Properties

Label 1680.2.bg.g
Level 16801680
Weight 22
Character orbit 1680.bg
Analytic conductor 13.41513.415
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,2,Mod(961,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1680=24357 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1680.bg (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.414867539613.4148675396
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3+ζ6q5+(2ζ61)q7ζ6q9+(ζ61)q11+q13q153ζ6q19+(ζ6+3)q21+7ζ6q23++q99+O(q100) q + (\zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} - 1) q^{7} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{11} + q^{13} - q^{15} - 3 \zeta_{6} q^{19} + ( - \zeta_{6} + 3) q^{21} + 7 \zeta_{6} q^{23} + \cdots + q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3+q54q7q9q11+2q132q153q19+5q21+7q23q25+2q2716q292q31q33+q3511q37q3922q41++2q99+O(q100) 2 q - q^{3} + q^{5} - 4 q^{7} - q^{9} - q^{11} + 2 q^{13} - 2 q^{15} - 3 q^{19} + 5 q^{21} + 7 q^{23} - q^{25} + 2 q^{27} - 16 q^{29} - 2 q^{31} - q^{33} + q^{35} - 11 q^{37} - q^{39} - 22 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1680Z)×\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times.

nn 241241 337337 421421 11211121 14711471
χ(n)\chi(n) ζ6-\zeta_{6} 11 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −2.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
1201.1 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −2.00000 1.73205i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.bg.g 2
4.b odd 2 1 210.2.i.d 2
7.c even 3 1 inner 1680.2.bg.g 2
12.b even 2 1 630.2.k.c 2
20.d odd 2 1 1050.2.i.b 2
20.e even 4 2 1050.2.o.i 4
28.d even 2 1 1470.2.i.m 2
28.f even 6 1 1470.2.a.h 1
28.f even 6 1 1470.2.i.m 2
28.g odd 6 1 210.2.i.d 2
28.g odd 6 1 1470.2.a.a 1
84.j odd 6 1 4410.2.a.ba 1
84.n even 6 1 630.2.k.c 2
84.n even 6 1 4410.2.a.bj 1
140.p odd 6 1 1050.2.i.b 2
140.p odd 6 1 7350.2.a.cp 1
140.s even 6 1 7350.2.a.bu 1
140.w even 12 2 1050.2.o.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.d 2 4.b odd 2 1
210.2.i.d 2 28.g odd 6 1
630.2.k.c 2 12.b even 2 1
630.2.k.c 2 84.n even 6 1
1050.2.i.b 2 20.d odd 2 1
1050.2.i.b 2 140.p odd 6 1
1050.2.o.i 4 20.e even 4 2
1050.2.o.i 4 140.w even 12 2
1470.2.a.a 1 28.g odd 6 1
1470.2.a.h 1 28.f even 6 1
1470.2.i.m 2 28.d even 2 1
1470.2.i.m 2 28.f even 6 1
1680.2.bg.g 2 1.a even 1 1 trivial
1680.2.bg.g 2 7.c even 3 1 inner
4410.2.a.ba 1 84.j odd 6 1
4410.2.a.bj 1 84.n even 6 1
7350.2.a.bu 1 140.s even 6 1
7350.2.a.cp 1 140.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1680,[χ])S_{2}^{\mathrm{new}}(1680, [\chi]):

T112+T11+1 T_{11}^{2} + T_{11} + 1 Copy content Toggle raw display
T131 T_{13} - 1 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
2323 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
2929 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
3131 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
3737 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4141 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
4343 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4747 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
5353 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
5959 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
7979 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
8383 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8989 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
9797 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
show more
show less