L(s) = 1 | − 3-s + 5-s − 4·7-s − 11-s + 2·13-s − 15-s − 3·19-s + 4·21-s + 7·23-s + 27-s − 16·29-s − 2·31-s + 33-s − 4·35-s − 11·37-s − 2·39-s − 22·41-s − 16·43-s − 5·47-s + 9·49-s + 11·53-s − 55-s + 3·57-s + 4·59-s + 2·65-s − 7·69-s + 12·71-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s − 1.51·7-s − 0.301·11-s + 0.554·13-s − 0.258·15-s − 0.688·19-s + 0.872·21-s + 1.45·23-s + 0.192·27-s − 2.97·29-s − 0.359·31-s + 0.174·33-s − 0.676·35-s − 1.80·37-s − 0.320·39-s − 3.43·41-s − 2.43·43-s − 0.729·47-s + 9/7·49-s + 1.51·53-s − 0.134·55-s + 0.397·57-s + 0.520·59-s + 0.248·65-s − 0.842·69-s + 1.42·71-s + ⋯ |
Λ(s)=(=(2822400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2822400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2822400
= 28⋅32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
179.958 |
Root analytic conductor: |
3.66263 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2822400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.04841415895 |
L(21) |
≈ |
0.04841415895 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T+T2 |
| 5 | C2 | 1−T+T2 |
| 7 | C2 | 1+4T+pT2 |
good | 11 | C22 | 1+T−10T2+pT3+p2T4 |
| 13 | C2 | (1−T+pT2)2 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C22 | 1+3T−10T2+3pT3+p2T4 |
| 23 | C22 | 1−7T+26T2−7pT3+p2T4 |
| 29 | C2 | (1+8T+pT2)2 |
| 31 | C22 | 1+2T−27T2+2pT3+p2T4 |
| 37 | C2 | (1+T+pT2)(1+10T+pT2) |
| 41 | C2 | (1+11T+pT2)2 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C22 | 1+5T−22T2+5pT3+p2T4 |
| 53 | C22 | 1−11T+68T2−11pT3+p2T4 |
| 59 | C22 | 1−4T−43T2−4pT3+p2T4 |
| 61 | C22 | 1−pT2+p2T4 |
| 67 | C22 | 1−pT2+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1−6T−37T2−6pT3+p2T4 |
| 79 | C22 | 1+8T−15T2+8pT3+p2T4 |
| 83 | C2 | (1+8T+pT2)2 |
| 89 | C22 | 1−10T+11T2−10pT3+p2T4 |
| 97 | C2 | (1+16T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.645529194206775674237179521887, −9.309689410272044474232605311289, −8.666328106996505670956017161449, −8.363259098663911736200420303808, −8.312083123535375178383890198474, −7.08918743127239478044254391619, −7.07423613665469414586408719283, −6.89001979491523585099234649437, −6.41807598244263102116197279392, −5.70158173067212268174121192934, −5.67792637778453247867409500125, −5.04168140523126230106896089692, −4.92545889399787184421972231256, −3.78222559471431756922802333872, −3.64969016491551752799892052416, −3.30921537606468101755556365988, −2.63533721770063924908287739903, −1.84697273236623692140284270232, −1.49137808468798994103135524713, −0.084000489316477839434140689195,
0.084000489316477839434140689195, 1.49137808468798994103135524713, 1.84697273236623692140284270232, 2.63533721770063924908287739903, 3.30921537606468101755556365988, 3.64969016491551752799892052416, 3.78222559471431756922802333872, 4.92545889399787184421972231256, 5.04168140523126230106896089692, 5.67792637778453247867409500125, 5.70158173067212268174121192934, 6.41807598244263102116197279392, 6.89001979491523585099234649437, 7.07423613665469414586408719283, 7.08918743127239478044254391619, 8.312083123535375178383890198474, 8.363259098663911736200420303808, 8.666328106996505670956017161449, 9.309689410272044474232605311289, 9.645529194206775674237179521887