Properties

Label 168.3.z.a
Level 168168
Weight 33
Character orbit 168.z
Analytic conductor 4.5784.578
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,3,Mod(73,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.73"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 168=2337 168 = 2^{3} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 168.z (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.577668441254.57766844125
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.126303473664.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x82x79x6+2x5+92x4+14x3441x2686x+2401 x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β42)q3+(β6+1)q5+(β7+β53β4+1)q7+(3β4+3)q9+(β7+2β5+3β4++1)q11+(β7+4β6+3β1)q13++(3β7+6β5++15)q99+O(q100) q + (\beta_{4} - 2) q^{3} + (\beta_{6} + 1) q^{5} + ( - \beta_{7} + \beta_{5} - 3 \beta_{4} + 1) q^{7} + ( - 3 \beta_{4} + 3) q^{9} + ( - \beta_{7} + 2 \beta_{5} + 3 \beta_{4} + \cdots + 1) q^{11} + ( - \beta_{7} + 4 \beta_{6} + \cdots - 3 \beta_1) q^{13}+ \cdots + ( - 3 \beta_{7} + 6 \beta_{5} + \cdots + 15) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q12q3+6q54q7+12q9+14q1112q15+12q17+78q19+18q216q254q2924q3142q33156q35+50q376q3920q43+18q45++84q99+O(q100) 8 q - 12 q^{3} + 6 q^{5} - 4 q^{7} + 12 q^{9} + 14 q^{11} - 12 q^{15} + 12 q^{17} + 78 q^{19} + 18 q^{21} - 6 q^{25} - 4 q^{29} - 24 q^{31} - 42 q^{33} - 156 q^{35} + 50 q^{37} - 6 q^{39} - 20 q^{43} + 18 q^{45}+ \cdots + 84 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x79x6+2x5+92x4+14x3441x2686x+2401 x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 : Copy content Toggle raw display

β1\beta_{1}== (13ν7+355ν6+96ν5+198ν45242ν31568ν2+1029ν+28469)/21952 ( -13\nu^{7} + 355\nu^{6} + 96\nu^{5} + 198\nu^{4} - 5242\nu^{3} - 1568\nu^{2} + 1029\nu + 28469 ) / 21952 Copy content Toggle raw display
β2\beta_{2}== (25ν7+15ν6+736ν5274ν43938ν32688ν2+18865ν+21609)/10976 ( -25\nu^{7} + 15\nu^{6} + 736\nu^{5} - 274\nu^{4} - 3938\nu^{3} - 2688\nu^{2} + 18865\nu + 21609 ) / 10976 Copy content Toggle raw display
β3\beta_{3}== (73ν7+55ν6288ν5+526ν45330ν3672ν2+21217ν+57281)/21952 ( -73\nu^{7} + 55\nu^{6} - 288\nu^{5} + 526\nu^{4} - 5330\nu^{3} - 672\nu^{2} + 21217\nu + 57281 ) / 21952 Copy content Toggle raw display
β4\beta_{4}== (99ν7+75ν6800ν51818ν4+4950ν3+16800ν210731ν89523)/21952 ( 99\nu^{7} + 75\nu^{6} - 800\nu^{5} - 1818\nu^{4} + 4950\nu^{3} + 16800\nu^{2} - 10731\nu - 89523 ) / 21952 Copy content Toggle raw display
β5\beta_{5}== (67ν727ν6+288ν5+874ν41782ν36048ν2+9163ν+40131)/5488 ( -67\nu^{7} - 27\nu^{6} + 288\nu^{5} + 874\nu^{4} - 1782\nu^{3} - 6048\nu^{2} + 9163\nu + 40131 ) / 5488 Copy content Toggle raw display
β6\beta_{6}== (181ν7+177ν6992ν52774ν4+6754ν3+22624ν22989ν153321)/10976 ( 181\nu^{7} + 177\nu^{6} - 992\nu^{5} - 2774\nu^{4} + 6754\nu^{3} + 22624\nu^{2} - 2989\nu - 153321 ) / 10976 Copy content Toggle raw display
