Properties

Label 169.3.f.g.80.9
Level $169$
Weight $3$
Character 169.80
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 80.9
Character \(\chi\) \(=\) 169.80
Dual form 169.3.f.g.150.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.92320 + 0.515320i) q^{2} +(0.299764 + 0.519206i) q^{3} +(-0.0309536 - 0.0178711i) q^{4} +(5.65111 - 5.65111i) q^{5} +(0.308949 + 1.15301i) q^{6} +(1.96518 - 0.526568i) q^{7} +(-5.68184 - 5.68184i) q^{8} +(4.32028 - 7.48295i) q^{9} +(13.7804 - 7.95610i) q^{10} +(-3.76327 + 14.0447i) q^{11} -0.0214284i q^{12} +4.05079 q^{14} +(4.62809 + 1.24009i) q^{15} +(-7.92788 - 13.7315i) q^{16} +(10.2245 + 5.90312i) q^{17} +(12.1649 - 12.1649i) q^{18} +(6.28035 + 23.4386i) q^{19} +(-0.275914 + 0.0739308i) q^{20} +(0.862488 + 0.862488i) q^{21} +(-14.4751 + 25.0716i) q^{22} +(-0.229705 + 0.132620i) q^{23} +(1.24684 - 4.65326i) q^{24} -38.8702i q^{25} +10.5760 q^{27} +(-0.0702397 - 0.0188207i) q^{28} +(-3.60897 - 6.25092i) q^{29} +(8.26171 + 4.76990i) q^{30} +(-30.2298 + 30.2298i) q^{31} +(0.148007 + 0.552371i) q^{32} +(-8.42021 + 2.25619i) q^{33} +(16.6218 + 16.6218i) q^{34} +(8.12976 - 14.0812i) q^{35} +(-0.267457 + 0.154416i) q^{36} +(-3.53340 + 13.1868i) q^{37} +48.3135i q^{38} -64.2175 q^{40} +(-33.6035 - 9.00403i) q^{41} +(1.21428 + 2.10319i) q^{42} +(-35.0467 - 20.2342i) q^{43} +(0.367481 - 0.367481i) q^{44} +(-17.8726 - 66.7014i) q^{45} +(-0.510111 + 0.136684i) q^{46} +(-9.87555 - 9.87555i) q^{47} +(4.75298 - 8.23241i) q^{48} +(-38.8506 + 22.4304i) q^{49} +(20.0306 - 74.7552i) q^{50} +7.07817i q^{51} +77.1259 q^{53} +(20.3398 + 5.45003i) q^{54} +(58.1017 + 100.635i) q^{55} +(-14.1577 - 8.17397i) q^{56} +(-10.2868 + 10.2868i) q^{57} +(-3.71955 - 13.8815i) q^{58} +(34.8006 - 9.32480i) q^{59} +(-0.121094 - 0.121094i) q^{60} +(15.4657 - 26.7873i) q^{61} +(-73.7160 + 42.5599i) q^{62} +(4.54985 - 16.9803i) q^{63} +64.5616i q^{64} -17.3564 q^{66} +(60.4589 + 16.1999i) q^{67} +(-0.210990 - 0.365445i) q^{68} +(-0.137715 - 0.0795095i) q^{69} +(22.8915 - 22.8915i) q^{70} +(-2.23685 - 8.34804i) q^{71} +(-67.0641 + 17.9698i) q^{72} +(23.3661 + 23.3661i) q^{73} +(-13.5909 + 23.5401i) q^{74} +(20.1816 - 11.6519i) q^{75} +(0.224473 - 0.837745i) q^{76} +29.5820i q^{77} -49.8004 q^{79} +(-122.400 - 32.7969i) q^{80} +(-35.7122 - 61.8554i) q^{81} +(-59.9863 - 34.6331i) q^{82} +(-60.8000 + 60.8000i) q^{83} +(-0.0112835 - 0.0421107i) q^{84} +(91.1390 - 24.4206i) q^{85} +(-56.9747 - 56.9747i) q^{86} +(2.16368 - 3.74760i) q^{87} +(101.182 - 58.4176i) q^{88} +(-22.9556 + 85.6713i) q^{89} -137.490i q^{90} +0.00948026 q^{92} +(-24.7573 - 6.63370i) q^{93} +(-13.9036 - 24.0818i) q^{94} +(167.945 + 96.9632i) q^{95} +(-0.242427 + 0.242427i) q^{96} +(8.75298 + 32.6665i) q^{97} +(-86.2763 + 23.1177i) q^{98} +(88.8376 + 88.8376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.92320 + 0.515320i 0.961601 + 0.257660i 0.705278 0.708931i \(-0.250822\pi\)
0.256323 + 0.966591i \(0.417489\pi\)
\(3\) 0.299764 + 0.519206i 0.0999213 + 0.173069i 0.911652 0.410963i \(-0.134808\pi\)
−0.811731 + 0.584032i \(0.801474\pi\)
\(4\) −0.0309536 0.0178711i −0.00773840 0.00446777i
\(5\) 5.65111 5.65111i 1.13022 1.13022i 0.140083 0.990140i \(-0.455263\pi\)
0.990140 0.140083i \(-0.0447370\pi\)
\(6\) 0.308949 + 1.15301i 0.0514915 + 0.192169i
\(7\) 1.96518 0.526568i 0.280740 0.0752241i −0.115702 0.993284i \(-0.536912\pi\)
0.396442 + 0.918060i \(0.370245\pi\)
\(8\) −5.68184 5.68184i −0.710231 0.710231i
\(9\) 4.32028 7.48295i 0.480031 0.831439i
\(10\) 13.7804 7.95610i 1.37804 0.795610i
\(11\) −3.76327 + 14.0447i −0.342116 + 1.27679i 0.553830 + 0.832630i \(0.313166\pi\)
−0.895946 + 0.444164i \(0.853501\pi\)
\(12\) 0.0214284i 0.00178570i
\(13\) 0 0
\(14\) 4.05079 0.289342
\(15\) 4.62809 + 1.24009i 0.308540 + 0.0826729i
\(16\) −7.92788 13.7315i −0.495492 0.858218i
\(17\) 10.2245 + 5.90312i 0.601441 + 0.347242i 0.769608 0.638516i \(-0.220451\pi\)
−0.168167 + 0.985759i \(0.553785\pi\)
\(18\) 12.1649 12.1649i 0.675827 0.675827i
\(19\) 6.28035 + 23.4386i 0.330545 + 1.23361i 0.908619 + 0.417626i \(0.137138\pi\)
−0.578074 + 0.815984i \(0.696196\pi\)
\(20\) −0.275914 + 0.0739308i −0.0137957 + 0.00369654i
\(21\) 0.862488 + 0.862488i 0.0410708 + 0.0410708i
\(22\) −14.4751 + 25.0716i −0.657958 + 1.13962i
\(23\) −0.229705 + 0.132620i −0.00998717 + 0.00576610i −0.504985 0.863128i \(-0.668502\pi\)
0.494998 + 0.868894i \(0.335169\pi\)
\(24\) 1.24684 4.65326i 0.0519516 0.193886i
\(25\) 38.8702i 1.55481i
\(26\) 0 0
\(27\) 10.5760 0.391704
\(28\) −0.0702397 0.0188207i −0.00250856 0.000672167i
\(29\) −3.60897 6.25092i −0.124447 0.215549i 0.797070 0.603888i \(-0.206382\pi\)
