981981i
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 1.00000 1.73205i 0.0377157 0.0653255i
\(704\) 1.50000 2.59808i 0.0565334 0.0979187i
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) −4.00000 + 3.46410i −0.150435 + 0.130281i
\(708\) 0 0
\(709\) −10.0000 17.3205i −0.375558 0.650485i 0.614852 0.788642i \(-0.289216\pi\)
−0.990410 + 0.138157i \(0.955882\pi\)
\(710\) −1.00000 + 1.73205i −0.0375293 + 0.0650027i
\(711\) 0 0
\(712\) −7.00000 12.1244i −0.262336 0.454379i
\(713\) 0 0
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 1.00000 + 1.73205i 0.0373718 + 0.0647298i
\(717\) 0 0
\(718\) 0 0
\(719\) −9.00000 15.5885i −0.335643 0.581351i 0.647965 0.761670i \(-0.275620\pi\)
−0.983608 + 0.180319i \(0.942287\pi\)
\(720\) 0 0
\(721\) −1.00000 5.19615i −0.0372419 0.193515i
\(722\) −18.0000 −0.669891
\(723\) 0 0
\(724\) −1.50000 + 2.59808i −0.0557471 + 0.0965567i
\(725\) 0.500000 0.866025i 0.0185695 0.0321634i
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 2.50000 + 0.866025i 0.0926562 + 0.0320970i
\(729\) 0 0
\(730\) −12.0000 20.7846i −0.444140 0.769273i
\(731\) −25.0000 + 43.3013i −0.924658 + 1.60156i
\(732\) 0 0
\(733\) 20.0000 + 34.6410i 0.738717 + 1.27950i 0.953073 + 0.302740i \(0.0979013\pi\)
−0.214356 + 0.976756i \(0.568765\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) 0 0
\(737\) 7.50000 + 12.9904i 0.276266 + 0.478507i
\(738\) 0 0
\(739\) −20.0000 + 34.6410i −0.735712 + 1.27429i 0.218698 + 0.975793i \(0.429819\pi\)
−0.954410 + 0.298498i \(0.903514\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) 0 0
\(742\) −7.50000 2.59808i −0.275334 0.0953784i
\(743\) 3.00000 0.110059 0.0550297 0.998485i \(-0.482475\pi\)
0.0550297 + 0.998485i \(0.482475\pi\)
\(744\) 0 0
\(745\) 8.00000 13.8564i 0.293097 0.507659i
\(746\) −6.50000 + 11.2583i −0.237982 + 0.412197i
\(747\) 0 0
\(748\) 15.0000 0.548454
\(749\) −6.00000 31.1769i −0.219235 1.13918i
\(750\) 0 0
\(751\) 6.00000 + 10.3923i 0.218943 + 0.379221i 0.954485 0.298259i \(-0.0964058\pi\)
−0.735542 + 0.677479i \(0.763072\pi\)
\(752\) −0.500000 + 0.866025i −0.0182331 + 0.0315807i
\(753\) 0 0
\(754\) 0.500000 + 0.866025i 0.0182089 + 0.0315388i
\(755\) 38.0000 1.38296
\(756\) 0 0
\(757\) −37.0000 −1.34479 −0.672394 0.740193i \(-0.734734\pi\)
−0.672394 + 0.740193i \(0.734734\pi\)
\(758\) −14.0000 24.2487i −0.508503 0.880753i
\(759\) 0 0
\(760\) −1.00000 + 1.73205i −0.0362738 + 0.0628281i
\(761\) 6.00000 + 10.3923i 0.217500 + 0.376721i 0.954043 0.299670i \(-0.0968765\pi\)
−0.736543 + 0.676391i \(0.763543\pi\)
\(762\) 0 0
\(763\) −32.0000 + 27.7128i −1.15848 + 1.00327i
\(764\) −20.0000 −0.723575
\(765\) 0 0
\(766\) −16.0000 + 27.7128i −0.578103 + 1.00130i
\(767\) −1.50000 + 2.59808i −0.0541619 + 0.0938111i
\(768\) 0 0
\(769\) −44.0000 −1.58668 −0.793340 0.608778i \(-0.791660\pi\)
−0.793340 + 0.608778i \(0.791660\pi\)
\(770\) −3.00000 15.5885i −0.108112 0.561769i
\(771\) 0 0
\(772\) 7.00000 + 12.1244i 0.251936 + 0.436365i
\(773\) 13.0000 22.5167i 0.467578 0.809868i −0.531736 0.846910i \(-0.678460\pi\)
