L(s) = 1 | + 2i·2-s + 3i·3-s − 4·4-s − 6·6-s − 14i·7-s − 8i·8-s − 9·9-s + 11·11-s − 12i·12-s + 80i·13-s + 28·14-s + 16·16-s − 30i·17-s − 18i·18-s − 56·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 0.755i·7-s − 0.353i·8-s − 0.333·9-s + 0.301·11-s − 0.288i·12-s + 1.70i·13-s + 0.534·14-s + 0.250·16-s − 0.428i·17-s − 0.235i·18-s − 0.676·19-s + ⋯ |
Λ(s)=(=(1650s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(1650s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1650
= 2⋅3⋅52⋅11
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
97.3531 |
Root analytic conductor: |
9.86677 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1650(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1650, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.728882140 |
L(21) |
≈ |
1.728882140 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2iT |
| 3 | 1−3iT |
| 5 | 1 |
| 11 | 1−11T |
good | 7 | 1+14iT−343T2 |
| 13 | 1−80iT−2.19e3T2 |
| 17 | 1+30iT−4.91e3T2 |
| 19 | 1+56T+6.85e3T2 |
| 23 | 1+126iT−1.21e4T2 |
| 29 | 1−222T+2.43e4T2 |
| 31 | 1+16T+2.97e4T2 |
| 37 | 1−106iT−5.06e4T2 |
| 41 | 1−114T+6.89e4T2 |
| 43 | 1+52iT−7.95e4T2 |
| 47 | 1+246iT−1.03e5T2 |
| 53 | 1+264iT−1.48e5T2 |
| 59 | 1+264T+2.05e5T2 |
| 61 | 1−92T+2.26e5T2 |
| 67 | 1−796iT−3.00e5T2 |
| 71 | 1−426T+3.57e5T2 |
| 73 | 1+1.17e3iT−3.89e5T2 |
| 79 | 1+842T+4.93e5T2 |
| 83 | 1−852iT−5.71e5T2 |
| 89 | 1−1.06e3T+7.04e5T2 |
| 97 | 1−1.28e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.048847157922289475938266027911, −8.643771129578116357788453522612, −7.60254680931525930687531715511, −6.67289744221264786608868768271, −6.35375210643377462112185657272, −4.95771324866655246549777336275, −4.40668024140145834066928344927, −3.70348970865567097435138853100, −2.29824213149477192691701130071, −0.818296200993271906033557257458,
0.50765480275322584495882246250, 1.56901505720109754669667902620, 2.63249424252351279769863459030, 3.33193754892157837471457175350, 4.53673405742854260207416583782, 5.61185215727687745192037078589, 6.08261916094949223670679463313, 7.30887240786027889982670477447, 8.143070786874588471232525199361, 8.689223038619894359470950896460