−0.921517 + 0.388339i \(0.873049\pi\)
\(30\) 8.26171 + 4.76990i 0.275390 + 0.158997i
\(31\) −30.2298 + 30.2298i −0.975154 + 0.975154i −0.999699 0.0245446i \(-0.992186\pi\)
0.0245446 + 0.999699i \(0.492186\pi\)
\(32\) 0.148007 + 0.552371i 0.00462523 + 0.0172616i
\(33\) −8.42021 + 2.25619i −0.255158 + 0.0683693i
\(34\) 16.6218 + 16.6218i 0.488876 + 0.488876i
\(35\) 8.12976 14.0812i 0.232279 0.402319i
\(36\) −0.267457 + 0.154416i −0.00742935 + 0.00428934i
\(37\) −3.53340 + 13.1868i −0.0954973 + 0.356401i −0.997094 0.0761760i \(-0.975729\pi\)
0.901597 + 0.432577i \(0.142396\pi\)
\(38\) 48.3135i 1.27141i
\(39\) 0 0
\(40\) −64.2175 −1.60544
\(41\) −33.6035 9.00403i −0.819597 0.219610i −0.175427 0.984492i \(-0.556131\pi\)
−0.644170 + 0.764882i \(0.722797\pi\)
\(42\) 1.21428 + 2.10319i 0.0289114 + 0.0500761i
\(43\) −35.0467 20.2342i −0.815039 0.470563i 0.0336635 0.999433i \(-0.489283\pi\)
−0.848703 + 0.528870i \(0.822616\pi\)
\(44\) 0.367481 0.367481i 0.00835184 0.00835184i
\(45\) −17.8726 66.7014i −0.397169 1.48225i
\(46\) −0.510111 + 0.136684i −0.0110894 + 0.00297139i
\(47\) −9.87555 9.87555i −0.210118 0.210118i 0.594200 0.804318i \(-0.297469\pi\)
−0.804318 + 0.594200i \(0.797469\pi\)
\(48\) 4.75298 8.23241i 0.0990205 0.171508i
\(49\) −38.8506 + 22.4304i −0.792869 + 0.457763i
\(50\) 20.0306 74.7552i 0.400612 1.49510i
\(51\) 7.07817i 0.138788i
\(52\) 0 0
\(53\) 77.1259 1.45521 0.727603 0.685999i \(-0.240635\pi\)
0.727603 + 0.685999i \(0.240635\pi\)
\(54\) 20.3398 + 5.45003i 0.376663 + 0.100927i
\(55\) 58.1017 + 100.635i 1.05639 + 1.82973i
\(56\) −14.1577 8.17397i −0.252817 0.145964i
\(57\) −10.2868 + 10.2868i −0.180471 + 0.180471i
\(58\) −3.71955 13.8815i −0.0641302 0.239337i
\(59\) 34.8006 9.32480i 0.589841 0.158048i 0.0484607 0.998825i \(-0.484568\pi\)
0.541381 + 0.840778i \(0.317902\pi\)
\(60\) −0.121094 0.121094i −0.00201824 0.00201824i
\(61\) 15.4657 26.7873i 0.253536 0.439137i −0.710961 0.703231i \(-0.751740\pi\)
0.964497 + 0.264095i \(0.0850732\pi\)
\(62\) −73.7160 + 42.5599i −1.18897 + 0.686451i
\(63\) 4.54985 16.9803i 0.0722198 0.269528i
\(64\) 64.5616i 1.00878i
\(65\) 0 0
\(66\) −17.3564 −0.262976
\(67\) 60.4589 + 16.1999i 0.902372 + 0.241790i 0.680034 0.733180i \(-0.261965\pi\)
0.222337 + 0.974970i \(0.428631\pi\)
\(68\) −0.210990 0.365445i −0.00310279 0.00537420i
\(69\) −0.137715 0.0795095i −0.00199586 0.00115231i
\(70\) 22.8915 22.8915i 0.327021 0.327021i
\(71\) −2.23685 8.34804i −0.0315049 0.117578i 0.948383 0.317128i \(-0.102719\pi\)
−0.979888 + 0.199550i \(0.936052\pi\)
\(72\) −67.0641 + 17.9698i −0.931446 + 0.249580i
\(73\) 23.3661 + 23.3661i 0.320084 + 0.320084i 0.848799 0.528715i \(-0.177326\pi\)
−0.528715 + 0.848799i \(0.677326\pi\)
\(74\) −13.5909 + 23.5401i −0.183661 + 0.318109i
\(75\) 20.1816 11.6519i 0.269089 0.155358i
\(76\) 0.224473 0.837745i 0.00295359 0.0110230i
\(77\) 29.5820i 0.384182i
\(78\) 0 0
\(79\) −49.8004 −0.630385 −0.315193 0.949028i \(-0.602069\pi\)
−0.315193 + 0.949028i \(0.602069\pi\)
\(80\) −122.400 32.7969i −1.52999 0.409961i
\(81\) −35.7122 61.8554i −0.440892 0.763647i
\(82\) −59.9863 34.6331i −0.731541 0.422355i
\(83\) −60.8000 + 60.8000i −0.732530 + 0.732530i −0.971120 0.238590i \(-0.923315\pi\)
0.238590 + 0.971120i \(0.423315\pi\)
\(84\) −0.0112835 0.0421107i −0.000134328 0.000501317i
\(85\) 91.1390 24.4206i 1.07222 0.287302i
\(86\) −56.9747 56.9747i −0.662497 0.662497i
\(87\) 2.16368 3.74760i 0.0248699 0.0430758i
\(88\) 101.182 58.4176i 1.14980 0.663837i
\(89\) −22.9556 + 85.6713i −0.257928 + 0.962599i 0.708511 + 0.705700i \(0.249367\pi\)
−0.966438 + 0.256899i \(0.917299\pi\)
\(90\) 137.490i 1.52767i
\(91\) 0 0
\(92\) 0.00948026 0.000103046
\(93\) −24.7573 6.63370i −0.266207 0.0713301i
\(94\) −13.9036 24.0818i −0.147911 0.256189i
\(95\) 167.945 + 96.9632i 1.76784 + 1.02066i
\(96\) −0.242427 + 0.242427i −0.00252528 + 0.00252528i
\(97\) 8.75298 + 32.6665i 0.0902369 + 0.336769i 0.996254 0.0864718i \(-0.0275593\pi\)
−0.906017 + 0.423240i \(0.860893\pi\)
\(98\) −86.2763 + 23.1177i −0.880371 + 0.235895i
\(99\) 88.8376 + 88.8376i 0.897350 + 0.897350i
\(100\) −0.694651 + 1.20317i −0.00694651 + 0.0120317i
\(101\) 14.4870 8.36406i 0.143435 0.0828125i −0.426565 0.904457i \(-0.640276\pi\)
0.570000 + 0.821644i \(0.306943\pi\)
\(102\) −3.64752 + 13.6127i −0.0357600 + 0.133458i
\(103\) 87.2313i 0.846906i −0.905918 0.423453i \(-0.860818\pi\)
0.905918 0.423453i \(-0.139182\pi\)
\(104\) 0 0
\(105\) 9.74803 0.0928384
\(106\) 148.329 + 39.7445i 1.39933 + 0.374948i
\(107\) −59.9117 103.770i −0.559923 0.969815i −0.997502 0.0706350i \(-0.977497\pi\)
0.437579 0.899180i \(-0.355836\pi\)
