Properties

Label 198.4.a.f
Level 198198
Weight 44
Character orbit 198.a
Self dual yes
Analytic conductor 11.68211.682
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [198,4,Mod(1,198)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(198, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("198.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 198=23211 198 = 2 \cdot 3^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 198.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.682378181111.6823781811
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 66)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+4q4+14q7+8q811q11+80q13+28q14+16q1630q17+56q1922q22+126q23125q25+160q26+56q28+222q2916q31+294q98+O(q100) q + 2 q^{2} + 4 q^{4} + 14 q^{7} + 8 q^{8} - 11 q^{11} + 80 q^{13} + 28 q^{14} + 16 q^{16} - 30 q^{17} + 56 q^{19} - 22 q^{22} + 126 q^{23} - 125 q^{25} + 160 q^{26} + 56 q^{28} + 222 q^{29} - 16 q^{31}+ \cdots - 294 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 0 4.00000 0 0 14.0000 8.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 198.4.a.f 1
3.b odd 2 1 66.4.a.a 1
4.b odd 2 1 1584.4.a.i 1
11.b odd 2 1 2178.4.a.g 1
12.b even 2 1 528.4.a.d 1
15.d odd 2 1 1650.4.a.h 1
15.e even 4 2 1650.4.c.g 2
24.f even 2 1 2112.4.a.s 1
24.h odd 2 1 2112.4.a.g 1
33.d even 2 1 726.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.4.a.a 1 3.b odd 2 1
198.4.a.f 1 1.a even 1 1 trivial
528.4.a.d 1 12.b even 2 1
726.4.a.h 1 33.d even 2 1
1584.4.a.i 1 4.b odd 2 1
1650.4.a.h 1 15.d odd 2 1
1650.4.c.g 2 15.e even 4 2
2112.4.a.g 1 24.h odd 2 1
2112.4.a.s 1 24.f even 2 1
2178.4.a.g 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S4new(Γ0(198))S_{4}^{\mathrm{new}}(\Gamma_0(198)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T14 T - 14 Copy content Toggle raw display
1111 T+11 T + 11 Copy content Toggle raw display
1313 T80 T - 80 Copy content Toggle raw display
1717 T+30 T + 30 Copy content Toggle raw display
1919 T56 T - 56 Copy content Toggle raw display
2323 T126 T - 126 Copy content Toggle raw display
2929 T222 T - 222 Copy content Toggle raw display
3131 T+16 T + 16 Copy content Toggle raw display
3737 T+106 T + 106 Copy content Toggle raw display
4141 T+114 T + 114 Copy content Toggle raw display
4343 T+52 T + 52 Copy content Toggle raw display
4747 T+246 T + 246 Copy content Toggle raw display
5353 T264 T - 264 Copy content Toggle raw display
5959 T+264 T + 264 Copy content Toggle raw display
6161 T92 T - 92 Copy content Toggle raw display
6767 T+796 T + 796 Copy content Toggle raw display
7171 T+426 T + 426 Copy content Toggle raw display
7373 T+1174 T + 1174 Copy content Toggle raw display
7979 T842 T - 842 Copy content Toggle raw display
8383 T+852 T + 852 Copy content Toggle raw display
8989 T1062 T - 1062 Copy content Toggle raw display
9797 T+1282 T + 1282 Copy content Toggle raw display
show more
show less