Properties

Label 1638.2.j.a.1171.1
Level $1638$
Weight $2$
Character 1638.1171
Analytic conductor $13.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1638,2,Mod(235,1638)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1638, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1638.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1638.1171
Dual form 1638.2.j.a.235.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} +(-2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 - 1.73205i) q^{10} +(1.50000 + 2.59808i) q^{11} -1.00000 q^{13} +(0.500000 - 2.59808i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.50000 + 4.33013i) q^{17} +(-0.500000 + 0.866025i) q^{19} +2.00000 q^{20} -3.00000 q^{22} +(0.500000 + 0.866025i) q^{25} +(0.500000 - 0.866025i) q^{26} +(2.00000 + 1.73205i) q^{28} +1.00000 q^{29} +(-2.00000 - 3.46410i) q^{31} +(-0.500000 - 0.866025i) q^{32} -5.00000 q^{34} +(1.00000 - 5.19615i) q^{35} +(1.00000 - 1.73205i) q^{37} +(-0.500000 - 0.866025i) q^{38} +(-1.00000 + 1.73205i) q^{40} -10.0000 q^{41} -10.0000 q^{43} +(1.50000 - 2.59808i) q^{44} +(-0.500000 + 0.866025i) q^{47} +(5.50000 - 4.33013i) q^{49} -1.00000 q^{50} +(0.500000 + 0.866025i) q^{52} +(-1.50000 - 2.59808i) q^{53} -6.00000 q^{55} +(-2.50000 + 0.866025i) q^{56} +(-0.500000 + 0.866025i) q^{58} +(1.50000 + 2.59808i) q^{59} +(2.50000 - 4.33013i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(1.00000 - 1.73205i) q^{65} +(-2.50000 - 4.33013i) q^{67} +(2.50000 - 4.33013i) q^{68} +(4.00000 + 3.46410i) q^{70} +1.00000 q^{71} +(-6.00000 - 10.3923i) q^{73} +(1.00000 + 1.73205i) q^{74} +1.00000 q^{76} +(-6.00000 - 5.19615i) q^{77} +(3.00000 - 5.19615i) q^{79} +(-1.00000 - 1.73205i) q^{80} +(5.00000 - 8.66025i) q^{82} -16.0000 q^{83} -10.0000 q^{85} +(5.00000 - 8.66025i) q^{86} +(1.50000 + 2.59808i) q^{88} +(-7.00000 + 12.1244i) q^{89} +(2.50000 - 0.866025i) q^{91} +(-0.500000 - 0.866025i) q^{94} +(-1.00000 - 1.73205i) q^{95} +4.00000 q^{97} +(1.00000 + 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 2 q^{5} - 5 q^{7} + 2 q^{8} - 2 q^{10} + 3 q^{11} - 2 q^{13} + q^{14} - q^{16} + 5 q^{17} - q^{19} + 4 q^{20} - 6 q^{22} + q^{25} + q^{26} + 4 q^{28} + 2 q^{29} - 4 q^{31} - q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 1.73205i −0.316228 0.547723i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0.500000 2.59808i 0.133631 0.694365i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.50000 + 4.33013i 0.606339 + 1.05021i 0.991838 + 0.127502i \(0.0406959\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) 0 0
\(28\) 2.00000 + 1.73205i 0.377964 + 0.327327i
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) 1.00000 5.19615i 0.169031 0.878310i
\(36\) 0 0
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) −0.500000 0.866025i −0.0811107 0.140488i
\(39\) 0 0
\(40\) −1.00000 + 1.73205i −0.158114 + 0.273861i
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 1.50000 2.59808i 0.226134 0.391675i
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 + 0.866025i −0.0729325 + 0.126323i −0.900185 0.435507i \(-0.856569\pi\)
0.827253 + 0.561830i \(0.189902\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) 0 0
\(58\) −0.500000 + 0.866025i −0.0656532 + 0.113715i
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 1.73205i 0.124035 0.214834i
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 2.50000 4.33013i 0.303170 0.525105i
\(69\) 0 0
\(70\) 4.00000 + 3.46410i 0.478091 + 0.414039i
\(71\) 1.00000 0.118678 0.0593391 0.998238i \(-0.481101\pi\)
0.0593391 + 0.998238i \(0.481101\pi\)
\(72\) 0 0
\(73\) −6.00000 10.3923i −0.702247 1.21633i −0.967676 0.252197i \(-0.918847\pi\)
0.265429 0.964130i \(-0.414486\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −6.00000 5.19615i −0.683763 0.592157i
\(78\) 0 0
\(79\) 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i \(-0.723743\pi\)
0.983967 + 0.178352i \(0.0570765\pi\)
\(80\) −1.00000 1.73205i −0.111803 0.193649i
\(81\) 0 0
\(82\) 5.00000 8.66025i 0.552158 0.956365i
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) −10.0000 −1.08465
\(86\) 5.00000 8.66025i 0.539164 0.933859i
\(87\) 0 0
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) −7.00000 + 12.1244i −0.741999 + 1.28518i 0.209585 + 0.977790i \(0.432789\pi\)
−0.951584 + 0.307389i \(0.900545\pi\)
\(90\) 0 0
\(91\) 2.50000 0.866025i 0.262071 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) −0.500000 0.866025i −0.0515711 0.0893237i
\(95\) −1.00000 1.73205i −0.102598 0.177705i
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 1.00000 + 6.92820i 0.101015 + 0.699854i
\(99\) 0 0
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 1.00000 1.73205i 0.0985329 0.170664i −0.812545 0.582899i \(-0.801918\pi\)
0.911078 + 0.412235i \(0.135252\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) 0 0
\(109\) 8.00000 + 13.8564i 0.766261 + 1.32720i 0.939577 + 0.342337i \(0.111218\pi\)
−0.173316 + 0.984866i \(0.555448\pi\)
\(110\) 3.00000 5.19615i 0.286039 0.495434i