\(108\) −0.327365 0.189005i −0.00303116 0.00175004i
\(109\) 87.8195 87.8195i 0.805684 0.805684i −0.178293 0.983977i \(-0.557058\pi\)
0.983977 + 0.178293i \(0.0570576\pi\)
\(110\) 59.8820 + 223.482i 0.544381 + 2.03166i
\(111\) −7.90587 + 2.11837i −0.0712241 + 0.0190844i
\(112\) −22.8103 22.8103i −0.203663 0.203663i
\(113\) −84.8574 + 146.977i −0.750950 + 1.30068i 0.196412 + 0.980521i \(0.437071\pi\)
−0.947363 + 0.320163i \(0.896262\pi\)
\(114\) −25.0847 + 14.4826i −0.220041 + 0.127041i
\(115\) −0.548637 + 2.04754i −0.00477076 + 0.0178047i
\(116\) 0.257984i 0.00222400i
\(117\) 0 0
\(118\) 71.7339 0.607914
\(119\) 23.2014 + 6.21679i 0.194970 + 0.0522420i
\(120\) −19.2501 33.3421i −0.160417 0.277851i
\(121\) −78.3032 45.2084i −0.647134 0.373623i
\(122\) 43.5477 43.5477i 0.356948 0.356948i
\(123\) −5.39817 20.1462i −0.0438875 0.163790i
\(124\) 1.47596 0.395482i 0.0119029 0.00318937i
\(125\) −78.3820 78.3820i −0.627056 0.627056i
\(126\) 17.5006 30.3118i 0.138893 0.240570i
\(127\) 148.054 85.4792i 1.16578 0.673065i 0.213099 0.977031i \(-0.431644\pi\)
0.952683 + 0.303966i \(0.0983109\pi\)
\(128\) −32.6779 + 121.955i −0.255296 + 0.952777i
\(129\) 24.2619i 0.188077i
\(130\) 0 0
\(131\) 109.132 0.833072 0.416536 0.909119i \(-0.363244\pi\)
0.416536 + 0.909119i \(0.363244\pi\)
\(132\) 0.300956 + 0.0806409i 0.00227997 + 0.000610916i
\(133\) 24.6840 + 42.7540i 0.185594 + 0.321459i
\(134\) 107.926 + 62.3114i 0.805421 + 0.465010i
\(135\) 59.7662 59.7662i 0.442713 0.442713i
\(136\) −24.5534 91.6347i −0.180540 0.673784i
\(137\) 138.193 37.0288i 1.00871 0.270283i 0.283620 0.958937i \(-0.408465\pi\)
0.725090 + 0.688654i \(0.241798\pi\)
\(138\) −0.223880 0.223880i −0.00162232 0.00162232i
\(139\) 83.8403 145.216i 0.603168 1.04472i −0.389171 0.921166i \(-0.627238\pi\)
0.992338 0.123551i \(-0.0394283\pi\)
\(140\) −0.503290 + 0.290575i −0.00359493 + 0.00207553i
\(141\) 2.16712 8.08778i 0.0153696 0.0573602i
\(142\) 17.2077i 0.121181i
\(143\) 0 0
\(144\) −137.003 −0.951408
\(145\) −55.7193 14.9300i −0.384271 0.102965i
\(146\) 32.8967 + 56.9788i 0.225320 + 0.390266i
\(147\) −23.2920 13.4476i −0.158449 0.0914806i
\(148\) 0.345034 0.345034i 0.00233131 0.00233131i
\(149\) 11.2189 + 41.8695i 0.0752947 + 0.281004i 0.993300 0.115565i \(-0.0368677\pi\)
−0.918005 + 0.396568i \(0.870201\pi\)
\(150\) 44.8178 12.0089i 0.298785 0.0800593i
\(151\) −81.8840 81.8840i −0.542278 0.542278i 0.381918 0.924196i \(-0.375264\pi\)
−0.924196 + 0.381918i \(0.875264\pi\)
\(152\) 97.4904 168.858i 0.641384 1.11091i
\(153\) 88.3455 51.0063i 0.577422 0.333375i
\(154\) −15.2442 + 56.8922i −0.0989885 + 0.369430i
\(155\) 341.664i 2.20428i
\(156\) 0 0
\(157\) −104.868 −0.667951 −0.333976 0.942582i \(-0.608390\pi\)
−0.333976 + 0.942582i \(0.608390\pi\)
\(158\) −95.7763 25.6632i −0.606179 0.162425i
\(159\) 23.1196 + 40.0442i 0.145406 + 0.251851i
\(160\) 3.95792 + 2.28511i 0.0247370 + 0.0142819i
\(161\) −0.381578 + 0.381578i −0.00237005 + 0.00237005i
\(162\) −36.8065 137.364i −0.227200 0.847924i
\(163\) −309.120 + 82.8284i −1.89644 + 0.508149i −0.898891 + 0.438173i \(0.855626\pi\)
−0.997549 + 0.0699767i \(0.977708\pi\)
\(164\) 0.879237 + 0.879237i 0.00536120 + 0.00536120i
\(165\) −34.8336 + 60.3335i −0.211113 + 0.365658i
\(166\) −148.262 + 85.5991i −0.893145 + 0.515657i
\(167\) 51.1962 191.067i 0.306564 1.14411i −0.625026 0.780604i \(-0.714912\pi\)
0.931590 0.363510i \(-0.118422\pi\)
\(168\) 9.80104i 0.0583395i
\(169\) 0 0
\(170\) 187.863 1.10508
\(171\) 202.523 + 54.2658i 1.18434 + 0.317344i
\(172\) 0.723214 + 1.25264i 0.00420473 + 0.00728281i
\(173\) −241.095 139.196i −1.39361 0.804604i −0.399901 0.916558i \(-0.630956\pi\)
−0.993713 + 0.111955i \(0.964289\pi\)
\(174\) 6.09240 6.09240i 0.0350138 0.0350138i
\(175\) −20.4678 76.3869i −0.116959 0.436497i
\(176\) 222.690 59.6696i 1.26528 0.339032i
\(177\) 15.2735 + 15.2735i 0.0862908 + 0.0862908i
\(178\) −88.2963 + 152.934i −0.496047 + 0.859178i
\(179\) −214.248 + 123.696i −1.19692 + 0.691039i −0.959866 0.280458i \(-0.909514\pi\)
−0.237049 + 0.971498i \(0.576180\pi\)
\(180\) −0.638804 + 2.38405i −0.00354891 + 0.0132447i
\(181\) 211.414i 1.16803i −0.811741 0.584017i \(-0.801480\pi\)
0.811741 0.584017i \(-0.198520\pi\)
\(182\) 0 0
\(183\) 18.5442 0.101334
\(184\) 2.05868 + 0.551621i 0.0111885 + 0.00299794i
\(185\) 54.5526 + 94.4879i 0.294879 + 0.510746i
\(186\) −44.1948 25.5159i −0.237606 0.137182i
\(187\) −121.385 + 121.385i −0.649120 + 0.649120i
\(188\) 0.129197 + 0.482170i 0.000687219 + 0.00256474i
\(189\) 20.7838 5.56899i 0.109967 0.0294656i
\(190\) 273.025 + 273.025i 1.43697 + 1.43697i
\(191\) −26.6707 + 46.1950i −0.139637 + 0.241859i −0.927359 0.374172i \(-0.877927\pi\)