β7\beta_{7}== (349ν7177ν6+2784ν5+6246ν416610ν345696ν2+36309ν+306985)/10976 ( -349\nu^{7} - 177\nu^{6} + 2784\nu^{5} + 6246\nu^{4} - 16610\nu^{3} - 45696\nu^{2} + 36309\nu + 306985 ) / 10976 Copy content Toggle raw display
ν\nu== (2β6+β54β4+β3β1+3)/4 ( 2\beta_{6} + \beta_{5} - 4\beta_{4} + \beta_{3} - \beta _1 + 3 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (2β7β5+12β4+β3β11)/2 ( 2\beta_{7} - \beta_{5} + 12\beta_{4} + \beta_{3} - \beta _1 - 1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β7+4β6+13β54β413β32β2+β1+37)/4 ( -2\beta_{7} + 4\beta_{6} + 13\beta_{5} - 4\beta_{4} - 13\beta_{3} - 2\beta_{2} + \beta _1 + 37 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== 8β7+8β65β5+12β4+4β38β24β116 8\beta_{7} + 8\beta_{6} - 5\beta_{5} + 12\beta_{4} + 4\beta_{3} - 8\beta_{2} - 4\beta _1 - 16 Copy content Toggle raw display
ν5\nu^{5}== (24β7+3β5+142β469β3+30β2+3β1+3)/4 ( 24\beta_{7} + 3\beta_{5} + 142\beta_{4} - 69\beta_{3} + 30\beta_{2} + 3\beta _1 + 3 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (14β7+28β6+83β528β483β314β2+127β1+141)/2 ( -14\beta_{7} + 28\beta_{6} + 83\beta_{5} - 28\beta_{4} - 83\beta_{3} - 14\beta_{2} + 127\beta _1 + 141 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (224β7+562β6671β51348β4+281β3224β2281β1+1067)/4 ( 224\beta_{7} + 562\beta_{6} - 671\beta_{5} - 1348\beta_{4} + 281\beta_{3} - 224\beta_{2} - 281\beta _1 + 1067 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/168Z)×\left(\mathbb{Z}/168\mathbb{Z}\right)^\times.

nn 7373 8585 113113 127127
χ(n)\chi(n) 1β41 - \beta_{4} 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
73.1
2.18070 1.49818i
−1.43536 + 2.22255i
−2.38781 + 1.13946i
2.64247 0.131782i
2.18070 + 1.49818i
−1.43536 2.22255i
−2.38781 1.13946i
2.64247 + 0.131782i
0 −1.50000 0.866025i 0 −2.31749 + 1.33800i 0 6.66796 2.13033i 0 1.50000 + 2.59808i 0
73.2 0 −1.50000 0.866025i 0 −2.05105 + 1.18418i 0 4.55981 + 5.31113i 0 1.50000 + 2.59808i 0
73.3 0 −1.50000 0.866025i 0 −0.425150 + 0.245461i 0 −6.25375 + 3.14494i 0 1.50000 + 2.59808i 0
73.4 0 −1.50000 0.866025i 0 7.79369 4.49969i 0 −6.97403 + 0.602461i 0 1.50000 + 2.59808i 0
145.1 0 −1.50000 + 0.866025i 0 −2.31749 1.33800i 0 6.66796 + 2.13033i 0 1.50000 2.59808i 0
145.2 0 −1.50000 + 0.866025i 0 −2.05105 1.18418i 0 4.55981 5.31113i 0 1.50000 2.59808i 0
145.3 0 −1.50000 + 0.866025i 0 −0.425150 0.245461i 0 −6.25375 3.14494i 0 1.50000 2.59808i 0
145.4 0 −1.50000 + 0.866025i 0 7.79369 + 4.49969i 0 −6.97403 0.602461i 0 1.50000 2.59808i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.3.z.a 8
3.b odd 2 1 504.3.by.a 8
4.b odd 2 1 336.3.bh.h 8
7.b odd 2 1 1176.3.z.d 8
7.c even 3 1 1176.3.f.a 8
7.c even 3 1 1176.3.z.d 8
7.d odd 6 1 inner 168.3.z.a 8
7.d odd 6 1 1176.3.f.a 8
12.b even 2 1 1008.3.cg.n 8
21.g even 6 1 504.3.by.a 8
21.g even 6 1 3528.3.f.f 8
21.h odd 6 1 3528.3.f.f 8
28.f even 6 1 336.3.bh.h 8
28.f even 6 1 2352.3.f.k 8
28.g odd 6 1 2352.3.f.k 8