\(111\) 0 0
\(112\) 0.500000 2.59808i 0.0472456 0.245495i
\(113\) −15.0000 −1.41108 −0.705541 0.708669i \(-0.749296\pi\)
−0.705541 + 0.708669i \(0.749296\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.500000 0.866025i −0.0464238 0.0804084i
\(117\) 0 0
\(118\) −3.00000 −0.276172
\(119\) −10.0000 8.66025i −0.916698 0.793884i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 2.50000 + 4.33013i 0.226339 + 0.392031i
\(123\) 0 0
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 1.00000 + 1.73205i 0.0877058 + 0.151911i
\(131\) −2.00000 + 3.46410i −0.174741 + 0.302660i −0.940072 0.340977i \(-0.889242\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(132\) 0 0
\(133\) 0.500000 2.59808i 0.0433555 0.225282i
\(134\) 5.00000 0.431934
\(135\) 0 0
\(136\) 2.50000 + 4.33013i 0.214373 + 0.371305i
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) −5.00000 + 1.73205i −0.422577 + 0.146385i
\(141\) 0 0
\(142\) −0.500000 + 0.866025i −0.0419591 + 0.0726752i
\(143\) −1.50000 2.59808i −0.125436 0.217262i
\(144\) 0 0
\(145\) −1.00000 + 1.73205i −0.0830455 + 0.143839i
\(146\) 12.0000 0.993127
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 4.00000 6.92820i 0.327693 0.567581i −0.654361 0.756182i \(-0.727062\pi\)
0.982054 + 0.188602i \(0.0603956\pi\)
\(150\) 0 0
\(151\) −9.50000 16.4545i −0.773099 1.33905i −0.935857 0.352381i \(-0.885372\pi\)
0.162758 0.986666i \(-0.447961\pi\)
\(152\) −0.500000 + 0.866025i −0.0405554 + 0.0702439i
\(153\) 0 0
\(154\) 7.50000 2.59808i 0.604367 0.209359i
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −10.5000 18.1865i −0.837991 1.45144i −0.891572 0.452880i \(-0.850397\pi\)
0.0535803 0.998564i \(-0.482937\pi\)
\(158\) 3.00000 + 5.19615i 0.238667 + 0.413384i
\(159\) 0 0
\(160\) 2.00000 0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) −9.50000 + 16.4545i −0.744097 + 1.28881i 0.206518 + 0.978443i \(0.433787\pi\)
−0.950615 + 0.310372i \(0.899546\pi\)
\(164\) 5.00000 + 8.66025i 0.390434 + 0.676252i
\(165\) 0 0
\(166\) 8.00000 13.8564i 0.620920 1.07547i
\(167\) −21.0000 −1.62503 −0.812514 0.582941i \(-0.801902\pi\)
−0.812514 + 0.582941i \(0.801902\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 5.00000 8.66025i 0.383482 0.664211i
\(171\) 0 0
\(172\) 5.00000 + 8.66025i 0.381246 + 0.660338i
\(173\) 1.50000 2.59808i 0.114043 0.197528i −0.803354 0.595502i \(-0.796953\pi\)
0.917397 + 0.397974i \(0.130287\pi\)
\(174\) 0 0
\(175\) −2.00000 1.73205i −0.151186 0.130931i
\(176\) −3.00000 −0.226134
\(177\) 0 0
\(178\) −7.00000 12.1244i −0.524672 0.908759i
\(179\) 1.00000 + 1.73205i 0.0747435 + 0.129460i 0.900975 0.433872i \(-0.142853\pi\)
−0.826231 + 0.563331i \(0.809520\pi\)
\(180\) 0 0
\(181\) 3.00000 0.222988 0.111494 0.993765i \(-0.464436\pi\)
0.111494 + 0.993765i \(0.464436\pi\)
\(182\) −0.500000 + 2.59808i −0.0370625 + 0.192582i
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 + 3.46410i 0.147043 + 0.254686i
\(186\) 0 0
\(187\) −7.50000 + 12.9904i −0.548454 + 0.949951i
\(188\) 1.00000 0.0729325
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 10.0000 17.3205i 0.723575 1.25327i −0.235983 0.971757i \(-0.575831\pi\)
0.959558 0.281511i \(-0.0908356\pi\)
\(192\) 0 0
\(193\) 7.00000 + 12.1244i 0.503871 + 0.872730i 0.999990 + 0.00447566i \(0.00142465\pi\)
−0.496119 + 0.868255i \(0.665242\pi\)
\(194\) −2.00000 + 3.46410i −0.143592 + 0.248708i
\(195\) 0 0
\(196\) −6.50000 2.59808i −0.464286 0.185577i
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i \(0.0841331\pi\)
−0.256391 + 0.966573i \(0.582534\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) −2.50000 + 0.866025i −0.175466 + 0.0607831i
\(204\) 0 0
\(205\) 10.0000 17.3205i 0.698430 1.20972i
\(206\) 1.00000 + 1.73205i 0.0696733 + 0.120678i
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) 10.0000 17.3205i 0.681994 1.18125i
\(216\) 0 0
\(217\) 8.00000 + 6.92820i 0.543075 + 0.470317i
\(218\) −16.0000 −1.08366
\(219\) 0 0
\(220\) 3.00000 + 5.19615i 0.202260 + 0.350325i
\(221\) −2.50000 4.33013i −0.168168 0.291276i
\(222\) 0 0
\(223\) 11.0000 0.736614 0.368307 0.929704i \(-0.379937\pi\)
0.368307 + 0.929704i \(0.379937\pi\)
\(224\) 2.00000 + 1.73205i 0.133631 + 0.115728i
\(225\) 0 0
\(226\) 7.50000 12.9904i 0.498893 0.864107i
\(227\) 4.00000 + 6.92820i 0.265489 + 0.459841i 0.967692 0.252136i \(-0.0811332\pi\)
−0.702202 + 0.711977i \(0.747800\pi\)
\(228\) 0 0
\(229\) −3.00000 + 5.19615i −0.198246 + 0.343371i −0.947960 0.318390i \(-0.896858\pi\)
0.749714 + 0.661762i \(0.230191\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 5.50000 9.52628i 0.360317 0.624087i −0.627696 0.778459i \(-0.716002\pi\)
0.988013 + 0.154371i \(0.0493352\pi\)
\(234\) 0 0
\(235\) −1.00000 1.73205i −0.0652328 0.112987i
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) 0 0
\(238\) 12.5000 4.33013i 0.810255 0.280680i
\(239\) −21.0000 −1.35838 −0.679189 0.733964i \(-0.737668\pi\)
−0.679189 + 0.733964i \(0.737668\pi\)
\(240\) 0 0
\(241\) −2.00000 3.46410i −0.128831 0.223142i 0.794393 0.607404i \(-0.207789\pi\)
