gp: [N,k,chi] = [168,3,Mod(73,168)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(168, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("168.73");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 2 x 7 − 9 x 6 + 2 x 5 + 92 x 4 + 14 x 3 − 441 x 2 − 686 x + 2401 x^{8} - 2x^{7} - 9x^{6} + 2x^{5} + 92x^{4} + 14x^{3} - 441x^{2} - 686x + 2401 x 8 − 2 x 7 − 9 x 6 + 2 x 5 + 9 2 x 4 + 1 4 x 3 − 4 4 1 x 2 − 6 8 6 x + 2 4 0 1
x^8 - 2*x^7 - 9*x^6 + 2*x^5 + 92*x^4 + 14*x^3 - 441*x^2 - 686*x + 2401
:
β 1 \beta_{1} β 1 = = =
( − 13 ν 7 + 355 ν 6 + 96 ν 5 + 198 ν 4 − 5242 ν 3 − 1568 ν 2 + 1029 ν + 28469 ) / 21952 ( -13\nu^{7} + 355\nu^{6} + 96\nu^{5} + 198\nu^{4} - 5242\nu^{3} - 1568\nu^{2} + 1029\nu + 28469 ) / 21952 ( − 1 3 ν 7 + 3 5 5 ν 6 + 9 6 ν 5 + 1 9 8 ν 4 − 5 2 4 2 ν 3 − 1 5 6 8 ν 2 + 1 0 2 9 ν + 2 8 4 6 9 ) / 2 1 9 5 2
(-13*v^7 + 355*v^6 + 96*v^5 + 198*v^4 - 5242*v^3 - 1568*v^2 + 1029*v + 28469) / 21952
β 2 \beta_{2} β 2 = = =
( − 25 ν 7 + 15 ν 6 + 736 ν 5 − 274 ν 4 − 3938 ν 3 − 2688 ν 2 + 18865 ν + 21609 ) / 10976 ( -25\nu^{7} + 15\nu^{6} + 736\nu^{5} - 274\nu^{4} - 3938\nu^{3} - 2688\nu^{2} + 18865\nu + 21609 ) / 10976 ( − 2 5 ν 7 + 1 5 ν 6 + 7 3 6 ν 5 − 2 7 4 ν 4 − 3 9 3 8 ν 3 − 2 6 8 8 ν 2 + 1 8 8 6 5 ν + 2 1 6 0 9 ) / 1 0 9 7 6
(-25*v^7 + 15*v^6 + 736*v^5 - 274*v^4 - 3938*v^3 - 2688*v^2 + 18865*v + 21609) / 10976
β 3 \beta_{3} β 3 = = =
( − 73 ν 7 + 55 ν 6 − 288 ν 5 + 526 ν 4 − 5330 ν 3 − 672 ν 2 + 21217 ν + 57281 ) / 21952 ( -73\nu^{7} + 55\nu^{6} - 288\nu^{5} + 526\nu^{4} - 5330\nu^{3} - 672\nu^{2} + 21217\nu + 57281 ) / 21952 ( − 7 3 ν 7 + 5 5 ν 6 − 2 8 8 ν 5 + 5 2 6 ν 4 − 5 3 3 0 ν 3 − 6 7 2 ν 2 + 2 1 2 1 7 ν + 5 7 2 8 1 ) / 2 1 9 5 2
(-73*v^7 + 55*v^6 - 288*v^5 + 526*v^4 - 5330*v^3 - 672*v^2 + 21217*v + 57281) / 21952
β 4 \beta_{4} β 4 = = =