0.787722 + 0.616031i \(0.211260\pi\)
\(192\) −33.5208 + 19.3532i −0.174587 + 0.100798i
\(193\) 49.1845 183.559i 0.254842 0.951084i −0.713336 0.700822i \(-0.752817\pi\)
0.968178 0.250262i \(-0.0805167\pi\)
\(194\) 67.3349i 0.347087i
\(195\) 0 0
\(196\) 1.60342 0.00818071
\(197\) −156.072 41.8194i −0.792244 0.212281i −0.160068 0.987106i \(-0.551171\pi\)
−0.632176 + 0.774825i \(0.717838\pi\)
\(198\) 125.073 + 216.632i 0.631681 + 1.09410i
\(199\) 269.633 + 155.673i 1.35494 + 0.782275i 0.988937 0.148338i \(-0.0473925\pi\)
0.366003 + 0.930613i \(0.380726\pi\)
\(200\) −220.854 + 220.854i −1.10427 + 1.10427i
\(201\) 9.71230 + 36.2468i 0.0483199 + 0.180332i
\(202\) 32.1715 8.62034i 0.159265 0.0426749i
\(203\) −10.3838 10.3838i −0.0511518 0.0511518i
\(204\) 0.126494 0.219095i 0.000620071 0.00107399i
\(205\) −240.780 + 139.014i −1.17454 + 0.678119i
\(206\) 44.9521 167.763i 0.218214 0.814385i
\(207\) 2.29183i 0.0110716i
\(208\) 0 0
\(209\) −352.823 −1.68815
\(210\) 18.7474 + 5.02336i 0.0892735 + 0.0239208i
\(211\) −160.126 277.347i −0.758892 1.31444i −0.943416 0.331611i \(-0.892408\pi\)
0.184524 0.982828i \(-0.440926\pi\)
\(212\) −2.38732 1.37832i −0.0112610 0.00650152i
\(213\) 3.66383 3.66383i 0.0172011 0.0172011i
\(214\) −61.7475 230.445i −0.288540 1.07684i
\(215\) −312.399 + 83.7070i −1.45302 + 0.389335i
\(216\) −60.0912 60.0912i −0.278200 0.278200i
\(217\) −43.4889 + 75.3250i −0.200410 + 0.347120i
\(218\) 214.150 123.639i 0.982339 0.567154i
\(219\) −5.12752 + 19.1362i −0.0234133 + 0.0873797i
\(220\) 4.15336i 0.0188789i
\(221\) 0 0
\(222\) −16.2962 −0.0734064
\(223\) −319.945 85.7290i −1.43473 0.384435i −0.544046 0.839055i \(-0.683108\pi\)
−0.890685 + 0.454620i \(0.849775\pi\)
\(224\) 0.581722 + 1.00757i 0.00259698 + 0.00449809i
\(225\) −290.864 167.930i −1.29273 0.746356i
\(226\) −238.938 + 238.938i −1.05725 + 1.05725i
\(227\) 41.8212 + 156.079i 0.184234 + 0.687572i 0.994793 + 0.101915i \(0.0324969\pi\)
−0.810559 + 0.585657i \(0.800836\pi\)
\(228\) 0.502251 0.134578i 0.00220286 0.000590254i
\(229\) 124.472 + 124.472i 0.543547 + 0.543547i 0.924567 0.381020i \(-0.124427\pi\)
−0.381020 + 0.924567i \(0.624427\pi\)
\(230\) −2.11028 + 3.65511i −0.00917513 + 0.0158918i
\(231\) −15.3592 + 8.86763i −0.0664900 + 0.0383880i
\(232\) −15.0111 + 56.0223i −0.0647032 + 0.241476i
\(233\) 92.7546i 0.398088i 0.979991 + 0.199044i \(0.0637837\pi\)
−0.979991 + 0.199044i \(0.936216\pi\)
\(234\) 0 0
\(235\) −111.616 −0.474961
\(236\) −1.24385 0.333288i −0.00527055 0.00141224i
\(237\) −14.9284 25.8567i −0.0629889 0.109100i
\(238\) 41.4173 + 23.9123i 0.174022 + 0.100472i
\(239\) 26.1035 26.1035i 0.109220 0.109220i −0.650385 0.759605i \(-0.725392\pi\)
0.759605 + 0.650385i \(0.225392\pi\)
\(240\) −19.6626 73.3819i −0.0819276 0.305758i
\(241\) 45.3667 12.1560i 0.188244 0.0504397i −0.163466 0.986549i \(-0.552267\pi\)
0.351709 + 0.936109i \(0.385601\pi\)
\(242\) −127.296 127.296i −0.526017 0.526017i
\(243\) 69.0025 119.516i 0.283961 0.491835i
\(244\) −0.957436 + 0.552776i −0.00392392 + 0.00226548i
\(245\) −92.7924 + 346.306i −0.378744 + 1.41349i
\(246\) 41.5270i 0.168809i
\(247\) 0 0
\(248\) 343.522 1.38517
\(249\) −49.7934 13.3421i −0.199973 0.0535827i
\(250\) −110.353 191.136i −0.441410 0.764545i
\(251\) 156.585 + 90.4045i 0.623845 + 0.360177i 0.778365 0.627813i \(-0.216050\pi\)
−0.154519 + 0.987990i \(0.549383\pi\)
\(252\) −0.444290 + 0.444290i −0.00176305 + 0.00176305i
\(253\) −0.998173 3.72523i −0.00394535 0.0147242i
\(254\) 328.787 88.0983i 1.29444 0.346844i
\(255\) 39.9995 + 39.9995i 0.156861 + 0.156861i
\(256\) 3.43097 5.94261i 0.0134022 0.0232133i
\(257\) −153.535 + 88.6435i −0.597413 + 0.344916i −0.768023 0.640422i \(-0.778759\pi\)
0.170610 + 0.985339i \(0.445426\pi\)
\(258\) 12.5027 46.6606i 0.0484600 0.180855i
\(259\) 27.7751i 0.107240i
\(260\) 0 0
\(261\) −62.3671 −0.238954
\(262\) 209.884 + 56.2381i 0.801083 + 0.214649i
\(263\) 240.275 + 416.169i 0.913595 + 1.58239i 0.808946 + 0.587883i \(0.200038\pi\)
0.104649 + 0.994509i \(0.466628\pi\)
\(264\) 60.6616 + 35.0230i 0.229779 + 0.132663i
\(265\) 435.847 435.847i 1.64471 1.64471i
\(266\) 25.4404 + 94.9447i 0.0956405 + 0.356935i
\(267\) −51.3623 + 13.7625i −0.192368 + 0.0515449i
\(268\) −1.58191 1.58191i −0.00590265 0.00590265i
\(269\) −53.3932 + 92.4798i −0.198488 + 0.343791i −0.948038 0.318156i \(-0.896936\pi\)
0.749550 + 0.661947i \(0.230270\pi\)
\(270\) 145.741 84.1438i 0.539782 0.311644i
\(271\) 78.9475 294.636i 0.291319 1.08722i −0.652777 0.757550i \(-0.726396\pi\)
0.944097 0.329669i \(-0.106937\pi\)
\(272\) 187.197i 0.688224i
\(273\) 0 0
