L(s) = 1 | + (1.92 + 0.515i)2-s + (0.299 + 0.519i)3-s + (−0.0309 − 0.0178i)4-s + (5.65 − 5.65i)5-s + (0.308 + 1.15i)6-s + (1.96 − 0.526i)7-s + (−5.68 − 5.68i)8-s + (4.32 − 7.48i)9-s + (13.7 − 7.95i)10-s + (−3.76 + 14.0i)11-s − 0.0214i·12-s + 4.05·14-s + (4.62 + 1.24i)15-s + (−7.92 − 13.7i)16-s + (10.2 + 5.90i)17-s + (12.1 − 12.1i)18-s + ⋯ |
L(s) = 1 | + (0.961 + 0.257i)2-s + (0.0999 + 0.173i)3-s + (−0.00773 − 0.00446i)4-s + (1.13 − 1.13i)5-s + (0.0514 + 0.192i)6-s + (0.280 − 0.0752i)7-s + (−0.710 − 0.710i)8-s + (0.480 − 0.831i)9-s + (1.37 − 0.795i)10-s + (−0.342 + 1.27i)11-s − 0.00178i·12-s + 0.289·14-s + (0.308 + 0.0826i)15-s + (−0.495 − 0.858i)16-s + (0.601 + 0.347i)17-s + (0.675 − 0.675i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 + 0.338i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.940 + 0.338i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.57907 - 0.450333i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.57907 - 0.450333i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (-1.92 - 0.515i)T + (3.46 + 2i)T^{2} \) |
| 3 | \( 1 + (-0.299 - 0.519i)T + (-4.5 + 7.79i)T^{2} \) |
| 5 | \( 1 + (-5.65 + 5.65i)T - 25iT^{2} \) |
| 7 | \( 1 + (-1.96 + 0.526i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (3.76 - 14.0i)T + (-104. - 60.5i)T^{2} \) |
| 17 | \( 1 + (-10.2 - 5.90i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-6.28 - 23.4i)T + (-312. + 180.5i)T^{2} \) |
| 23 | \( 1 + (0.229 - 0.132i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (3.60 + 6.25i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (30.2 - 30.2i)T - 961iT^{2} \) |
| 37 | \( 1 + (3.53 - 13.1i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + (33.6 + 9.00i)T + (1.45e3 + 840.5i)T^{2} \) |
| 43 | \( 1 + (35.0 + 20.2i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (9.87 + 9.87i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-34.8 + 9.32i)T + (3.01e3 - 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-15.4 + 26.7i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-60.4 - 16.1i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + (2.23 + 8.34i)T + (-4.36e3 + 2.52e3i)T^{2} \) |
| 73 | \( 1 + (-23.3 - 23.3i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 49.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (60.7 - 60.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (22.9 - 85.6i)T + (-6.85e3 - 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-8.75 - 32.6i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56830287034276709006325616048, −12.21609342870950138266742342185, −10.00774344372366703959544937752, −9.722247914219591918664422937848, −8.541554252623482829451525207021, −6.90808866962831181460650825295, −5.64957993331227634182105829143, −4.94767628470369084357770893369, −3.79599397496935433433917736045, −1.53555852341215507486665569055,
2.30516251637738829845594621606, 3.30604739676516240317823356619, 5.06250210441236490017404549784, 5.87576735630183454618574877818, 7.16811059324068860971981135498, 8.492086121034477012279525946456, 9.772594621487086659906018557689, 10.88270450775610632024779267822, 11.53686150661793959961383003711, 13.15039869545051386122149859649