0.999314 + 0.0370420i \(0.0117935\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 4.00000 0.143592
\(777\) 0 0
\(778\) −9.00000 −0.322666
\(779\) 5.00000 + 8.66025i 0.179144 + 0.310286i
\(780\) 0 0
\(781\) 1.50000 2.59808i 0.0536742 0.0929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 6.92820i 0.0357143 0.247436i
\(785\) 42.0000 1.49904
\(786\) 0 0
\(787\) 2.50000 4.33013i 0.0891154 0.154352i −0.818022 0.575187i \(-0.804929\pi\)
0.907137 + 0.420834i \(0.138263\pi\)
\(788\) −12.0000 + 20.7846i −0.427482 + 0.740421i
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 37.5000 + 12.9904i 1.33335 + 0.461885i
\(792\) 0 0
\(793\) −2.50000 4.33013i −0.0887776 0.153767i
\(794\) −18.0000 + 31.1769i −0.638796 + 1.10643i
\(795\) 0 0
\(796\) 10.0000 + 17.3205i 0.354441 + 0.613909i
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −5.00000 −0.176887
\(800\) 0.500000 + 0.866025i 0.0176777 + 0.0306186i
\(801\) 0 0
\(802\) −18.0000 + 31.1769i −0.635602 + 1.10090i
\(803\) 18.0000 + 31.1769i 0.635206 + 1.10021i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 1.00000 1.73205i 0.0351799 0.0609333i
\(809\) −2.50000 + 4.33013i −0.0878953 + 0.152239i −0.906621 0.421945i \(-0.861347\pi\)
0.818726 + 0.574184i \(0.194681\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 2.00000 1.73205i 0.0701862 0.0607831i
\(813\) 0 0
\(814\) −3.00000 5.19615i −0.105150 0.182125i
\(815\) −19.0000 + 32.9090i −0.665541 + 1.15275i
\(816\) 0 0
\(817\) 5.00000 + 8.66025i 0.174928 + 0.302984i
\(818\) −30.0000 −1.04893
\(819\) 0 0
\(820\) −20.0000 −0.698430
\(821\) 21.0000 + 36.3731i 0.732905 + 1.26943i 0.955636 + 0.294549i \(0.0951694\pi\)
−0.222731 + 0.974880i \(0.571497\pi\)
\(822\) 0 0
\(823\) 15.0000 25.9808i 0.522867 0.905632i −0.476779 0.879023i \(-0.658196\pi\)
0.999646 0.0266091i \(-0.00847095\pi\)
\(824\) 1.00000 + 1.73205i 0.0348367 + 0.0603388i
\(825\) 0 0
\(826\) 7.50000 + 2.59808i 0.260958 + 0.0903986i
\(827\) 35.0000 1.21707 0.608535 0.793527i \(-0.291758\pi\)
0.608535 + 0.793527i \(0.291758\pi\)
\(828\) 0 0
\(829\) 9.50000 16.4545i 0.329949 0.571488i −0.652553 0.757743i \(-0.726302\pi\)
0.982501 + 0.186256i \(0.0596352\pi\)
\(830\) 16.0000 27.7128i 0.555368 0.961926i
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) 32.5000 12.9904i 1.12606 0.450090i
\(834\) 0 0
\(835\) 21.0000 + 36.3731i 0.726735 + 1.25874i
\(836\) 1.50000 2.59808i 0.0518786 0.0898563i
\(837\) 0 0
\(838\) 5.00000 + 8.66025i 0.172722 + 0.299164i
\(839\) 9.00000 0.310715 0.155357 0.987858i \(-0.450347\pi\)
0.155357 + 0.987858i \(0.450347\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −4.00000 6.92820i −0.137849 0.238762i
\(843\) 0 0
\(844\) 8.00000 13.8564i 0.275371 0.476957i
\(845\) −1.00000 1.73205i −0.0344010 0.0595844i
\(846\) 0 0
\(847\) −1.00000 5.19615i −0.0343604 0.178542i
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) −2.50000 + 4.33013i −0.0857493 + 0.148522i
\(851\) 0 0
\(852\) 0 0
\(853\) −40.0000 −1.36957 −0.684787 0.728743i \(-0.740105\pi\)
−0.684787 + 0.728743i \(0.740105\pi\)
\(854\) −10.0000 + 8.66025i −0.342193 + 0.296348i
