L(s) = 1 | + (−1.5 − 0.866i)3-s + (−2.05 + 1.18i)5-s + (4.55 + 5.31i)7-s + (1.5 + 2.59i)9-s + (4.00 − 6.94i)11-s + 23.8i·13-s + 4.10·15-s + (27.9 + 16.1i)17-s + (12.6 − 7.28i)19-s + (−2.24 − 11.9i)21-s + (−2.82 − 4.89i)23-s + (−9.69 + 16.7i)25-s − 5.19i·27-s − 34.3·29-s + (23.5 + 13.5i)31-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.288i)3-s + (−0.410 + 0.236i)5-s + (0.651 + 0.758i)7-s + (0.166 + 0.288i)9-s + (0.364 − 0.631i)11-s + 1.83i·13-s + 0.273·15-s + (1.64 + 0.950i)17-s + (0.663 − 0.383i)19-s + (−0.106 − 0.567i)21-s + (−0.122 − 0.212i)23-s + (−0.387 + 0.671i)25-s − 0.192i·27-s − 1.18·29-s + (0.759 + 0.438i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.670 - 0.742i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.670 - 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.12145 + 0.498245i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12145 + 0.498245i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 + 0.866i)T \) |
| 7 | \( 1 + (-4.55 - 5.31i)T \) |
good | 5 | \( 1 + (2.05 - 1.18i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-4.00 + 6.94i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 - 23.8iT - 169T^{2} \) |
| 17 | \( 1 + (-27.9 - 16.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-12.6 + 7.28i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (2.82 + 4.89i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 34.3T + 841T^{2} \) |
| 31 | \( 1 + (-23.5 - 13.5i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-4.04 - 7.00i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 50.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 39.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + (8.13 - 4.69i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-27.0 + 46.8i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (38.1 + 22.0i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (30 - 17.3i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-58.9 + 102. i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 38.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-50.4 - 29.1i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-38.2 - 66.3i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 58.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-12.5 + 7.21i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 120. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.34263888870486779831539259335, −11.69597662555914207016454455157, −11.07522073282043743059888521181, −9.628898546147554853130214466833, −8.534928664421657496554892191206, −7.45860063805434406490813243393, −6.27056505190834632358113553753, −5.18731248961981873135267366773, −3.67673331108487302815544080180, −1.66953012511966268488505732258,
0.910307767994797916885318421456, 3.43531865926732640806766932416, 4.76213127693962594941926462258, 5.74192828205467348433522470137, 7.46876349966275498410577080788, 7.982120567969383001439939339307, 9.729984245456010029351639726833, 10.33843619279663489772486572578, 11.55141751629780543282484312127, 12.20655160862950994139512814982