−0.923224 + 0.384262i \(0.874456\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) 2.00000 + 13.8564i 0.127775 + 0.885253i
\(246\) 0 0
\(247\) 0.500000 0.866025i 0.0318142 0.0551039i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 0 0
\(250\) 6.00000 10.3923i 0.379473 0.657267i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.00000 5.19615i 0.187135 0.324127i −0.757159 0.653231i \(-0.773413\pi\)
0.944294 + 0.329104i \(0.106747\pi\)
\(258\) 0 0
\(259\) −1.00000 + 5.19615i −0.0621370 + 0.322873i
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −2.00000 3.46410i −0.123560 0.214013i
\(263\) −3.00000 5.19615i −0.184988 0.320408i 0.758585 0.651575i \(-0.225891\pi\)
−0.943572 + 0.331166i \(0.892558\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 2.00000 + 1.73205i 0.122628 + 0.106199i
\(267\) 0 0
\(268\) −2.50000 + 4.33013i −0.152712 + 0.264505i
\(269\) −4.50000 7.79423i −0.274370 0.475223i 0.695606 0.718423i \(-0.255136\pi\)
−0.969976 + 0.243201i \(0.921803\pi\)
\(270\) 0 0
\(271\) −5.50000 + 9.52628i −0.334101 + 0.578680i −0.983312 0.181928i \(-0.941766\pi\)
0.649211 + 0.760609i \(0.275099\pi\)
\(272\) −5.00000 −0.303170
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −1.50000 + 2.59808i −0.0904534 + 0.156670i
\(276\) 0 0
\(277\) 13.5000 + 23.3827i 0.811136 + 1.40493i 0.912069 + 0.410036i \(0.134484\pi\)
−0.100933 + 0.994893i \(0.532183\pi\)
\(278\) −1.00000 + 1.73205i −0.0599760 + 0.103882i
\(279\) 0 0
\(280\) 1.00000 5.19615i 0.0597614 0.310530i
\(281\) −16.0000 −0.954480 −0.477240 0.878773i \(-0.658363\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(282\) 0 0
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) −0.500000 0.866025i −0.0296695 0.0513892i
\(285\) 0 0
\(286\) 3.00000 0.177394
\(287\) 25.0000 8.66025i 1.47570 0.511199i
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) −1.00000 1.73205i −0.0587220 0.101710i
\(291\) 0 0
\(292\) −6.00000 + 10.3923i −0.351123 + 0.608164i
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 1.00000 1.73205i 0.0581238 0.100673i
\(297\) 0 0
\(298\) 4.00000 + 6.92820i 0.231714 + 0.401340i
\(299\) 0 0
\(300\) 0 0
\(301\) 25.0000 8.66025i 1.44098 0.499169i
\(302\) 19.0000 1.09333
\(303\) 0 0
\(304\) −0.500000 0.866025i −0.0286770 0.0496700i
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) 0 0
\(307\) −27.0000 −1.54097 −0.770486 0.637457i \(-0.779986\pi\)
−0.770486 + 0.637457i \(0.779986\pi\)
\(308\) −1.50000 + 7.79423i −0.0854704 + 0.444117i
\(309\) 0 0
\(310\) −4.00000 + 6.92820i −0.227185 + 0.393496i
\(311\) 7.00000 + 12.1244i 0.396934 + 0.687509i 0.993346 0.115169i \(-0.0367410\pi\)
−0.596412 + 0.802678i \(0.703408\pi\)
\(312\) 0 0
\(313\) −17.0000 + 29.4449i −0.960897 + 1.66432i −0.240640 + 0.970614i \(0.577357\pi\)
−0.720257 + 0.693708i \(0.755976\pi\)
\(314\) 21.0000 1.18510
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) −3.00000 + 5.19615i −0.168497 + 0.291845i −0.937892 0.346929i \(-0.887225\pi\)
0.769395 + 0.638774i \(0.220558\pi\)
\(318\) 0 0
\(319\) 1.50000 + 2.59808i 0.0839839 + 0.145464i
\(320\) −1.00000 + 1.73205i −0.0559017 + 0.0968246i
\(321\) 0 0
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) 0 0
\(325\) −0.500000 0.866025i −0.0277350 0.0480384i
\(326\) −9.50000 16.4545i −0.526156 0.911330i
\(327\) 0 0
\(328\) −10.0000 −0.552158
\(329\) 0.500000 2.59808i 0.0275659 0.143237i
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 8.00000 + 13.8564i 0.439057 + 0.760469i
\(333\) 0 0
\(334\) 10.5000 18.1865i 0.574534 0.995123i
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −17.0000 −0.926049 −0.463025 0.886345i \(-0.653236\pi\)
−0.463025 + 0.886345i \(0.653236\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 5.00000 + 8.66025i 0.271163 + 0.469668i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) 1.50000 + 2.59808i 0.0806405 + 0.139673i
\(347\) 1.00000 + 1.73205i 0.0536828 + 0.0929814i 0.891618 0.452788i \(-0.149571\pi\)
−0.837935 + 0.545770i \(0.816237\pi\)
\(348\) 0 0
\(349\) 36.0000 1.92704 0.963518 0.267644i \(-0.0862451\pi\)
0.963518 + 0.267644i \(0.0862451\pi\)
\(350\) 2.50000 0.866025i 0.133631 0.0462910i
\(351\) 0 0
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) 7.00000 + 12.1244i 0.372572 + 0.645314i 0.989960 0.141344i \(-0.0451425\pi\)
−0.617388 + 0.786659i \(0.711809\pi\)
\(354\) 0 0
\(355\) −1.00000 + 1.73205i −0.0530745 + 0.0919277i
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) −2.00000 −0.105703
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −1.50000 + 2.59808i −0.0788382 + 0.136552i
\(363\) 0 0
\(364\) −2.00000 1.73205i −0.104828 0.0907841i
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −13.0000 22.5167i −0.678594 1.17536i −0.975404 0.220423i \(-0.929256\pi\)
0.296810 0.954937i \(-0.404077\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) 6.00000 + 5.19615i 0.311504 + 0.269771i
\(372\) 0 0
