Properties

Label 2112.4.a.s
Level 21122112
Weight 44
Character orbit 2112.a
Self dual yes
Analytic conductor 124.612124.612
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2112,4,Mod(1,2112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2112.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2112=26311 2112 = 2^{6} \cdot 3 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 124.612033932124.612033932
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 66)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q314q7+9q9+11q1180q13+30q17+56q1942q21+126q23125q25+27q27+222q29+16q31+33q33+106q37240q39+114q41++99q99+O(q100) q + 3 q^{3} - 14 q^{7} + 9 q^{9} + 11 q^{11} - 80 q^{13} + 30 q^{17} + 56 q^{19} - 42 q^{21} + 126 q^{23} - 125 q^{25} + 27 q^{27} + 222 q^{29} + 16 q^{31} + 33 q^{33} + 106 q^{37} - 240 q^{39} + 114 q^{41}+ \cdots + 99 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 0 0 −14.0000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2112.4.a.s 1
4.b odd 2 1 2112.4.a.g 1
8.b even 2 1 528.4.a.d 1
8.d odd 2 1 66.4.a.a 1
24.f even 2 1 198.4.a.f 1
24.h odd 2 1 1584.4.a.i 1
40.e odd 2 1 1650.4.a.h 1
40.k even 4 2 1650.4.c.g 2
88.g even 2 1 726.4.a.h 1
264.p odd 2 1 2178.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.4.a.a 1 8.d odd 2 1
198.4.a.f 1 24.f even 2 1
528.4.a.d 1 8.b even 2 1
726.4.a.h 1 88.g even 2 1
1584.4.a.i 1 24.h odd 2 1
1650.4.a.h 1 40.e odd 2 1
1650.4.c.g 2 40.k even 4 2
2112.4.a.g 1 4.b odd 2 1
2112.4.a.s 1 1.a even 1 1 trivial
2178.4.a.g 1 264.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2112))S_{4}^{\mathrm{new}}(\Gamma_0(2112)):

T5 T_{5} Copy content Toggle raw display
T7+14 T_{7} + 14 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+14 T + 14 Copy content Toggle raw display
1111 T11 T - 11 Copy content Toggle raw display
1313 T+80 T + 80 Copy content Toggle raw display
1717 T30 T - 30 Copy content Toggle raw display
1919 T56 T - 56 Copy content Toggle raw display
2323 T126 T - 126 Copy content Toggle raw display
2929 T222 T - 222 Copy content Toggle raw display
3131 T16 T - 16 Copy content Toggle raw display
3737 T106 T - 106 Copy content Toggle raw display
4141 T114 T - 114 Copy content Toggle raw display
4343 T+52 T + 52 Copy content Toggle raw display
4747 T+246 T + 246 Copy content Toggle raw display
5353 T264 T - 264 Copy content Toggle raw display
5959 T264 T - 264 Copy content Toggle raw display
6161 T+92 T + 92 Copy content Toggle raw display
6767 T+796 T + 796 Copy content Toggle raw display
7171 T+426 T + 426 Copy content Toggle raw display
7373 T+1174 T + 1174 Copy content Toggle raw display
7979 T+842 T + 842 Copy content Toggle raw display
8383 T852 T - 852 Copy content Toggle raw display
8989 T+1062 T + 1062 Copy content Toggle raw display
9797 T+1282 T + 1282 Copy content Toggle raw display
show more
show less