( 99 ν 7 + 75 ν 6 − 800 ν 5 − 1818 ν 4 + 4950 ν 3 + 16800 ν 2 − 10731 ν − 89523 ) / 21952 ( 99\nu^{7} + 75\nu^{6} - 800\nu^{5} - 1818\nu^{4} + 4950\nu^{3} + 16800\nu^{2} - 10731\nu - 89523 ) / 21952 ( 9 9 ν 7 + 7 5 ν 6 − 8 0 0 ν 5 − 1 8 1 8 ν 4 + 4 9 5 0 ν 3 + 1 6 8 0 0 ν 2 − 1 0 7 3 1 ν − 8 9 5 2 3 ) / 2 1 9 5 2
(99*v^7 + 75*v^6 - 800*v^5 - 1818*v^4 + 4950*v^3 + 16800*v^2 - 10731*v - 89523) / 21952
β 5 \beta_{5} β 5 = = =
( − 67 ν 7 − 27 ν 6 + 288 ν 5 + 874 ν 4 − 1782 ν 3 − 6048 ν 2 + 9163 ν + 40131 ) / 5488 ( -67\nu^{7} - 27\nu^{6} + 288\nu^{5} + 874\nu^{4} - 1782\nu^{3} - 6048\nu^{2} + 9163\nu + 40131 ) / 5488 ( − 6 7 ν 7 − 2 7 ν 6 + 2 8 8 ν 5 + 8 7 4 ν 4 − 1 7 8 2 ν 3 − 6 0 4 8 ν 2 + 9 1 6 3 ν + 4 0 1 3 1 ) / 5 4 8 8
(-67*v^7 - 27*v^6 + 288*v^5 + 874*v^4 - 1782*v^3 - 6048*v^2 + 9163*v + 40131) / 5488
β 6 \beta_{6} β 6 = = =
( 181 ν 7 + 177 ν 6 − 992 ν 5 − 2774 ν 4 + 6754 ν 3 + 22624 ν 2 − 2989 ν − 153321 ) / 10976 ( 181\nu^{7} + 177\nu^{6} - 992\nu^{5} - 2774\nu^{4} + 6754\nu^{3} + 22624\nu^{2} - 2989\nu - 153321 ) / 10976 ( 1 8 1 ν 7 + 1 7 7 ν 6 − 9 9 2 ν 5 − 2 7 7 4 ν 4 + 6 7 5 4 ν 3 + 2 2 6 2 4 ν 2 − 2 9 8 9 ν − 1 5 3 3 2 1 ) / 1 0 9 7 6
(181*v^7 + 177*v^6 - 992*v^5 - 2774*v^4 + 6754*v^3 + 22624*v^2 - 2989*v - 153321) / 10976
β 7 \beta_{7} β 7 = = =
( − 349 ν 7 − 177 ν 6 + 2784 ν 5 + 6246 ν 4 − 16610 ν 3 − 45696 ν 2 + 36309 ν + 306985 ) / 10976 ( -349\nu^{7} - 177\nu^{6} + 2784\nu^{5} + 6246\nu^{4} - 16610\nu^{3} - 45696\nu^{2} + 36309\nu + 306985 ) / 10976 ( − 3 4 9 ν 7 − 1 7 7 ν 6 + 2 7 8 4 ν 5 + 6 2 4 6 ν 4 − 1 6 6 1 0 ν 3 − 4 5 6 9 6 ν 2 + 3 6 3 0 9 ν + 3 0 6 9 8 5 ) / 1 0 9 7 6
(-349*v^7 - 177*v^6 + 2784*v^5 + 6246*v^4 - 16610*v^3 - 45696*v^2 + 36309*v + 306985) / 10976
ν \nu ν = = =
( 2 β 6 + β 5 − 4 β 4 + β 3 − β 1 + 3 ) / 4 ( 2\beta_{6} + \beta_{5} - 4\beta_{4} + \beta_{3} - \beta _1 + 3 ) / 4 ( 2 β 6 + β 5 − 4 β 4 + β 3 − β 1 + 3 ) / 4
(2*b6 + b5 - 4*b4 + b3 - b1 + 3) / 4
ν 2 \nu^{2} ν 2 = = =
( 2 β 7 − β 5 + 12 β 4 + β 3 − β 1 − 1 ) / 2 ( 2\beta_{7} - \beta_{5} + 12\beta_{4} + \beta_{3} - \beta _1 - 1 ) / 2 ( 2 β 7 − β 5 + 1 2 β 4 + β 3 − β 1 − 1 ) / 2