\(373\) −6.50000 + 11.2583i −0.336557 + 0.582934i −0.983783 0.179364i \(-0.942596\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) −7.50000 12.9904i −0.387816 0.671717i
\(375\) 0 0
\(376\) −0.500000 + 0.866025i −0.0257855 + 0.0446619i
\(377\) −1.00000 −0.0515026
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −1.00000 + 1.73205i −0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) 10.0000 + 17.3205i 0.511645 + 0.886194i
\(383\) −16.0000 + 27.7128i −0.817562 + 1.41606i 0.0899119 + 0.995950i \(0.471341\pi\)
−0.907474 + 0.420109i \(0.861992\pi\)
\(384\) 0 0
\(385\) 15.0000 5.19615i 0.764471 0.264820i
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −2.00000 3.46410i −0.101535 0.175863i
\(389\) 4.50000 + 7.79423i 0.228159 + 0.395183i 0.957263 0.289220i \(-0.0933960\pi\)
−0.729103 + 0.684403i \(0.760063\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5.50000 4.33013i 0.277792 0.218704i
\(393\) 0 0
\(394\) −12.0000 + 20.7846i −0.604551 + 1.04711i
\(395\) 6.00000 + 10.3923i 0.301893 + 0.522894i
\(396\) 0 0
\(397\) −18.0000 + 31.1769i −0.903394 + 1.56472i −0.0803356 + 0.996768i \(0.525599\pi\)
−0.823058 + 0.567957i \(0.807734\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −18.0000 + 31.1769i −0.898877 + 1.55690i −0.0699455 + 0.997551i \(0.522283\pi\)
−0.828932 + 0.559350i \(0.811051\pi\)
\(402\) 0 0
\(403\) 2.00000 + 3.46410i 0.0996271 + 0.172559i
\(404\) 1.00000 1.73205i 0.0497519 0.0861727i
\(405\) 0 0
\(406\) 0.500000 2.59808i 0.0248146 0.128940i
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 15.0000 + 25.9808i 0.741702 + 1.28467i 0.951720 + 0.306968i \(0.0993146\pi\)
−0.210017 + 0.977698i \(0.567352\pi\)
\(410\) 10.0000 + 17.3205i 0.493865 + 0.855399i
\(411\) 0 0
\(412\) −2.00000 −0.0985329
\(413\) −6.00000 5.19615i −0.295241 0.255686i
\(414\) 0 0
\(415\) 16.0000 27.7128i 0.785409 1.36037i
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 1.50000 2.59808i 0.0733674 0.127076i
\(419\) −10.0000 −0.488532 −0.244266 0.969708i \(-0.578547\pi\)
−0.244266 + 0.969708i \(0.578547\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 8.00000 13.8564i 0.389434 0.674519i
\(423\) 0 0
\(424\) −1.50000 2.59808i −0.0728464 0.126174i
\(425\) −2.50000 + 4.33013i −0.121268 + 0.210042i
\(426\) 0 0
\(427\) −2.50000 + 12.9904i −0.120983 + 0.628649i
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 10.0000 + 17.3205i 0.482243 + 0.835269i
\(431\) −4.00000 6.92820i −0.192673 0.333720i 0.753462 0.657491i \(-0.228382\pi\)
−0.946135 + 0.323772i \(0.895049\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) −10.0000 + 3.46410i −0.480015 + 0.166282i
\(435\) 0 0
\(436\) 8.00000 13.8564i 0.383131 0.663602i
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 + 34.6410i −0.954548 + 1.65333i −0.219149 + 0.975691i \(0.570328\pi\)
−0.735399 + 0.677634i \(0.763005\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 5.00000 0.237826
\(443\) −9.00000 + 15.5885i −0.427603 + 0.740630i −0.996660 0.0816684i \(-0.973975\pi\)
0.569057 + 0.822298i \(0.307309\pi\)
\(444\) 0 0
\(445\) −14.0000 24.2487i −0.663664 1.14950i
\(446\) −5.50000 + 9.52628i −0.260433 + 0.451082i
\(447\) 0 0
\(448\) −2.50000 + 0.866025i −0.118114 + 0.0409159i
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) 0 0
\(454\) −8.00000 −0.375459
\(455\) −1.00000 + 5.19615i −0.0468807 + 0.243599i
\(456\) 0 0
\(457\) 8.00000 13.8564i 0.374224 0.648175i −0.615986 0.787757i \(-0.711242\pi\)
0.990211 + 0.139581i \(0.0445757\pi\)
\(458\) −3.00000 5.19615i −0.140181 0.242800i
\(459\) 0 0
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) −0.500000 + 0.866025i −0.0232119 + 0.0402042i
\(465\) 0 0
\(466\) 5.50000 + 9.52628i 0.254783 + 0.441296i
\(467\) −12.0000 + 20.7846i −0.555294 + 0.961797i 0.442587 + 0.896726i \(0.354061\pi\)
−0.997881 + 0.0650714i \(0.979272\pi\)
\(468\) 0 0
\(469\) 10.0000 + 8.66025i 0.461757 + 0.399893i
\(470\) 2.00000 0.0922531
\(471\) 0 0
\(472\) 1.50000 + 2.59808i 0.0690431 + 0.119586i
\(473\) −15.0000 25.9808i −0.689701 1.19460i
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) −2.50000 + 12.9904i −0.114587 + 0.595413i
\(477\) 0 0
\(478\) 10.5000 18.1865i 0.480259 0.831833i
\(479\) −16.5000 28.5788i −0.753904 1.30580i −0.945917 0.324408i \(-0.894835\pi\)
0.192013 0.981392i \(-0.438498\pi\)
\(480\) 0 0
\(481\) −1.00000 + 1.73205i −0.0455961 + 0.0789747i
\(482\) 4.00000 0.182195
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −4.00000 + 6.92820i −0.181631 + 0.314594i
\(486\) 0 0
\(487\) −5.50000 9.52628i −0.249229 0.431677i 0.714083 0.700061i \(-0.246844\pi\)
−0.963312 + 0.268384i \(0.913510\pi\)
\(488\) 2.50000 4.33013i 0.113170 0.196016i
\(489\) 0 0
\(490\) −13.0000 5.19615i −0.587280 0.234738i
\(491\) −22.0000 −0.992846 −0.496423 0.868081i \(-0.665354\pi\)
−0.496423 + 0.868081i \(0.665354\pi\)
\(492\) 0 0
\(493\) 2.50000 + 4.33013i 0.112594 + 0.195019i
\(494\) 0.500000 + 0.866025i 0.0224961 + 0.0389643i
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −2.50000 + 0.866025i −0.112140 + 0.0388465i