84.j odd 6 1 1008.3.cg.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.3.z.a 8 1.a even 1 1 trivial
168.3.z.a 8 7.d odd 6 1 inner
336.3.bh.h 8 4.b odd 2 1
336.3.bh.h 8 28.f even 6 1
504.3.by.a 8 3.b odd 2 1
504.3.by.a 8 21.g even 6 1
1008.3.cg.n 8 12.b even 2 1
1008.3.cg.n 8 84.j odd 6 1
1176.3.f.a 8 7.c even 3 1
1176.3.f.a 8 7.d odd 6 1
1176.3.z.d 8 7.b odd 2 1
1176.3.z.d 8 7.c even 3 1
2352.3.f.k 8 28.f even 6 1
2352.3.f.k 8 28.g odd 6 1
3528.3.f.f 8 21.g even 6 1
3528.3.f.f 8 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T586T5729T56+246T55+1973T54+5412T53+6956T52+3696T5+784 T_{5}^{8} - 6T_{5}^{7} - 29T_{5}^{6} + 246T_{5}^{5} + 1973T_{5}^{4} + 5412T_{5}^{3} + 6956T_{5}^{2} + 3696T_{5} + 784 acting on S3new(168,[χ])S_{3}^{\mathrm{new}}(168, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+3T+3)4 (T^{2} + 3 T + 3)^{4} Copy content Toggle raw display
55 T86T7++784 T^{8} - 6 T^{7} + \cdots + 784 Copy content Toggle raw display
77 T8+4T7++5764801 T^{8} + 4 T^{7} + \cdots + 5764801 Copy content Toggle raw display
1111 T814T7++20322064 T^{8} - 14 T^{7} + \cdots + 20322064 Copy content Toggle raw display
1313 T8++4781999104 T^{8} + \cdots + 4781999104 Copy content Toggle raw display
1717 T812T7++2166784 T^{8} - 12 T^{7} + \cdots + 2166784 Copy content Toggle raw display
1919 T8++123878657296 T^{8} + \cdots + 123878657296 Copy content Toggle raw display
2323 (T4+32T2+1024)2 (T^{4} + 32 T^{2} + 1024)^{2} Copy content Toggle raw display
2929 (T4+2T3++278272)2 (T^{4} + 2 T^{3} + \cdots + 278272)^{2} Copy content Toggle raw display
3131 T8++4336090801 T^{8} + \cdots + 4336090801 Copy content Toggle raw display
3737 T8++6736469776 T^{8} + \cdots + 6736469776 Copy content Toggle raw display
4141 T8++22503866142976 T^{8} + \cdots + 22503866142976 Copy content Toggle raw display
4343 (T4+10T3++994948)2 (T^{4} + 10 T^{3} + \cdots + 994948)^{2} Copy content Toggle raw display
4747 T8++107206475776 T^{8} + \cdots + 107206475776 Copy content Toggle raw display
5353 T8++618123019264 T^{8} + \cdots + 618123019264 Copy content Toggle raw display
5959 T8++562746188841984 T^{8} + \cdots + 562746188841984 Copy content Toggle raw display
6161 (T2+60T+1200)4 (T^{2} + 60 T + 1200)^{4} Copy content Toggle raw display
6767 T8++583524876544 T^{8} + \cdots + 583524876544 Copy content Toggle raw display
7171 (T4212T3+11002304)2 (T^{4} - 212 T^{3} + \cdots - 11002304)^{2} Copy content Toggle raw display
7373 T8++97154396416 T^{8} + \cdots + 97154396416 Copy content Toggle raw display
7979 T8++450927645793249 T^{8} + \cdots + 450927645793249 Copy content Toggle raw display
8383 T8++13 ⁣ ⁣24 T^{8} + \cdots + 13\!\cdots\!24 Copy content Toggle raw display
8989 T8++53944676847616 T^{8} + \cdots + 53944676847616 Copy content Toggle raw display
9797 T8++656906741956864 T^{8} + \cdots + 656906741956864 Copy content Toggle raw display
show more
show less