(2*b7 - b5 + 12*b4 + b3 - b1 - 1) / 2
ν 3 \nu^{3} ν 3 = = =
( − 2 β 7 + 4 β 6 + 13 β 5 − 4 β 4 − 13 β 3 − 2 β 2 + β 1 + 37 ) / 4 ( -2\beta_{7} + 4\beta_{6} + 13\beta_{5} - 4\beta_{4} - 13\beta_{3} - 2\beta_{2} + \beta _1 + 37 ) / 4 ( − 2 β 7 + 4 β 6 + 1 3 β 5 − 4 β 4 − 1 3 β 3 − 2 β 2 + β 1 + 3 7 ) / 4
(-2*b7 + 4*b6 + 13*b5 - 4*b4 - 13*b3 - 2*b2 + b1 + 37) / 4
ν 4 \nu^{4} ν 4 = = =
8 β 7 + 8 β 6 − 5 β 5 + 12 β 4 + 4 β 3 − 8 β 2 − 4 β 1 − 16 8\beta_{7} + 8\beta_{6} - 5\beta_{5} + 12\beta_{4} + 4\beta_{3} - 8\beta_{2} - 4\beta _1 - 16 8 β 7 + 8 β 6 − 5 β 5 + 1 2 β 4 + 4 β 3 − 8 β 2 − 4 β 1 − 1 6
8*b7 + 8*b6 - 5*b5 + 12*b4 + 4*b3 - 8*b2 - 4*b1 - 16
ν 5 \nu^{5} ν 5 = = =
( 24 β 7 + 3 β 5 + 142 β 4 − 69 β 3 + 30 β 2 + 3 β 1 + 3 ) / 4 ( 24\beta_{7} + 3\beta_{5} + 142\beta_{4} - 69\beta_{3} + 30\beta_{2} + 3\beta _1 + 3 ) / 4 ( 2 4 β 7 + 3 β 5 + 1 4 2 β 4 − 6 9 β 3 + 3 0 β 2 + 3 β 1 + 3 ) / 4
(24*b7 + 3*b5 + 142*b4 - 69*b3 + 30*b2 + 3*b1 + 3) / 4
ν 6 \nu^{6} ν 6 = = =
( − 14 β 7 + 28 β 6 + 83 β 5 − 28 β 4 − 83 β 3 − 14 β 2 + 127 β 1 + 141 ) / 2 ( -14\beta_{7} + 28\beta_{6} + 83\beta_{5} - 28\beta_{4} - 83\beta_{3} - 14\beta_{2} + 127\beta _1 + 141 ) / 2 ( − 1 4 β 7 + 2 8 β 6 + 8 3 β 5 − 2 8 β 4 − 8 3 β 3 − 1 4 β 2 + 1 2 7 β 1 + 1 4 1 ) / 2
(-14*b7 + 28*b6 + 83*b5 - 28*b4 - 83*b3 - 14*b2 + 127*b1 + 141) / 2
ν 7 \nu^{7} ν 7 = = =
( 224 β 7 + 562 β 6 − 671 β 5 − 1348 β 4 + 281 β 3 − 224 β 2 − 281 β 1 + 1067 ) / 4 ( 224\beta_{7} + 562\beta_{6} - 671\beta_{5} - 1348\beta_{4} + 281\beta_{3} - 224\beta_{2} - 281\beta _1 + 1067 ) / 4 ( 2 2 4 β 7 + 5 6 2 β 6 − 6 7 1 β 5 − 1 3 4 8 β 4 + 2 8 1 β 3 − 2 2 4 β 2 − 2 8 1 β 1 + 1 0 6 7 ) / 4
(224*b7 + 562*b6 - 671*b5 - 1348*b4 + 281*b3 - 224*b2 - 281*b1 + 1067) / 4
Character values
We give the values of χ \chi χ on generators for ( Z / 168 Z ) × \left(\mathbb{Z}/168\mathbb{Z}\right)^\times ( Z / 1 6 8 Z ) × .