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 6.00000 + 10.3923i 0.268328 + 0.464758i
\(501\) 0 0
\(502\) −9.00000 + 15.5885i −0.401690 + 0.695747i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.0000 + 24.2487i −0.620539 + 1.07481i 0.368846 + 0.929490i \(0.379753\pi\)
−0.989385 + 0.145315i \(0.953580\pi\)
\(510\) 0 0
\(511\) 24.0000 + 20.7846i 1.06170 + 0.919457i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.00000 + 5.19615i 0.132324 + 0.229192i
\(515\) 2.00000 + 3.46410i 0.0881305 + 0.152647i
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) −4.00000 3.46410i −0.175750 0.152204i
\(519\) 0 0
\(520\) 1.00000 1.73205i 0.0438529 0.0759555i
\(521\) 21.0000 + 36.3731i 0.920027 + 1.59353i 0.799370 + 0.600839i \(0.205167\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(522\) 0 0
\(523\) −3.00000 + 5.19615i −0.131181 + 0.227212i −0.924132 0.382073i \(-0.875210\pi\)
0.792951 + 0.609285i \(0.208544\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 6.00000 0.261612
\(527\) 10.0000 17.3205i 0.435607 0.754493i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −3.00000 + 5.19615i −0.130312 + 0.225706i
\(531\) 0 0
\(532\) −2.50000 + 0.866025i −0.108389 + 0.0375470i
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 12.0000 + 20.7846i 0.518805 + 0.898597i
\(536\) −2.50000 4.33013i −0.107984 0.187033i
\(537\) 0 0
\(538\) 9.00000 0.388018
\(539\) 19.5000 + 7.79423i 0.839924 + 0.335721i
\(540\) 0 0
\(541\) 17.0000 29.4449i 0.730887 1.26593i −0.225617 0.974216i \(-0.572440\pi\)
0.956504 0.291718i \(-0.0942267\pi\)
\(542\) −5.50000 9.52628i −0.236245 0.409189i
\(543\) 0 0
\(544\) 2.50000 4.33013i 0.107187 0.185653i
\(545\) −32.0000 −1.37073
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 9.00000 15.5885i 0.384461 0.665906i
\(549\) 0 0
\(550\) −1.50000 2.59808i −0.0639602 0.110782i
\(551\) −0.500000 + 0.866025i −0.0213007 + 0.0368939i
\(552\) 0 0
\(553\) −3.00000 + 15.5885i −0.127573 + 0.662889i
\(554\) −27.0000 −1.14712
\(555\) 0 0
\(556\) −1.00000 1.73205i −0.0424094 0.0734553i
\(557\) 9.00000 + 15.5885i 0.381342 + 0.660504i 0.991254 0.131965i \(-0.0421286\pi\)
−0.609912 + 0.792469i \(0.708795\pi\)
\(558\) 0 0
\(559\) 10.0000 0.422955
\(560\) 4.00000 + 3.46410i 0.169031 + 0.146385i
\(561\) 0 0
\(562\) 8.00000 13.8564i 0.337460 0.584497i
\(563\) 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i \(0.00211371\pi\)
−0.494238 + 0.869326i \(0.664553\pi\)
\(564\) 0 0
\(565\) 15.0000 25.9808i 0.631055 1.09302i
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 1.00000 0.0419591
\(569\) 9.50000 16.4545i 0.398261 0.689808i −0.595251 0.803540i \(-0.702947\pi\)
0.993511 + 0.113732i \(0.0362806\pi\)
\(570\) 0 0
\(571\) −18.0000 31.1769i −0.753277 1.30471i −0.946227 0.323505i \(-0.895139\pi\)
0.192950 0.981209i \(-0.438194\pi\)
\(572\) −1.50000 + 2.59808i −0.0627182 + 0.108631i
\(573\) 0 0
\(574\) −5.00000 + 25.9808i −0.208696 + 1.08442i
\(575\) 0 0
\(576\) 0 0
\(577\) −19.0000 32.9090i −0.790980 1.37002i −0.925361 0.379088i \(-0.876238\pi\)
0.134380 0.990930i \(-0.457096\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 0 0
\(580\) 2.00000 0.0830455
\(581\) 40.0000 13.8564i 1.65948 0.574861i
\(582\) 0 0
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) −6.00000 10.3923i −0.248282 0.430037i
\(585\) 0 0
\(586\) −6.00000 + 10.3923i −0.247858 + 0.429302i
\(587\) −31.0000 −1.27951 −0.639753 0.768580i \(-0.720964\pi\)
−0.639753 + 0.768580i \(0.720964\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 3.00000 5.19615i 0.123508 0.213922i
\(591\) 0 0
\(592\) 1.00000 + 1.73205i 0.0410997 + 0.0711868i
\(593\) 7.00000 12.1244i 0.287456 0.497888i −0.685746 0.727841i \(-0.740524\pi\)
0.973202 + 0.229953i \(0.0738573\pi\)
\(594\) 0 0
\(595\) 25.0000 8.66025i 1.02490 0.355036i
\(596\) −8.00000 −0.327693
\(597\) 0 0
\(598\) 0 0
\(599\) −19.0000 32.9090i −0.776319 1.34462i −0.934050 0.357142i \(-0.883751\pi\)
0.157731 0.987482i \(-0.449582\pi\)
\(600\) 0 0
\(601\) −19.0000 −0.775026 −0.387513 0.921864i \(-0.626666\pi\)
−0.387513 + 0.921864i \(0.626666\pi\)
\(602\) −5.00000 + 25.9808i −0.203785 + 1.05890i
\(603\) 0 0
\(604\) −9.50000 + 16.4545i −0.386550 + 0.669523i
\(605\) 2.00000 + 3.46410i 0.0813116 + 0.140836i
\(606\) 0 0
\(607\) 6.00000 10.3923i 0.243532 0.421811i −0.718186 0.695852i \(-0.755027\pi\)
0.961718 + 0.274041i \(0.0883604\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 0.500000 0.866025i 0.0202278 0.0350356i
\(612\) 0 0
\(613\) 8.00000 + 13.8564i 0.323117 + 0.559655i 0.981129 0.193352i \(-0.0619359\pi\)
−0.658012 + 0.753007i \(0.728603\pi\)
\(614\) 13.5000 23.3827i 0.544816 0.943648i
\(615\) 0 0
\(616\) −6.00000 5.19615i −0.241747 0.209359i
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 2.00000 + 3.46410i 0.0803868 + 0.139234i 0.903416 0.428765i \(-0.141051\pi\)
−0.823029 + 0.567999i \(0.807718\pi\)
\(620\) −4.00000 6.92820i −0.160644 0.278243i
\(621\) 0 0
\(622\) −14.0000 −0.561349
\(623\) 7.00000 36.3731i 0.280449 1.45726i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) −17.0000 29.4449i −0.679457 1.17685i
