Properties

Label 2-1650-5.4-c3-0-34
Degree $2$
Conductor $1650$
Sign $-0.447 - 0.894i$
Analytic cond. $97.3531$
Root an. cond. $9.86677$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·2-s + 3i·3-s − 4·4-s − 6·6-s − 14i·7-s − 8i·8-s − 9·9-s + 11·11-s − 12i·12-s + 80i·13-s + 28·14-s + 16·16-s − 30i·17-s − 18i·18-s − 56·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s − 0.755i·7-s − 0.353i·8-s − 0.333·9-s + 0.301·11-s − 0.288i·12-s + 1.70i·13-s + 0.534·14-s + 0.250·16-s − 0.428i·17-s − 0.235i·18-s − 0.676·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(97.3531\)
Root analytic conductor: \(9.86677\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1650} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1650,\ (\ :3/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.728882140\)
\(L(\frac12)\) \(\approx\) \(1.728882140\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2iT \)
3 \( 1 - 3iT \)
5 \( 1 \)
11 \( 1 - 11T \)
good7 \( 1 + 14iT - 343T^{2} \)
13 \( 1 - 80iT - 2.19e3T^{2} \)
17 \( 1 + 30iT - 4.91e3T^{2} \)
19 \( 1 + 56T + 6.85e3T^{2} \)
23 \( 1 + 126iT - 1.21e4T^{2} \)
29 \( 1 - 222T + 2.43e4T^{2} \)
31 \( 1 + 16T + 2.97e4T^{2} \)
37 \( 1 - 106iT - 5.06e4T^{2} \)
41 \( 1 - 114T + 6.89e4T^{2} \)
43 \( 1 + 52iT - 7.95e4T^{2} \)
47 \( 1 + 246iT - 1.03e5T^{2} \)
53 \( 1 + 264iT - 1.48e5T^{2} \)
59 \( 1 + 264T + 2.05e5T^{2} \)
61 \( 1 - 92T + 2.26e5T^{2} \)
67 \( 1 - 796iT - 3.00e5T^{2} \)
71 \( 1 - 426T + 3.57e5T^{2} \)
73 \( 1 + 1.17e3iT - 3.89e5T^{2} \)
79 \( 1 + 842T + 4.93e5T^{2} \)
83 \( 1 - 852iT - 5.71e5T^{2} \)
89 \( 1 - 1.06e3T + 7.04e5T^{2} \)
97 \( 1 - 1.28e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.048847157922289475938266027911, −8.643771129578116357788453522612, −7.60254680931525930687531715511, −6.67289744221264786608868768271, −6.35375210643377462112185657272, −4.95771324866655246549777336275, −4.40668024140145834066928344927, −3.70348970865567097435138853100, −2.29824213149477192691701130071, −0.818296200993271906033557257458, 0.50765480275322584495882246250, 1.56901505720109754669667902620, 2.63249424252351279769863459030, 3.33193754892157837471457175350, 4.53673405742854260207416583782, 5.61185215727687745192037078589, 6.08261916094949223670679463313, 7.30887240786027889982670477447, 8.143070786874588471232525199361, 8.689223038619894359470950896460

Graph of the $Z$-function along the critical line