n n n
73 73 7 3
85 85 8 5
113 113 1 1 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 − β 4 1 - \beta_{4} 1 − β 4
1 1 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 8 − 6 T 5 7 − 29 T 5 6 + 246 T 5 5 + 1973 T 5 4 + 5412 T 5 3 + 6956 T 5 2 + 3696 T 5 + 784 T_{5}^{8} - 6T_{5}^{7} - 29T_{5}^{6} + 246T_{5}^{5} + 1973T_{5}^{4} + 5412T_{5}^{3} + 6956T_{5}^{2} + 3696T_{5} + 784 T 5 8 − 6 T 5 7 − 2 9 T 5 6 + 2 4 6 T 5 5 + 1 9 7 3 T 5 4 + 5 4 1 2 T 5 3 + 6 9 5 6 T 5 2 + 3 6 9 6 T 5 + 7 8 4
T5^8 - 6*T5^7 - 29*T5^6 + 246*T5^5 + 1973*T5^4 + 5412*T5^3 + 6956*T5^2 + 3696*T5 + 784
acting on S 3 n e w ( 168 , [ χ ] ) S_{3}^{\mathrm{new}}(168, [\chi]) S 3 n e w ( 1 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 2 + 3 T + 3 ) 4 (T^{2} + 3 T + 3)^{4} ( T 2 + 3 T + 3 ) 4
(T^2 + 3*T + 3)^4
5 5 5
T 8 − 6 T 7 + ⋯ + 784 T^{8} - 6 T^{7} + \cdots + 784 T 8 − 6 T 7 + ⋯ + 7 8 4
T^8 - 6*T^7 - 29*T^6 + 246*T^5 + 1973*T^4 + 5412*T^3 + 6956*T^2 + 3696*T + 784
7 7 7
T 8 + 4 T 7 + ⋯ + 5764801 T^{8} + 4 T^{7} + \cdots + 5764801 T 8 + 4 T 7 + ⋯ + 5 7 6 4 8 0 1
T^8 + 4*T^7 - 102*T^6 - 112*T^5 + 6419*T^4 - 5488*T^3 - 244902*T^2 + 470596*T + 5764801
11 11 1 1
T 8 − 14 T 7 + ⋯ + 20322064 T^{8} - 14 T^{7} + \cdots + 20322064 T 8 − 1 4 T 7 + ⋯ + 2 0 3 2 2 0 6 4
T^8 - 14*T^7 + 263*T^6 - 2030*T^5 + 29773*T^4 - 225652*T^3 + 1900220*T^2 - 6689872*T + 20322064
13 13 1 3
T 8 + ⋯ + 4781999104 T^{8} + \cdots + 4781999104 T 8 + ⋯ + 4 7 8 1 9 9 9 1 0 4
T^8 + 1318*T^6 + 584489*T^4 + 98460224*T^2 + 4781999104
17 17 1 7
T 8 − 12 T 7 + ⋯ + 2166784 T^{8} - 12 T^{7} + \cdots + 2166784 T 8 − 1 2 T 7 + ⋯ + 2 1 6 6 7 8 4
T^8 - 12*T^7 - 628*T^6 + 8112*T^5 + 488144*T^4 + 5516160*T^3 + 21200128*T^2 - 12011520*T + 2166784
19 19 1 9
T 8 + ⋯ + 123878657296 T^{8} + \cdots + 123878657296 T 8 + ⋯ + 1 2 3 8 7 8 6 5 7 2 9 6
T^8 - 78*T^7 + 1675*T^6 + 27534*T^5 - 1134283*T^4 - 21870468*T^3 + 1403758604*T^2 - 21806281584*T + 123878657296
23 23 2 3
( T 4 + 32 T 2 + 1024 ) 2 (T^{4} + 32 T^{2} + 1024)^{2} ( T 4 + 3 2 T 2 + 1 0 2 4 ) 2
(T^4 + 32*T^2 + 1024)^2
29 29 2 9
( T 4 + 2 T 3 + ⋯ + 278272 ) 2 (T^{4} + 2 T^{3} + \cdots + 278272)^{2} ( T 4 + 2 T 3 + ⋯ + 2 7 8 2 7 2 ) 2
(T^4 + 2*T^3 - 1255*T^2 + 3232*T + 278272)^2
31 31 3 1
T 8 + ⋯ + 4336090801 T^{8} + \cdots + 4336090801 T 8 + ⋯ + 4 3 3 6 0 9 0 8 0 1
T^8 + 24*T^7 - 1190*T^6 - 33168*T^5 + 1910699*T^4 - 11509296*T^3 - 67884790*T^2 + 548390472*T + 4336090801
37 37 3 7
T 8 + ⋯ + 6736469776 T^{8} + \cdots + 6736469776 T 8 + ⋯ + 6 7 3 6 4 6 9 7 7 6
T^8 - 50*T^7 + 2815*T^6 - 15122*T^5 + 953101*T^4 - 13069940*T^3 + 212416156*T^2 - 1266925136*T + 6736469776