\(274\) 284.855 1.03962
\(275\) 545.921 + 146.279i 1.98517 + 0.531924i
\(276\) 0.00284184 + 0.00492221i 1.02965e−5 + 1.78341e-5i
\(277\) 51.6492 + 29.8197i 0.186459 + 0.107652i 0.590324 0.807166i \(-0.299000\pi\)
−0.403865 + 0.914819i \(0.632333\pi\)
\(278\) 236.074 236.074i 0.849188 0.849188i
\(279\) 95.6067 + 356.809i 0.342676 + 1.27889i
\(280\) −126.199 + 33.8149i −0.450711 + 0.120768i
\(281\) −266.125 266.125i −0.947063 0.947063i 0.0516049 0.998668i \(-0.483566\pi\)
−0.998668 + 0.0516049i \(0.983566\pi\)
\(282\) 8.33560 14.4377i 0.0295589 0.0511974i
\(283\) 372.572 215.104i 1.31651 0.760087i 0.333343 0.942806i \(-0.391823\pi\)
0.983165 + 0.182719i \(0.0584899\pi\)
\(284\) −0.0799498 + 0.298377i −0.000281513 + 0.00105062i
\(285\) 116.264i 0.407945i
\(286\) 0 0
\(287\) −70.7781 −0.246614
\(288\) 4.77280 + 1.27887i 0.0165722 + 0.00444051i
\(289\) −74.8063 129.568i −0.258845 0.448333i
\(290\) −99.4658 57.4266i −0.342985 0.198023i
\(291\) −14.3369 + 14.3369i −0.0492675 + 0.0492675i
\(292\) −0.305688 1.14084i −0.00104688 0.00390699i
\(293\) −103.475 + 27.7261i −0.353158 + 0.0946284i −0.431037 0.902334i \(-0.641852\pi\)
0.0778785 + 0.996963i \(0.475185\pi\)
\(294\) −37.8654 37.8654i −0.128794 0.128794i
\(295\) 143.967 249.358i 0.488023 0.845281i
\(296\) 95.0018 54.8493i 0.320952 0.185302i
\(297\) −39.8004 + 148.537i −0.134008 + 0.500125i
\(298\) 86.3049i 0.289614i
\(299\) 0 0
\(300\) −0.832926 −0.00277642
\(301\) −79.5277 21.3094i −0.264212 0.0707953i
\(302\) −115.283 199.676i −0.381732 0.661178i
\(303\) 8.68535 + 5.01449i 0.0286645 + 0.0165495i
\(304\) 272.057 272.057i 0.894924 0.894924i
\(305\) −63.9800 238.777i −0.209770 0.782874i
\(306\) 196.191 52.5692i 0.641146 0.171795i
\(307\) −279.598 279.598i −0.910742 0.910742i 0.0855884 0.996331i \(-0.472723\pi\)
−0.996331 + 0.0855884i \(0.972723\pi\)
\(308\) 0.528663 0.915670i 0.00171644 0.00297296i
\(309\) 45.2910 26.1488i 0.146573 0.0846239i
\(310\) −176.066 + 657.088i −0.567956 + 2.11964i
\(311\) 191.357i 0.615295i −0.951500 0.307648i \(-0.900458\pi\)
0.951500 0.307648i \(-0.0995418\pi\)
\(312\) 0 0
\(313\) 467.361 1.49317 0.746583 0.665292i \(-0.231693\pi\)
0.746583 + 0.665292i \(0.231693\pi\)
\(314\) −201.683 54.0408i −0.642302 0.172104i
\(315\) −70.2457 121.669i −0.223002 0.386251i
\(316\) 1.54150 + 0.889987i 0.00487817 + 0.00281641i
\(317\) 4.81422 4.81422i 0.0151868 0.0151868i −0.699473 0.714659i \(-0.746582\pi\)
0.714659 + 0.699473i \(0.246582\pi\)
\(318\) 23.8279 + 88.9271i 0.0749306 + 0.279645i
\(319\) 101.374 27.1631i 0.317787 0.0851507i
\(320\) 364.845 + 364.845i 1.14014 + 1.14014i
\(321\) 35.9188 62.2131i 0.111896 0.193810i
\(322\) −0.930486 + 0.537216i −0.00288971 + 0.00166837i
\(323\) −74.1473 + 276.722i −0.229558 + 0.856723i
\(324\) 2.55286i 0.00787921i
\(325\) 0 0
\(326\) −637.182 −1.95455
\(327\) 71.9216 + 19.2713i 0.219944 + 0.0589337i
\(328\) 139.770 + 242.089i 0.426129 + 0.738077i
\(329\) −24.6074 14.2071i −0.0747945 0.0431826i
\(330\) −98.0831 + 98.0831i −0.297221 + 0.297221i
\(331\) −10.2911 38.4071i −0.0310911 0.116034i 0.948636 0.316369i \(-0.102464\pi\)
−0.979727 + 0.200335i \(0.935797\pi\)
\(332\) 2.96854 0.795417i 0.00894138 0.00239584i
\(333\) 83.4111 + 83.4111i 0.250484 + 0.250484i
\(334\) 196.921 341.078i 0.589585 1.02119i
\(335\) 433.208 250.113i 1.29316 0.746605i
\(336\) 5.00554 18.6809i 0.0148974 0.0555980i
\(337\) 84.6771i 0.251267i −0.992077 0.125634i \(-0.959904\pi\)
0.992077 0.125634i \(-0.0400964\pi\)
\(338\) 0 0
\(339\) −101.749 −0.300144
\(340\) −3.25750 0.872845i −0.00958089 0.00256719i
\(341\) −310.806 538.332i −0.911455 1.57869i
\(342\) 361.528 + 208.728i 1.05710 + 0.610316i
\(343\) −135.029 + 135.029i −0.393671 + 0.393671i
\(344\) 84.1622 + 314.098i 0.244657 + 0.913074i
\(345\) −1.22756 + 0.328923i −0.00355814 + 0.000953401i
\(346\) −391.944 391.944i −1.13279 1.13279i
\(347\) −169.897 + 294.270i −0.489616 + 0.848040i −0.999929 0.0119488i \(-0.996196\pi\)
0.510312 + 0.859989i \(0.329530\pi\)
\(348\) −0.133947 + 0.0773344i −0.000384906 + 0.000222225i
\(349\) 106.758 398.426i 0.305897 1.14162i −0.626274 0.779603i \(-0.715421\pi\)
0.932171 0.362019i \(-0.117912\pi\)
\(350\) 157.455i 0.449871i
\(351\) 0 0
\(352\) −8.31490 −0.0236219
\(353\) −288.452 77.2905i −0.817145 0.218953i −0.174047 0.984737i \(-0.555684\pi\)
−0.643098 + 0.765784i \(0.722351\pi\)
\(354\) 21.5032 + 37.2447i 0.0607436 + 0.105211i
\(355\) −59.8164 34.5350i −0.168497 0.0972818i
\(356\) 2.24159 2.24159i 0.00629661 0.00629661i
\(357\) 3.72714 + 13.9099i 0.0104402 + 0.0389632i
\(358\) −475.785 + 127.486i −1.32901 + 0.356107i
\(359\) 274.613 + 274.613i 0.764940 + 0.764940i 0.977211 0.212271i \(-0.0680860\pi\)