\(627\) 0 0
\(628\) −10.5000 + 18.1865i −0.418996 + 0.725722i
\(629\) 10.0000 0.398726
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 3.00000 5.19615i 0.119334 0.206692i
\(633\) 0 0
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) 0 0
\(636\) 0 0
\(637\) −5.50000 + 4.33013i −0.217918 + 0.171566i
\(638\) −3.00000 −0.118771
\(639\) 0 0
\(640\) −1.00000 1.73205i −0.0395285 0.0684653i
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.50000 4.33013i 0.0983612 0.170367i
\(647\) −19.0000 32.9090i −0.746967 1.29378i −0.949270 0.314462i \(-0.898176\pi\)
0.202303 0.979323i \(-0.435157\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 1.00000 0.0392232
\(651\) 0 0
\(652\) 19.0000 0.744097
\(653\) 9.00000 15.5885i 0.352197 0.610023i −0.634437 0.772975i \(-0.718768\pi\)
0.986634 + 0.162951i \(0.0521013\pi\)
\(654\) 0 0
\(655\) −4.00000 6.92820i −0.156293 0.270707i
\(656\) 5.00000 8.66025i 0.195217 0.338126i
\(657\) 0 0
\(658\) 2.00000 + 1.73205i 0.0779681 + 0.0675224i
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 13.0000 + 22.5167i 0.505641 + 0.875797i 0.999979 + 0.00652642i \(0.00207744\pi\)
−0.494337 + 0.869270i \(0.664589\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) 4.00000 + 3.46410i 0.155113 + 0.134332i
\(666\) 0 0
\(667\) 0 0
\(668\) 10.5000 + 18.1865i 0.406257 + 0.703658i
\(669\) 0 0
\(670\) −5.00000 + 8.66025i −0.193167 + 0.334575i
\(671\) 15.0000 0.579069
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 8.50000 14.7224i 0.327408 0.567087i
\(675\) 0 0
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) −1.50000 + 2.59808i −0.0576497 + 0.0998522i −0.893410 0.449242i \(-0.851694\pi\)
0.835760 + 0.549095i \(0.185027\pi\)
\(678\) 0 0
\(679\) −10.0000 + 3.46410i −0.383765 + 0.132940i
\(680\) −10.0000 −0.383482
\(681\) 0 0
\(682\) 6.00000 + 10.3923i 0.229752 + 0.397942i
\(683\) −6.00000 10.3923i −0.229584 0.397650i 0.728101 0.685470i \(-0.240403\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) −8.50000 16.4545i −0.324532 0.628235i
\(687\) 0 0
\(688\) 5.00000 8.66025i 0.190623 0.330169i
\(689\) 1.50000 + 2.59808i 0.0571454 + 0.0989788i
\(690\) 0 0
\(691\) 8.50000 14.7224i 0.323355 0.560068i −0.657823 0.753173i \(-0.728522\pi\)
0.981178 + 0.193105i \(0.0618558\pi\)
\(692\) −3.00000 −0.114043
\(693\) 0 0
\(694\) −2.00000 −0.0759190
\(695\) −2.00000 + 3.46410i −0.0758643 + 0.131401i
\(696\) 0 0
\(697\) −25.0000 43.3013i −0.946943 1.64015i
\(698\) −18.0000 + 31.1769i −0.681310 + 1.18006i
\(699\) 0 0
\(700\) −0.500000 + 2.59808i −0.0188982 + 0.0981981i
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 1.00000 + 1.73205i 0.0377157 + 0.0653255i
\(704\) 1.50000 + 2.59808i 0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) −4.00000 3.46410i −0.150435 0.130281i
\(708\) 0 0
\(709\) −10.0000 + 17.3205i −0.375558 + 0.650485i −0.990410 0.138157i \(-0.955882\pi\)
0.614852 + 0.788642i \(0.289216\pi\)
\(710\) −1.00000 1.73205i −0.0375293 0.0650027i
\(711\) 0 0
\(712\) −7.00000 + 12.1244i −0.262336 + 0.454379i
\(713\) 0 0
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 1.00000 1.73205i 0.0373718 0.0647298i
\(717\) 0 0
\(718\) 0 0
\(719\) −9.00000 + 15.5885i −0.335643 + 0.581351i −0.983608 0.180319i \(-0.942287\pi\)
0.647965 + 0.761670i \(0.275620\pi\)
\(720\) 0 0
\(721\) −1.00000 + 5.19615i −0.0372419 + 0.193515i
\(722\) −18.0000 −0.669891
\(723\) 0 0
\(724\) −1.50000 2.59808i −0.0557471 0.0965567i
\(725\) 0.500000 + 0.866025i 0.0185695 + 0.0321634i
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 2.50000 0.866025i 0.0926562 0.0320970i
\(729\) 0 0
\(730\) −12.0000 + 20.7846i −0.444140 + 0.769273i
\(731\) −25.0000 43.3013i −0.924658 1.60156i
\(732\) 0 0
\(733\) 20.0000 34.6410i 0.738717 1.27950i −0.214356 0.976756i \(-0.568765\pi\)
0.953073 0.302740i \(-0.0979013\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) 0 0
\(737\) 7.50000 12.9904i 0.276266 0.478507i
\(738\) 0 0
\(739\) −20.0000 34.6410i −0.735712 1.27429i −0.954410 0.298498i \(-0.903514\pi\)
0.218698 0.975793i \(-0.429819\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) 0 0
\(742\) −7.50000 + 2.59808i −0.275334 + 0.0953784i
\(743\) 3.00000 0.110059 0.0550297 0.998485i \(-0.482475\pi\)
0.0550297 + 0.998485i \(0.482475\pi\)
\(744\) 0 0
\(745\) 8.00000 + 13.8564i 0.293097 + 0.507659i
\(746\) −6.50000 11.2583i −0.237982 0.412197i
\(747\) 0 0
\(748\) 15.0000 0.548454
\(749\) −6.00000 + 31.1769i −0.219235 + 1.13918i
\(750\) 0 0
\(751\) 6.00000 10.3923i 0.218943 0.379221i −0.735542 0.677479i \(-0.763072\pi\)
0.954485 + 0.298259i \(0.0964058\pi\)
\(752\) −0.500000 0.866025i −0.0182331 0.0315807i
\(753\) 0 0
\(754\) 0.500000 0.866025i 0.0182089 0.0315388i
\(755\) 38.0000 1.38296
\(756\) 0 0
\(757\) −37.0000 −1.34479 −0.672394 0.740193i \(-0.734734\pi\)
−0.672394 + 0.740193i \(0.734734\pi\)
\(758\) −14.0000 + 24.2487i −0.508503 + 0.880753i
\(759\) 0 0
\(760\) −1.00000 1.73205i −0.0362738 0.0628281i
