Properties

Label 1650.4.c.g
Level 16501650
Weight 44
Character orbit 1650.c
Analytic conductor 97.35397.353
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1650,4,Mod(199,1650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1650.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1650=235211 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1650.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 97.353151509597.3531515095
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2iq23iq34q46q6+14iq7+8iq89q9+11q11+12iq1280iq13+28q14+16q16+30iq17+18iq1856q19+42q2122iq22+99q99+O(q100) q - 2 i q^{2} - 3 i q^{3} - 4 q^{4} - 6 q^{6} + 14 i q^{7} + 8 i q^{8} - 9 q^{9} + 11 q^{11} + 12 i q^{12} - 80 i q^{13} + 28 q^{14} + 16 q^{16} + 30 i q^{17} + 18 i q^{18} - 56 q^{19} + 42 q^{21} - 22 i q^{22} + \cdots - 99 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q412q618q9+22q11+56q14+32q16112q19+84q21+48q24320q26+444q2932q31+120q34+72q36480q39+228q4188q44+198q99+O(q100) 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} + 22 q^{11} + 56 q^{14} + 32 q^{16} - 112 q^{19} + 84 q^{21} + 48 q^{24} - 320 q^{26} + 444 q^{29} - 32 q^{31} + 120 q^{34} + 72 q^{36} - 480 q^{39} + 228 q^{41} - 88 q^{44}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1650Z)×\left(\mathbb{Z}/1650\mathbb{Z}\right)^\times.

nn 551551 727727 12011201
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
199.1
1.00000i
1.00000i
2.00000i 3.00000i −4.00000 0 −6.00000 14.0000i 8.00000i −9.00000 0
199.2 2.00000i 3.00000i −4.00000 0 −6.00000 14.0000i 8.00000i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1650.4.c.g 2
5.b even 2 1 inner 1650.4.c.g 2
5.c odd 4 1 66.4.a.a 1
5.c odd 4 1 1650.4.a.h 1
15.e even 4 1 198.4.a.f 1
20.e even 4 1 528.4.a.d 1
40.i odd 4 1 2112.4.a.g 1
40.k even 4 1 2112.4.a.s 1
55.e even 4 1 726.4.a.h 1
60.l odd 4 1 1584.4.a.i 1
165.l odd 4 1 2178.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.4.a.a 1 5.c odd 4 1
198.4.a.f 1 15.e even 4 1
528.4.a.d 1 20.e even 4 1
726.4.a.h 1 55.e even 4 1
1584.4.a.i 1 60.l odd 4 1
1650.4.a.h 1 5.c odd 4 1
1650.4.c.g 2 1.a even 1 1 trivial
1650.4.c.g 2 5.b even 2 1 inner
2112.4.a.g 1 40.i odd 4 1
2112.4.a.s 1 40.k even 4 1
2178.4.a.g 1 165.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1650,[χ])S_{4}^{\mathrm{new}}(1650, [\chi]):

T72+196 T_{7}^{2} + 196 Copy content Toggle raw display
T132+6400 T_{13}^{2} + 6400 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+196 T^{2} + 196 Copy content Toggle raw display
1111 (T11)2 (T - 11)^{2} Copy content Toggle raw display
1313 T2+6400 T^{2} + 6400 Copy content Toggle raw display
1717 T2+900 T^{2} + 900 Copy content Toggle raw display
1919 (T+56)2 (T + 56)^{2} Copy content Toggle raw display
2323 T2+15876 T^{2} + 15876 Copy content Toggle raw display
2929 (T222)2 (T - 222)^{2} Copy content Toggle raw display
3131 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
3737 T2+11236 T^{2} + 11236 Copy content Toggle raw display
4141 (T114)2 (T - 114)^{2} Copy content Toggle raw display
4343 T2+2704 T^{2} + 2704 Copy content Toggle raw display
4747 T2+60516 T^{2} + 60516 Copy content Toggle raw display
5353 T2+69696 T^{2} + 69696 Copy content Toggle raw display
5959 (T+264)2 (T + 264)^{2} Copy content Toggle raw display
6161 (T92)2 (T - 92)^{2} Copy content Toggle raw display
6767 T2+633616 T^{2} + 633616 Copy content Toggle raw display
7171 (T426)2 (T - 426)^{2} Copy content Toggle raw display
7373 T2+1378276 T^{2} + 1378276 Copy content Toggle raw display
7979 (T+842)2 (T + 842)^{2} Copy content Toggle raw display
8383 T2+725904 T^{2} + 725904 Copy content Toggle raw display
8989 (T1062)2 (T - 1062)^{2} Copy content Toggle raw display
9797 T2+1643524 T^{2} + 1643524 Copy content Toggle raw display
show more
show less