−0.212271 + 0.977211i \(0.568086\pi\)
\(360\) −277.438 + 480.536i −0.770661 + 1.33482i
\(361\) −197.289 + 113.905i −0.546508 + 0.315527i
\(362\) 108.946 406.592i 0.300956 1.12318i
\(363\) 54.2074i 0.149332i
\(364\) 0 0
\(365\) 264.089 0.723532
\(366\) 35.6642 + 9.55620i 0.0974433 + 0.0261098i
\(367\) 138.968 + 240.700i 0.378661 + 0.655860i 0.990868 0.134838i \(-0.0430514\pi\)
−0.612207 + 0.790698i \(0.709718\pi\)
\(368\) 3.64215 + 2.10279i 0.00989714 + 0.00571411i
\(369\) −212.553 + 212.553i −0.576025 + 0.576025i
\(370\) 56.2241 + 209.831i 0.151957 + 0.567112i
\(371\) 151.566 40.6120i 0.408534 0.109466i
\(372\) 0.647776 + 0.647776i 0.00174133 + 0.00174133i
\(373\) −285.496 + 494.493i −0.765404 + 1.32572i 0.174629 + 0.984634i \(0.444127\pi\)
−0.940033 + 0.341084i \(0.889206\pi\)
\(374\) −296.001 + 170.896i −0.791446 + 0.456942i
\(375\) 17.2003 64.1925i 0.0458676 0.171180i
\(376\) 112.223i 0.298465i
\(377\) 0 0
\(378\) 42.8412 0.113336
\(379\) 246.885 + 66.1526i 0.651411 + 0.174545i 0.569367 0.822084i \(-0.307188\pi\)
0.0820441 + 0.996629i \(0.473855\pi\)
\(380\) −3.46567 6.00272i −0.00912018 0.0157966i
\(381\) 88.7627 + 51.2472i 0.232973 + 0.134507i
\(382\) −75.0983 + 75.0983i −0.196592 + 0.196592i
\(383\) −31.4773 117.475i −0.0821861 0.306723i 0.912580 0.408897i \(-0.134087\pi\)
−0.994766 + 0.102175i \(0.967420\pi\)
\(384\) −73.1157 + 19.5913i −0.190405 + 0.0510190i
\(385\) 167.172 + 167.172i 0.434212 + 0.434212i
\(386\) 189.184 327.676i 0.490113 0.848900i
\(387\) −302.823 + 174.835i −0.782489 + 0.451770i
\(388\) 0.312850 1.16757i 0.000806314 0.00300921i
\(389\) 382.647i 0.983668i −0.870689 0.491834i \(-0.836327\pi\)
0.870689 0.491834i \(-0.163673\pi\)
\(390\) 0 0
\(391\) −3.13149 −0.00800893
\(392\) 348.189 + 93.2970i 0.888237 + 0.238002i
\(393\) 32.7140 + 56.6622i 0.0832416 + 0.144179i
\(394\) −278.608 160.854i −0.707126 0.408259i
\(395\) −281.428 + 281.428i −0.712476 + 0.712476i
\(396\) −1.16222 4.33747i −0.00293490 0.0109532i
\(397\) 670.261 179.596i 1.68831 0.452382i 0.718360 0.695671i \(-0.244893\pi\)
0.969954 + 0.243289i \(0.0782264\pi\)
\(398\) 438.337 + 438.337i 1.10135 + 1.10135i
\(399\) −14.7988 + 25.6322i −0.0370896 + 0.0642411i
\(400\) −533.745 + 308.158i −1.33436 + 0.770395i
\(401\) −39.0164 + 145.611i −0.0972977 + 0.363120i −0.997358 0.0726459i \(-0.976856\pi\)
0.900060 + 0.435766i \(0.143522\pi\)
\(402\) 74.7148i 0.185858i
\(403\) 0 0
\(404\) −0.597899 −0.00147995
\(405\) −551.366 147.738i −1.36140 0.364785i
\(406\) −14.6192 25.3211i −0.0360078 0.0623673i
\(407\) −171.908 99.2513i −0.422379 0.243861i
\(408\) 40.2171 40.2171i 0.0985712 0.0985712i
\(409\) −80.8194 301.622i −0.197602 0.737462i −0.991578 0.129512i \(-0.958659\pi\)
0.793975 0.607950i \(-0.208008\pi\)
\(410\) −534.705 + 143.274i −1.30416 + 0.349448i
\(411\) 60.6510 + 60.6510i 0.147569 + 0.147569i
\(412\) −1.55892 + 2.70012i −0.00378378 + 0.00655369i
\(413\) 63.4794 36.6498i 0.153703 0.0887405i
\(414\) −1.18103 + 4.40765i −0.00285272 + 0.0106465i
\(415\) 687.175i 1.65584i
\(416\) 0 0
\(417\) 100.529 0.241077
\(418\) −678.550 181.817i −1.62333 0.434969i
\(419\) 138.039 + 239.091i 0.329450 + 0.570624i 0.982403 0.186775i \(-0.0598034\pi\)
−0.652953 + 0.757398i \(0.726470\pi\)
\(420\) −0.301737 0.174208i −0.000718420 0.000414780i
\(421\) −188.700 + 188.700i −0.448218 + 0.448218i −0.894762 0.446544i \(-0.852655\pi\)
0.446544 + 0.894762i \(0.352655\pi\)
\(422\) −165.033 615.910i −0.391072 1.45950i
\(423\) −116.563 + 31.2331i −0.275564 + 0.0738371i
\(424\) −438.217 438.217i −1.03353 1.03353i
\(425\) 229.455 397.428i 0.539895 0.935126i
\(426\) 8.93432 5.15823i 0.0209726 0.0121085i
\(427\) 16.2875 60.7857i 0.0381440 0.142355i
\(428\) 4.28275i 0.0100064i
\(429\) 0 0
\(430\) −643.941 −1.49754
\(431\) 332.145 + 88.9981i 0.770639 + 0.206492i 0.622654 0.782497i \(-0.286055\pi\)
0.147985 + 0.988990i \(0.452721\pi\)
\(432\) −83.8453 145.224i −0.194086 0.336167i
\(433\) 167.611 + 96.7701i 0.387092 + 0.223488i 0.680899 0.732377i \(-0.261589\pi\)
−0.293807 + 0.955865i \(0.594922\pi\)
\(434\) −122.454 + 122.454i −0.282153 + 0.282153i
\(435\) −8.95092 33.4053i −0.0205768 0.0767938i
\(436\) −4.28776 + 1.14890i −0.00983431 + 0.00263509i
\(437\) −4.55106 4.55106i −0.0104143 0.0104143i
\(438\) −19.7225 + 34.1604i −0.0450285 + 0.0779917i
\(439\) 304.574 175.846i 0.693790 0.400560i −0.111240 0.993794i \(-0.535482\pi\)
0.805030 + 0.593234i \(0.202149\pi\)
\(440\) 241.668 901.918i 0.549246 2.04981i
\(441\) 387.623i 0.878963i
\(442\) 0 0
\(443\) −336.467 −0.759520 −0.379760 0.925085i \(-0.623993\pi\)
−0.379760 + 0.925085i \(0.623993\pi\)