\(761\) 6.00000 10.3923i 0.217500 0.376721i −0.736543 0.676391i \(-0.763543\pi\)
0.954043 + 0.299670i \(0.0968765\pi\)
\(762\) 0 0
\(763\) −32.0000 27.7128i −1.15848 1.00327i
\(764\) −20.0000 −0.723575
\(765\) 0 0
\(766\) −16.0000 27.7128i −0.578103 1.00130i
\(767\) −1.50000 2.59808i −0.0541619 0.0938111i
\(768\) 0 0
\(769\) −44.0000 −1.58668 −0.793340 0.608778i \(-0.791660\pi\)
−0.793340 + 0.608778i \(0.791660\pi\)
\(770\) −3.00000 + 15.5885i −0.108112 + 0.561769i
\(771\) 0 0
\(772\) 7.00000 12.1244i 0.251936 0.436365i
\(773\) 13.0000 + 22.5167i 0.467578 + 0.809868i 0.999314 0.0370420i \(-0.0117935\pi\)
−0.531736 + 0.846910i \(0.678460\pi\)
\(774\) 0 0
\(775\) 2.00000 3.46410i 0.0718421 0.124434i
\(776\) 4.00000 0.143592
\(777\) 0 0
\(778\) −9.00000 −0.322666
\(779\) 5.00000 8.66025i 0.179144 0.310286i
\(780\) 0 0
\(781\) 1.50000 + 2.59808i 0.0536742 + 0.0929665i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 + 6.92820i 0.0357143 + 0.247436i
\(785\) 42.0000 1.49904
\(786\) 0 0
\(787\) 2.50000 + 4.33013i 0.0891154 + 0.154352i 0.907137 0.420834i \(-0.138263\pi\)
−0.818022 + 0.575187i \(0.804929\pi\)
\(788\) −12.0000 20.7846i −0.427482 0.740421i
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 37.5000 12.9904i 1.33335 0.461885i
\(792\) 0 0
\(793\) −2.50000 + 4.33013i −0.0887776 + 0.153767i
\(794\) −18.0000 31.1769i −0.638796 1.10643i
\(795\) 0 0
\(796\) 10.0000 17.3205i 0.354441 0.613909i
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −5.00000 −0.176887
\(800\) 0.500000 0.866025i 0.0176777 0.0306186i
\(801\) 0 0
\(802\) −18.0000 31.1769i −0.635602 1.10090i
\(803\) 18.0000 31.1769i 0.635206 1.10021i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 1.00000 + 1.73205i 0.0351799 + 0.0609333i
\(809\) −2.50000 4.33013i −0.0878953 0.152239i 0.818726 0.574184i \(-0.194681\pi\)
−0.906621 + 0.421945i \(0.861347\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 2.00000 + 1.73205i 0.0701862 + 0.0607831i
\(813\) 0 0
\(814\) −3.00000 + 5.19615i −0.105150 + 0.182125i
\(815\) −19.0000 32.9090i −0.665541 1.15275i
\(816\) 0 0
\(817\) 5.00000 8.66025i 0.174928 0.302984i
\(818\) −30.0000 −1.04893
\(819\) 0 0
\(820\) −20.0000 −0.698430
\(821\) 21.0000 36.3731i 0.732905 1.26943i −0.222731 0.974880i \(-0.571497\pi\)
0.955636 0.294549i \(-0.0951694\pi\)
\(822\) 0 0
\(823\) 15.0000 + 25.9808i 0.522867 + 0.905632i 0.999646 + 0.0266091i \(0.00847095\pi\)
−0.476779 + 0.879023i \(0.658196\pi\)
\(824\) 1.00000 1.73205i 0.0348367 0.0603388i
\(825\) 0 0
\(826\) 7.50000 2.59808i 0.260958 0.0903986i
\(827\) 35.0000 1.21707 0.608535 0.793527i \(-0.291758\pi\)
0.608535 + 0.793527i \(0.291758\pi\)
\(828\) 0 0
\(829\) 9.50000 + 16.4545i 0.329949 + 0.571488i 0.982501 0.186256i \(-0.0596352\pi\)
−0.652553 + 0.757743i \(0.726302\pi\)
\(830\) 16.0000 + 27.7128i 0.555368 + 0.961926i
\(831\) 0 0
\(832\) −1.00000 −0.0346688
\(833\) 32.5000 + 12.9904i 1.12606 + 0.450090i
\(834\) 0 0
\(835\) 21.0000 36.3731i 0.726735 1.25874i
\(836\) 1.50000 + 2.59808i 0.0518786 + 0.0898563i
\(837\) 0 0
\(838\) 5.00000 8.66025i 0.172722 0.299164i
\(839\) 9.00000 0.310715 0.155357 0.987858i \(-0.450347\pi\)
0.155357 + 0.987858i \(0.450347\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −4.00000 + 6.92820i −0.137849 + 0.238762i
\(843\) 0 0
\(844\) 8.00000 + 13.8564i 0.275371 + 0.476957i
\(845\) −1.00000 + 1.73205i −0.0344010 + 0.0595844i
\(846\) 0 0
\(847\) −1.00000 + 5.19615i −0.0343604 + 0.178542i
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) −2.50000 4.33013i −0.0857493 0.148522i
\(851\) 0 0
\(852\) 0 0
\(853\) −40.0000 −1.36957 −0.684787 0.728743i \(-0.740105\pi\)
−0.684787 + 0.728743i \(0.740105\pi\)
\(854\) −10.0000 8.66025i −0.342193 0.296348i
\(855\) 0 0
\(856\) 6.00000 10.3923i 0.205076 0.355202i
\(857\) 1.50000 + 2.59808i 0.0512390 + 0.0887486i 0.890507 0.454969i \(-0.150350\pi\)
−0.839268 + 0.543718i \(0.817016\pi\)
\(858\) 0 0
\(859\) 20.0000 34.6410i 0.682391 1.18194i −0.291858 0.956462i \(-0.594273\pi\)
0.974249 0.225475i \(-0.0723932\pi\)
\(860\) −20.0000 −0.681994
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) −22.0000 + 38.1051i −0.748889 + 1.29711i 0.199467 + 0.979905i \(0.436079\pi\)
−0.948356 + 0.317209i \(0.897254\pi\)
\(864\) 0 0
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) 9.50000 16.4545i 0.322823 0.559146i
\(867\) 0 0
\(868\) 2.00000 10.3923i 0.0678844 0.352738i
\(869\) 18.0000 0.610608
\(870\) 0 0
\(871\) 2.50000 + 4.33013i 0.0847093 + 0.146721i
\(872\) 8.00000 + 13.8564i 0.270914 + 0.469237i
\(873\) 0 0
\(874\) 0 0
\(875\) 30.0000 10.3923i 1.01419 0.351324i
\(876\) 0 0
\(877\) −11.0000 + 19.0526i −0.371444 + 0.643359i −0.989788 0.142548i \(-0.954470\pi\)
0.618344 + 0.785907i \(0.287804\pi\)
\(878\) −20.0000 34.6410i −0.674967 1.16908i
\(879\) 0 0
\(880\) 3.00000 5.19615i 0.101130 0.175162i
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −38.0000 −1.27880 −0.639401 0.768874i \(-0.720818\pi\)
−0.639401 + 0.768874i \(0.720818\pi\)
\(884\) −2.50000 + 4.33013i −0.0840841 + 0.145638i