\(855\) 0 0
\(856\) 6.00000 + 10.3923i 0.205076 + 0.355202i
\(857\) 1.50000 2.59808i 0.0512390 0.0887486i −0.839268 0.543718i \(-0.817016\pi\)
0.890507 + 0.454969i \(0.150350\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) −20.0000 −0.681994
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) −22.0000 38.1051i −0.748889 1.29711i −0.948356 0.317209i \(-0.897254\pi\)
0.199467 0.979905i \(-0.436079\pi\)
\(864\) 0 0
\(865\) 3.00000 5.19615i 0.102003 0.176674i
\(866\) 9.50000 + 16.4545i 0.322823 + 0.559146i
\(867\) 0 0
\(868\) 2.00000 + 10.3923i 0.0678844 + 0.352738i
\(869\) 18.0000 0.610608
\(870\) 0 0
\(871\) 2.50000 4.33013i 0.0847093 0.146721i
\(872\) 8.00000 13.8564i 0.270914 0.469237i
\(873\) 0 0
\(874\) 0 0
\(875\) 30.0000 + 10.3923i 1.01419 + 0.351324i
\(876\) 0 0
\(877\) −11.0000 19.0526i −0.371444 0.643359i 0.618344 0.785907i \(-0.287804\pi\)
−0.989788 + 0.142548i \(0.954470\pi\)
\(878\) −20.0000 + 34.6410i −0.674967 + 1.16908i
\(879\) 0 0
\(880\) 3.00000 + 5.19615i 0.101130 + 0.175162i
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −38.0000 −1.27880 −0.639401 0.768874i \(-0.720818\pi\)
−0.639401 + 0.768874i \(0.720818\pi\)
\(884\) −2.50000 4.33013i −0.0840841 0.145638i
\(885\) 0 0
\(886\) −9.00000 + 15.5885i −0.302361 + 0.523704i
\(887\) −7.00000 12.1244i −0.235037 0.407096i 0.724246 0.689541i \(-0.242188\pi\)
−0.959283 + 0.282445i \(0.908854\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28.0000 0.938562
\(891\) 0 0
\(892\) −5.50000 + 9.52628i −0.184154 + 0.318963i
\(893\) −0.500000 + 0.866025i −0.0167319 + 0.0289804i
\(894\) 0 0
\(895\) −4.00000 −0.133705
\(896\) 0.500000 + 2.59808i 0.0167038 + 0.0867956i
\(897\) 0 0
\(898\) −4.00000 6.92820i −0.133482 0.231197i
\(899\) −2.00000 + 3.46410i −0.0667037 + 0.115534i
\(900\) 0 0
\(901\) 7.50000 + 12.9904i 0.249861 + 0.432772i
\(902\) 30.0000 0.998891
\(903\) 0 0
\(904\) −15.0000 −0.498893
\(905\) −3.00000 5.19615i −0.0997234 0.172726i
\(906\) 0 0
\(907\) −14.0000 + 24.2487i −0.464862 + 0.805165i −0.999195 0.0401089i \(-0.987230\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(908\) 4.00000 + 6.92820i 0.132745 + 0.229920i
\(909\) 0 0
\(910\) −4.00000 + 3.46410i −0.132599 + 0.114834i
\(911\) −26.0000 −0.861418 −0.430709 0.902491i \(-0.641737\pi\)
−0.430709 + 0.902491i \(0.641737\pi\)
\(912\) 0 0
\(913\) −24.0000 + 41.5692i −0.794284 + 1.37574i
\(914\) 8.00000 13.8564i 0.264616 0.458329i
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 2.00000 + 10.3923i 0.0660458 + 0.343184i
\(918\) 0 0
\(919\) 1.00000 + 1.73205i 0.0329870 + 0.0571351i 0.882048 0.471160i \(-0.156165\pi\)
−0.849061 + 0.528295i \(0.822831\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10.0000 + 17.3205i 0.329332 + 0.570421i
\(923\) −1.00000 −0.0329154
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −4.00000 6.92820i −0.131448 0.227675i
\(927\) 0 0
\(928\) −0.500000 + 0.866025i −0.0164133 + 0.0284287i
\(929\) −23.0000 39.8372i −0.754606 1.30702i −0.945570 0.325418i \(-0.894495\pi\)
0.190965 0.981597i \(-0.438838\pi\)
\(930\) 0 0