\(444\) 0.282573 + 0.0757151i 0.000636425 + 0.000170530i
\(445\) 354.414 + 613.863i 0.796435 + 1.37947i
\(446\) −571.141 329.748i −1.28058 0.739346i
\(447\) −18.3759 + 18.3759i −0.0411094 + 0.0411094i
\(448\) 33.9961 + 126.875i 0.0758842 + 0.283204i
\(449\) −132.735 + 35.5663i −0.295624 + 0.0792122i −0.403583 0.914943i \(-0.632235\pi\)
0.107959 + 0.994155i \(0.465569\pi\)
\(450\) −472.851 472.851i −1.05078 1.05078i
\(451\) 252.918 438.067i 0.560795 0.971325i
\(452\) 5.25328 3.03298i 0.0116223 0.00671014i
\(453\) 17.9688 67.0606i 0.0396663 0.148037i
\(454\) 321.722i 0.708639i
\(455\) 0 0
\(456\) 116.896 0.256352
\(457\) 191.805 + 51.3939i 0.419704 + 0.112459i 0.462489 0.886625i \(-0.346956\pi\)
−0.0427852 + 0.999084i \(0.513623\pi\)
\(458\) 175.242 + 303.529i 0.382625 + 0.662726i
\(459\) 108.134 + 62.4315i 0.235587 + 0.136016i
\(460\) 0.0535740 0.0535740i 0.000116465 0.000116465i
\(461\) −234.825 876.380i −0.509382 1.90104i −0.426514 0.904481i \(-0.640259\pi\)
−0.0828682 0.996561i \(-0.526408\pi\)
\(462\) −34.1085 + 9.13934i −0.0738279 + 0.0197821i
\(463\) 592.689 + 592.689i 1.28011 + 1.28011i 0.940607 + 0.339498i \(0.110257\pi\)
0.339498 + 0.940607i \(0.389743\pi\)
\(464\) −57.2229 + 99.1130i −0.123325 + 0.213606i
\(465\) −177.394 + 102.418i −0.381493 + 0.220255i
\(466\) −47.7983 + 178.386i −0.102572 + 0.382802i
\(467\) 151.923i 0.325318i −0.986682 0.162659i \(-0.947993\pi\)
0.986682 0.162659i \(-0.0520070\pi\)
\(468\) 0 0
\(469\) 127.343 0.271520
\(470\) −214.660 57.5179i −0.456723 0.122378i
\(471\) −31.4358 54.4483i −0.0667426 0.115602i
\(472\) −250.714 144.750i −0.531174 0.306673i
\(473\) 416.074 416.074i 0.879650 0.879650i
\(474\) −15.3858 57.4205i −0.0324595 0.121140i
\(475\) 911.062 244.118i 1.91803 0.513933i
\(476\) −0.607065 0.607065i −0.00127535 0.00127535i
\(477\) 333.206 577.129i 0.698544 1.20991i
\(478\) 63.6539 36.7506i 0.133167 0.0768841i
\(479\) −130.457 + 486.873i −0.272353 + 1.01644i 0.685241 + 0.728316i \(0.259697\pi\)
−0.957594 + 0.288120i \(0.906970\pi\)
\(480\) 2.73997i 0.00570827i
\(481\) 0 0
\(482\) 93.5136 0.194012
\(483\) −0.312501 0.0837344i −0.000647000 0.000173363i
\(484\) 1.61584 + 2.79872i 0.00333852 + 0.00578248i
\(485\) 234.066 + 135.138i 0.482611 + 0.278636i
\(486\) 194.295 194.295i 0.399783 0.399783i
\(487\) 142.989 + 533.641i 0.293611 + 1.09577i 0.942314 + 0.334730i \(0.108645\pi\)
−0.648703 + 0.761042i \(0.724688\pi\)
\(488\) −240.075 + 64.3279i −0.491957 + 0.131819i
\(489\) −135.668 135.668i −0.277439 0.277439i
\(490\) −356.917 + 618.198i −0.728402 + 1.26163i
\(491\) −714.499 + 412.516i −1.45519 + 0.840155i −0.998769 0.0496089i \(-0.984203\pi\)
−0.456422 + 0.889764i \(0.650869\pi\)
\(492\) −0.192942 + 0.720069i −0.000392158 + 0.00146355i
\(493\) 85.2167i 0.172853i
\(494\) 0 0
\(495\) 1004.06 2.02841
\(496\) 654.758 + 175.442i 1.32008 + 0.353713i
\(497\) −8.79163 15.2275i −0.0176894 0.0306389i
\(498\) −88.8872 51.3191i −0.178488 0.103050i
\(499\) −225.404 + 225.404i −0.451711 + 0.451711i −0.895922 0.444211i \(-0.853484\pi\)
0.444211 + 0.895922i \(0.353484\pi\)
\(500\) 1.02543 + 3.82697i 0.00205087 + 0.00765395i
\(501\) 114.550 30.6936i 0.228643 0.0612646i
\(502\) 254.557 + 254.557i 0.507087 + 0.507087i
\(503\) −117.302 + 203.173i −0.233205 + 0.403923i −0.958749 0.284252i \(-0.908255\pi\)
0.725545 + 0.688175i \(0.241588\pi\)
\(504\) −122.331 + 70.6277i −0.242720 + 0.140134i
\(505\) 34.6013 129.134i 0.0685174 0.255711i
\(506\) 7.67875i 0.0151754i
\(507\) 0 0
\(508\) −6.11042 −0.0120284
\(509\) 668.249 + 179.057i 1.31287 + 0.351782i 0.846301 0.532705i \(-0.178824\pi\)
0.466566 + 0.884486i \(0.345491\pi\)
\(510\) 56.3146 + 97.5398i 0.110421 + 0.191254i
\(511\) 58.2225 + 33.6148i 0.113938 + 0.0657823i
\(512\) 366.771 366.771i 0.716350 0.716350i
\(513\) 66.4211 + 247.887i 0.129476 + 0.483210i
\(514\) −340.959 + 91.3596i −0.663344 + 0.177742i
\(515\) −492.954 492.954i −0.957192 0.957192i
\(516\) −0.433587 + 0.750994i −0.000840284 + 0.00145542i
\(517\) 175.864 101.535i 0.340162 0.196393i
\(518\) −14.3131 + 53.4171i −0.0276314 + 0.103122i
\(519\) 166.904i 0.321588i
\(520\) 0 0
\(521\) −297.695 −0.571391 −0.285695 0.958320i \(-0.592225\pi\)
−0.285695 + 0.958320i \(0.592225\pi\)
\(522\) −119.944 32.1390i −0.229779 0.0615690i
\(523\) −169.819 294.135i −0.324701 0.562399i 0.656751 0.754108i \(-0.271930\pi\)
−0.981452 + 0.191709i \(0.938597\pi\)
\(524\) −3.37804 1.95031i −0.00644664 0.00372197i
\(525\) 33.5251 33.5251i 0.0638572 0.0638572i
\(526\) 247.638 + 924.196i 0.470794 + 1.75703i
\(527\) −487.535 + 130.634i −0.925113 + 0.247883i
\(528\) 97.7352 + 97.7352i 0.185105 + 0.185105i
