Properties

Label 1680.2.bg.g
Level $1680$
Weight $2$
Character orbit 1680.bg
Analytic conductor $13.415$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1680,2,Mod(961,1680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1680, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1680.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1680.bg (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4148675396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + ( - 2 \zeta_{6} - 1) q^{7} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{11} + q^{13} - q^{15} - 3 \zeta_{6} q^{19} + ( - \zeta_{6} + 3) q^{21} + 7 \zeta_{6} q^{23} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - 4 q^{7} - q^{9} - q^{11} + 2 q^{13} - 2 q^{15} - 3 q^{19} + 5 q^{21} + 7 q^{23} - q^{25} + 2 q^{27} - 16 q^{29} - 2 q^{31} - q^{33} + q^{35} - 11 q^{37} - q^{39} - 22 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1680\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(421\) \(1121\) \(1471\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −2.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
1201.1 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −2.00000 1.73205i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1680.2.bg.g 2
4.b odd 2 1 210.2.i.d 2
7.c even 3 1 inner 1680.2.bg.g 2
12.b even 2 1 630.2.k.c 2
20.d odd 2 1 1050.2.i.b 2
20.e even 4 2 1050.2.o.i 4
28.d even 2 1 1470.2.i.m 2
28.f even 6 1 1470.2.a.h 1
28.f even 6 1 1470.2.i.m 2
28.g odd 6 1 210.2.i.d 2
28.g odd 6 1 1470.2.a.a 1
84.j odd 6 1 4410.2.a.ba 1
84.n even 6 1 630.2.k.c 2
84.n even 6 1 4410.2.a.bj 1
140.p odd 6 1 1050.2.i.b 2
140.p odd 6 1 7350.2.a.cp 1
140.s even 6 1 7350.2.a.bu 1
140.w even 12 2 1050.2.o.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.i.d 2 4.b odd 2 1
210.2.i.d 2 28.g odd 6 1
630.2.k.c 2 12.b even 2 1
630.2.k.c 2 84.n even 6 1
1050.2.i.b 2 20.d odd 2 1
1050.2.i.b 2 140.p odd 6 1
1050.2.o.i 4 20.e even 4 2
1050.2.o.i 4 140.w even 12 2
1470.2.a.a 1 28.g odd 6 1
1470.2.a.h 1 28.f even 6 1
1470.2.i.m 2 28.d even 2 1
1470.2.i.m 2 28.f even 6 1
1680.2.bg.g 2 1.a even 1 1 trivial
1680.2.bg.g 2 7.c even 3 1 inner
4410.2.a.ba 1 84.j odd 6 1
4410.2.a.bj 1 84.n even 6 1
7350.2.a.bu 1 140.s even 6 1
7350.2.a.cp 1 140.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1680, [\chi])\):

\( T_{11}^{2} + T_{11} + 1 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$29$ \( (T + 8)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$41$ \( (T + 11)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$53$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$79$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$83$ \( (T + 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$97$ \( (T + 16)^{2} \) Copy content Toggle raw display
show more
show less