\(885\) 0 0
\(886\) −9.00000 15.5885i −0.302361 0.523704i
\(887\) −7.00000 + 12.1244i −0.235037 + 0.407096i −0.959283 0.282445i \(-0.908854\pi\)
0.724246 + 0.689541i \(0.242188\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28.0000 0.938562
\(891\) 0 0
\(892\) −5.50000 9.52628i −0.184154 0.318963i
\(893\) −0.500000 0.866025i −0.0167319 0.0289804i
\(894\) 0 0
\(895\) −4.00000 −0.133705
\(896\) 0.500000 2.59808i 0.0167038 0.0867956i
\(897\) 0 0
\(898\) −4.00000 + 6.92820i −0.133482 + 0.231197i
\(899\) −2.00000 3.46410i −0.0667037 0.115534i
\(900\) 0 0
\(901\) 7.50000 12.9904i 0.249861 0.432772i
\(902\) 30.0000 0.998891
\(903\) 0 0
\(904\) −15.0000 −0.498893
\(905\) −3.00000 + 5.19615i −0.0997234 + 0.172726i
\(906\) 0 0
\(907\) −14.0000 24.2487i −0.464862 0.805165i 0.534333 0.845274i \(-0.320563\pi\)
−0.999195 + 0.0401089i \(0.987230\pi\)
\(908\) 4.00000 6.92820i 0.132745 0.229920i
\(909\) 0 0
\(910\) −4.00000 3.46410i −0.132599 0.114834i
\(911\) −26.0000 −0.861418 −0.430709 0.902491i \(-0.641737\pi\)
−0.430709 + 0.902491i \(0.641737\pi\)
\(912\) 0 0
\(913\) −24.0000 41.5692i −0.794284 1.37574i
\(914\) 8.00000 + 13.8564i 0.264616 + 0.458329i
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 2.00000 10.3923i 0.0660458 0.343184i
\(918\) 0 0
\(919\) 1.00000 1.73205i 0.0329870 0.0571351i −0.849061 0.528295i \(-0.822831\pi\)
0.882048 + 0.471160i \(0.156165\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10.0000 17.3205i 0.329332 0.570421i
\(923\) −1.00000 −0.0329154
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −4.00000 + 6.92820i −0.131448 + 0.227675i
\(927\) 0 0
\(928\) −0.500000 0.866025i −0.0164133 0.0284287i
\(929\) −23.0000 + 39.8372i −0.754606 + 1.30702i 0.190965 + 0.981597i \(0.438838\pi\)
−0.945570 + 0.325418i \(0.894495\pi\)
\(930\) 0 0
\(931\) 1.00000 + 6.92820i 0.0327737 + 0.227063i
\(932\) −11.0000 −0.360317
\(933\) 0 0
\(934\) −12.0000 20.7846i −0.392652 0.680093i
\(935\) −15.0000 25.9808i −0.490552 0.849662i
\(936\) 0 0
\(937\) −5.00000 −0.163343 −0.0816714 0.996659i \(-0.526026\pi\)
−0.0816714 + 0.996659i \(0.526026\pi\)
\(938\) −12.5000 + 4.33013i −0.408139 + 0.141384i
\(939\) 0 0
\(940\) −1.00000 + 1.73205i −0.0326164 + 0.0564933i
\(941\) −12.0000 20.7846i −0.391189 0.677559i 0.601418 0.798935i \(-0.294603\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 30.0000 0.975384
\(947\) −12.5000 + 21.6506i −0.406195 + 0.703551i −0.994460 0.105118i \(-0.966478\pi\)
0.588264 + 0.808669i \(0.299811\pi\)
\(948\) 0 0
\(949\) 6.00000 + 10.3923i 0.194768 + 0.337348i
\(950\) 0.500000 0.866025i 0.0162221 0.0280976i
\(951\) 0 0
\(952\) −10.0000 8.66025i −0.324102 0.280680i
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) 20.0000 + 34.6410i 0.647185 + 1.12096i
\(956\) 10.5000 + 18.1865i 0.339594 + 0.588195i
\(957\) 0 0
\(958\) 33.0000 1.06618
\(959\) −36.0000 31.1769i −1.16250 1.00676i
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) −1.00000 1.73205i −0.0322413 0.0558436i
\(963\) 0 0
\(964\) −2.00000 + 3.46410i −0.0644157 + 0.111571i
\(965\) −28.0000 −0.901352
\(966\) 0 0
\(967\) −31.0000 −0.996893 −0.498446 0.866921i \(-0.666096\pi\)
−0.498446 + 0.866921i \(0.666096\pi\)
\(968\) 1.00000 1.73205i 0.0321412 0.0556702i
\(969\) 0 0
\(970\) −4.00000 6.92820i −0.128432 0.222451i
\(971\) −7.00000 + 12.1244i −0.224641 + 0.389089i −0.956212 0.292676i \(-0.905454\pi\)
0.731571 + 0.681765i \(0.238788\pi\)
\(972\) 0 0
\(973\) −5.00000 + 1.73205i −0.160293 + 0.0555270i
\(974\) 11.0000 0.352463
\(975\) 0 0
\(976\) 2.50000 + 4.33013i 0.0800230 + 0.138604i
\(977\) 31.0000 + 53.6936i 0.991778 + 1.71781i 0.606715 + 0.794919i \(0.292487\pi\)
0.385063 + 0.922890i \(0.374180\pi\)
\(978\) 0 0
\(979\) −42.0000 −1.34233
\(980\) 11.0000 8.66025i 0.351382 0.276642i
\(981\) 0 0
\(982\) 11.0000 19.0526i 0.351024 0.607992i
\(983\) −29.5000 51.0955i −0.940904 1.62969i −0.763752 0.645510i \(-0.776645\pi\)
−0.177152 0.984184i \(-0.556688\pi\)
\(984\) 0 0
\(985\) −24.0000 + 41.5692i −0.764704 + 1.32451i
\(986\) −5.00000 −0.159232
\(987\) 0 0
\(988\) −1.00000 −0.0318142
\(989\) 0 0
\(990\) 0 0
\(991\) 24.0000 + 41.5692i 0.762385 + 1.32049i 0.941618 + 0.336683i \(0.109305\pi\)
−0.179233 + 0.983807i \(0.557362\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0.500000 2.59808i 0.0158590 0.0824060i
\(995\) −40.0000 −1.26809
\(996\) 0 0
\(997\) −9.50000 16.4545i −0.300868 0.521119i 0.675465 0.737392i \(-0.263943\pi\)
−0.976333 + 0.216274i \(0.930610\pi\)
\(998\) 14.0000 + 24.2487i 0.443162 + 0.767580i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1638.2.j.a.1171.1 2
3.2 odd 2 546.2.i.e.79.1 2
7.4 even 3 inner 1638.2.j.a.235.1 2
21.2 odd 6 3822.2.a.k.1.1 1
21.5 even 6 3822.2.a.i.1.1 1
21.11 odd 6 546.2.i.e.235.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.i.e.79.1 2 3.2 odd 2
546.2.i.e.235.1 yes 2 21.11 odd 6
1638.2.j.a.235.1 2 7.4 even 3 inner
1638.2.j.a.1171.1 2 1.1 even 1 trivial
3822.2.a.i.1.1 1 21.5 even 6
3822.2.a.k.1.1 1 21.2 odd 6