Properties

Label 198.4.a.f
Level $198$
Weight $4$
Character orbit 198.a
Self dual yes
Analytic conductor $11.682$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [198,4,Mod(1,198)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(198, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("198.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 198.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6823781811\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + 14 q^{7} + 8 q^{8} - 11 q^{11} + 80 q^{13} + 28 q^{14} + 16 q^{16} - 30 q^{17} + 56 q^{19} - 22 q^{22} + 126 q^{23} - 125 q^{25} + 160 q^{26} + 56 q^{28} + 222 q^{29} - 16 q^{31}+ \cdots - 294 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 0 0 14.0000 8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 198.4.a.f 1
3.b odd 2 1 66.4.a.a 1
4.b odd 2 1 1584.4.a.i 1
11.b odd 2 1 2178.4.a.g 1
12.b even 2 1 528.4.a.d 1
15.d odd 2 1 1650.4.a.h 1
15.e even 4 2 1650.4.c.g 2
24.f even 2 1 2112.4.a.s 1
24.h odd 2 1 2112.4.a.g 1
33.d even 2 1 726.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.4.a.a 1 3.b odd 2 1
198.4.a.f 1 1.a even 1 1 trivial
528.4.a.d 1 12.b even 2 1
726.4.a.h 1 33.d even 2 1
1584.4.a.i 1 4.b odd 2 1
1650.4.a.h 1 15.d odd 2 1
1650.4.c.g 2 15.e even 4 2
2112.4.a.g 1 24.h odd 2 1
2112.4.a.s 1 24.f even 2 1
2178.4.a.g 1 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(198))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 14 \) Copy content Toggle raw display
$11$ \( T + 11 \) Copy content Toggle raw display
$13$ \( T - 80 \) Copy content Toggle raw display
$17$ \( T + 30 \) Copy content Toggle raw display
$19$ \( T - 56 \) Copy content Toggle raw display
$23$ \( T - 126 \) Copy content Toggle raw display
$29$ \( T - 222 \) Copy content Toggle raw display
$31$ \( T + 16 \) Copy content Toggle raw display
$37$ \( T + 106 \) Copy content Toggle raw display
$41$ \( T + 114 \) Copy content Toggle raw display
$43$ \( T + 52 \) Copy content Toggle raw display
$47$ \( T + 246 \) Copy content Toggle raw display
$53$ \( T - 264 \) Copy content Toggle raw display
$59$ \( T + 264 \) Copy content Toggle raw display
$61$ \( T - 92 \) Copy content Toggle raw display
$67$ \( T + 796 \) Copy content Toggle raw display
$71$ \( T + 426 \) Copy content Toggle raw display
$73$ \( T + 1174 \) Copy content Toggle raw display
$79$ \( T - 842 \) Copy content Toggle raw display
$83$ \( T + 852 \) Copy content Toggle raw display
$89$ \( T - 1062 \) Copy content Toggle raw display
$97$ \( T + 1282 \) Copy content Toggle raw display
show more
show less