\(931\) 1.00000 6.92820i 0.0327737 0.227063i
\(932\) −11.0000 −0.360317
\(933\) 0 0
\(934\) −12.0000 + 20.7846i −0.392652 + 0.680093i
\(935\) −15.0000 + 25.9808i −0.490552 + 0.849662i
\(936\) 0 0
\(937\) −5.00000 −0.163343 −0.0816714 0.996659i \(-0.526026\pi\)
−0.0816714 + 0.996659i \(0.526026\pi\)
\(938\) −12.5000 4.33013i −0.408139 0.141384i
\(939\) 0 0
\(940\) −1.00000 1.73205i −0.0326164 0.0564933i
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 30.0000 0.975384
\(947\) −12.5000 21.6506i −0.406195 0.703551i 0.588264 0.808669i \(-0.299811\pi\)
−0.994460 + 0.105118i \(0.966478\pi\)
\(948\) 0 0
\(949\) 6.00000 10.3923i 0.194768 0.337348i
\(950\) 0.500000 + 0.866025i 0.0162221 + 0.0280976i
\(951\) 0 0
\(952\) −10.0000 + 8.66025i −0.324102 + 0.280680i
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) 20.0000 34.6410i 0.647185 1.12096i
\(956\) 10.5000 18.1865i 0.339594 0.588195i
\(957\) 0 0
\(958\) 33.0000 1.06618
\(959\) −36.0000 + 31.1769i −1.16250 + 1.00676i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) −1.00000 + 1.73205i −0.0322413 + 0.0558436i
\(963\) 0 0
\(964\) −2.00000 3.46410i −0.0644157 0.111571i
\(965\) −28.0000 −0.901352
\(966\) 0 0
\(967\) −31.0000 −0.996893 −0.498446 0.866921i \(-0.666096\pi\)
−0.498446 + 0.866921i \(0.666096\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) −4.00000 + 6.92820i −0.128432 + 0.222451i
\(971\) −7.00000 12.1244i −0.224641 0.389089i 0.731571 0.681765i \(-0.238788\pi\)
−0.956212 + 0.292676i \(0.905454\pi\)
\(972\) 0 0
\(973\) −5.00000 1.73205i −0.160293 0.0555270i
\(974\) 11.0000 0.352463
\(975\) 0 0
\(976\) 2.50000 4.33013i 0.0800230 0.138604i
\(977\) 31.0000 53.6936i 0.991778 1.71781i 0.385063 0.922890i \(-0.374180\pi\)
0.606715 0.794919i \(-0.292487\pi\)
\(978\) 0 0
\(979\) −42.0000 −1.34233
\(980\) 11.0000 + 8.66025i 0.351382 + 0.276642i
\(981\) 0 0
\(982\) 11.0000 + 19.0526i 0.351024 + 0.607992i
\(983\) −29.5000 + 51.0955i −0.940904 + 1.62969i −0.177152 + 0.984184i \(0.556688\pi\)
−0.763752 + 0.645510i \(0.776645\pi\)
\(984\) 0 0
\(985\) −24.0000 41.5692i −0.764704 1.32451i
\(986\) −5.00000 −0.159232
\(987\) 0 0
\(988\) −1.00000 −0.0318142
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 41.5692i 0.762385 1.32049i −0.179233 0.983807i \(-0.557362\pi\)
0.941618 0.336683i \(-0.109305\pi\)
\(992\) −2.00000 3.46410i −0.0635001 0.109985i
\(993\) 0 0
\(994\) 0.500000 + 2.59808i 0.0158590 + 0.0824060i
\(995\) −40.0000 −1.26809
\(996\) 0 0
\(997\) −9.50000 + 16.4545i −0.300868 + 0.521119i −0.976333 0.216274i \(-0.930610\pi\)
0.675465 + 0.737392i \(0.263943\pi\)
\(998\) 14.0000 24.2487i 0.443162 0.767580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.j.a.235.1 2
3.2 odd 2 546.2.i.e.235.1 yes 2
7.2 even 3 inner 1638.2.j.a.1171.1 2
21.2 odd 6 546.2.i.e.79.1 2
21.11 odd 6 3822.2.a.k.1.1 1
21.17 even 6 3822.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.i.e.79.1 2 21.2 odd 6
546.2.i.e.235.1 yes 2 3.2 odd 2
1638.2.j.a.235.1 2 1.1 even 1 trivial
1638.2.j.a.1171.1 2 7.2 even 3 inner
3822.2.a.i.1.1 1 21.17 even 6
3822.2.a.k.1.1 1 21.11 odd 6