41 41 4 1
T 8 + ⋯ + 22503866142976 T^{8} + \cdots + 22503866142976 T 8 + ⋯ + 2 2 5 0 3 8 6 6 1 4 2 9 7 6
T^8 + 10544*T^6 + 37281632*T^4 + 51907103488*T^2 + 22503866142976
43 43 4 3
( T 4 + 10 T 3 + ⋯ + 994948 ) 2 (T^{4} + 10 T^{3} + \cdots + 994948)^{2} ( T 4 + 1 0 T 3 + ⋯ + 9 9 4 9 4 8 ) 2
(T^4 + 10*T^3 - 4683*T^2 - 114260*T + 994948)^2
47 47 4 7
T 8 + ⋯ + 107206475776 T^{8} + \cdots + 107206475776 T 8 + ⋯ + 1 0 7 2 0 6 4 7 5 7 7 6
T^8 - 12*T^7 - 2756*T^6 + 33648*T^5 + 8603792*T^4 + 290180352*T^3 + 4488018944*T^2 + 33884454912*T + 107206475776
53 53 5 3
T 8 + ⋯ + 618123019264 T^{8} + \cdots + 618123019264 T 8 + ⋯ + 6 1 8 1 2 3 0 1 9 2 6 4
T^8 + 50*T^7 + 7403*T^6 - 136894*T^5 + 25959601*T^4 + 186768784*T^3 + 6784618208*T^2 - 42555866624*T + 618123019264
59 59 5 9
T 8 + ⋯ + 562746188841984 T^{8} + \cdots + 562746188841984 T 8 + ⋯ + 5 6 2 7 4 6 1 8 8 8 4 1 9 8 4
T^8 + 186*T^7 + 3951*T^6 - 1410066*T^5 - 25692183*T^4 + 13069401408*T^3 + 1170527099040*T^2 + 40896437815296*T + 562746188841984
61 61 6 1
( T 2 + 60 T + 1200 ) 4 (T^{2} + 60 T + 1200)^{4} ( T 2 + 6 0 T + 1 2 0 0 ) 4
(T^2 + 60*T + 1200)^4
67 67 6 7
T 8 + ⋯ + 583524876544 T^{8} + \cdots + 583524876544 T 8 + ⋯ + 5 8 3 5 2 4 8 7 6 5 4 4
T^8 - 34*T^7 + 10907*T^6 + 377246*T^5 + 93541009*T^4 + 274813240*T^3 + 7971068624*T^2 - 17459424128*T + 583524876544
71 71 7 1
( T 4 − 212 T 3 + ⋯ − 11002304 ) 2 (T^{4} - 212 T^{3} + \cdots - 11002304)^{2} ( T 4 − 2 1 2 T 3 + ⋯ − 1 1 0 0 2 3 0 4 ) 2
(T^4 - 212*T^3 + 8148*T^2 + 391264*T - 11002304)^2
73 73 7 3
T 8 + ⋯ + 97154396416 T^{8} + \cdots + 97154396416 T 8 + ⋯ + 9 7 1 5 4 3 9 6 4 1 6
T^8 - 294*T^7 + 33719*T^6 - 1442658*T^5 + 8942297*T^4 + 742291704*T^3 + 9157231600*T^2 + 47150877312*T + 97154396416
79 79 7 9
T 8 + ⋯ + 450927645793249 T^{8} + \cdots + 450927645793249 T 8 + ⋯ + 4 5 0 9 2 7 6 4 5 7 9 3 2 4 9
T^8 + 40*T^7 + 12386*T^6 - 161120*T^5 + 100509139*T^4 - 240968800*T^3 + 247309550402*T^2 - 2870130304120*T + 450927645793249
83 83 8 3
T 8 + ⋯ + 13 ⋯ 24 T^{8} + \cdots + 13\!\cdots\!24 T 8 + ⋯ + 1 3 ⋯ 2 4
T^8 + 36974*T^6 + 413551961*T^4 + 1403204477368*T^2 + 1310560765982224
89 89 8 9
T 8 + ⋯ + 53944676847616 T^{8} + \cdots + 53944676847616 T 8 + ⋯ + 5 3 9 4 4 6 7 6 8 4 7 6 1 6
T^8 + 132*T^7 - 9844*T^6 - 2066064*T^5 + 214640720*T^4 + 8181613440*T^3 - 23880574208*T^2 - 3839223674880*T + 53944676847616
97 97 9 7
T 8 + ⋯ + 656906741956864 T^{8} + \cdots + 656906741956864 T 8 + ⋯ + 6 5 6 9 0 6 7 4 1 9 5 6 8 6 4
T^8 + 35126*T^6 + 366922745*T^4 + 1029534287200*T^2 + 656906741956864
show more
show less