\(529\) −264.465 + 458.067i −0.499934 + 0.865910i
\(530\) 1062.82 613.621i 2.00533 1.15778i
\(531\) 80.5716 300.697i 0.151736 0.566285i
\(532\) 1.76452i 0.00331677i
\(533\) 0 0
\(534\) −105.872 −0.198262
\(535\) −924.985 247.849i −1.72894 0.463269i
\(536\) −251.473 435.563i −0.469165 0.812618i
\(537\) −128.448 74.1592i −0.239195 0.138099i
\(538\) −150.343 + 150.343i −0.279447 + 0.279447i
\(539\) −168.823 630.058i −0.313216 1.16894i
\(540\) −2.91807 + 0.781893i −0.00540383 + 0.00144795i
\(541\) −123.367 123.367i −0.228036 0.228036i 0.583836 0.811872i \(-0.301551\pi\)
−0.811872 + 0.583836i \(0.801551\pi\)
\(542\) 303.664 525.961i 0.560266 0.970408i
\(543\) 109.768 63.3744i 0.202150 0.116712i
\(544\) −1.74741 + 6.52143i −0.00321215 + 0.0119879i
\(545\) 992.557i 1.82120i
\(546\) 0 0
\(547\) −193.679 −0.354074 −0.177037 0.984204i \(-0.556651\pi\)
−0.177037 + 0.984204i \(0.556651\pi\)
\(548\) −4.93932 1.32349i −0.00901336 0.00241512i
\(549\) −133.632 231.458i −0.243410 0.421599i
\(550\) 974.536 + 562.649i 1.77188 + 1.02300i
\(551\) 123.847 123.847i 0.224768 0.224768i
\(552\) 0.330712 + 1.23423i 0.000599116 + 0.00223593i
\(553\) −97.8668 + 26.2233i −0.176974 + 0.0474201i
\(554\) 83.9652 + 83.9652i 0.151562 + 0.151562i
\(555\) −32.7058 + 56.6481i −0.0589294 + 0.102069i
\(556\) −5.19032 + 2.99663i −0.00933510 + 0.00538962i
\(557\) −233.565 + 871.675i −0.419326 + 1.56495i 0.356684 + 0.934225i \(0.383907\pi\)
−0.776010 + 0.630721i \(0.782759\pi\)
\(558\) 735.484i 1.31807i
\(559\) 0 0
\(560\) −257.807 −0.460369
\(561\) −99.4110 26.6371i −0.177203 0.0474815i
\(562\) −374.672 648.951i −0.666676 1.15472i
\(563\) 412.904 + 238.390i 0.733399 + 0.423428i 0.819664 0.572844i \(-0.194160\pi\)
−0.0862652 + 0.996272i \(0.527493\pi\)
\(564\) −0.211617 + 0.211617i −0.000375208 + 0.000375208i
\(565\) 351.047 + 1310.12i 0.621322 + 2.31880i
\(566\) 827.378 221.695i 1.46180 0.391688i
\(567\) −102.752 102.752i −0.181221 0.181221i
\(568\) −34.7228 + 60.1417i −0.0611317 + 0.105883i
\(569\) 737.875 426.012i 1.29679 0.748704i 0.316944 0.948444i \(-0.397343\pi\)
0.979849 + 0.199741i \(0.0640100\pi\)
\(570\) −59.9133 + 223.600i −0.105111 + 0.392280i
\(571\) 839.202i 1.46971i −0.678227 0.734853i \(-0.737251\pi\)
0.678227 0.734853i \(-0.262749\pi\)
\(572\) 0 0
\(573\) −31.9796 −0.0558109
\(574\) −136.121 36.4734i −0.237144 0.0635425i
\(575\) 5.15497 + 8.92868i 0.00896517 + 0.0155281i
\(576\) 483.111 + 278.924i 0.838735 + 0.484244i
\(577\) −699.005 + 699.005i −1.21145 + 1.21145i −0.240897 + 0.970551i \(0.577442\pi\)
−0.970551 + 0.240897i \(0.922558\pi\)
\(578\) −77.0984 287.735i −0.133388 0.497812i
\(579\) 110.049 29.4875i 0.190067 0.0509283i
\(580\) 1.45790 + 1.45790i 0.00251362 + 0.00251362i
\(581\) −87.4676 + 151.498i −0.150547 + 0.260754i
\(582\) −34.9607 + 20.1846i −0.0600700 + 0.0346814i
\(583\) −290.246 + 1083.21i −0.497849 + 1.85800i
\(584\) 265.525i 0.454667i
\(585\) 0 0
\(586\) −213.292 −0.363979
\(587\) −224.194 60.0726i −0.381932 0.102338i 0.0627446 0.998030i \(-0.480015\pi\)
−0.444676 + 0.895691i \(0.646681\pi\)
\(588\) 0.480647 + 0.832506i 0.000817428 + 0.00141583i
\(589\) −898.397 518.690i −1.52529 0.880628i
\(590\) 405.376 405.376i 0.687079 0.687079i
\(591\) −25.0719 93.5695i −0.0424228 0.158324i
\(592\) 209.087 56.0247i 0.353188 0.0946364i
\(593\) 500.788 + 500.788i 0.844499 + 0.844499i 0.989440 0.144941i \(-0.0462994\pi\)
−0.144941 + 0.989440i \(0.546299\pi\)
\(594\) −153.088 + 265.157i −0.257725 + 0.446392i
\(595\) 166.245 95.9819i 0.279404 0.161314i
\(596\) 0.400988 1.49651i 0.000672798 0.00251092i
\(597\) 186.660i 0.312664i
\(598\) 0 0
\(599\) 563.203 0.940239 0.470119 0.882603i \(-0.344211\pi\)
0.470119 + 0.882603i \(0.344211\pi\)
\(600\) −180.873 48.4648i −0.301455 0.0807747i
\(601\) −67.6406 117.157i −0.112547 0.194937i 0.804250 0.594292i \(-0.202567\pi\)
−0.916796 + 0.399355i \(0.869234\pi\)
\(602\) −141.967 81.9645i −0.235825 0.136154i
\(603\) 382.423 382.423i 0.634200 0.634200i
\(604\) 1.07125 + 3.99796i 0.00177359 + 0.00661913i
\(605\) −697.978 + 187.023i −1.15368 + 0.309128i
\(606\) 14.1196 + 14.1196i 0.0232997 + 0.0232997i
\(607\) −20.0524 + 34.7318i −0.0330352 + 0.0572187i −0.882070 0.471118i \(-0.843851\pi\)
0.849035 + 0.528336i \(0.177184\pi\)
\(608\) −12.0173 + 6.93817i −0.0197652 + 0.0114115i
\(609\) 2.27865 8.50403i 0.00374162 0.0139639i
\(610\) 492.185i 0.806861i
\(611\) 0 0
\(612\) −3.64615 −0.00595776
\(613\) 714.402 + 191.423i 1.16542 + 0.312273i 0.789128 0.614228i \(-0.210533\pi\)
0.376291 + 0.926501i \(0.377199\pi\)
\(614\) −393.640 681.805i −0.641108 1.11043i
\(615\) −144.354 83.3430i −0.234722 0.135517i
\(616\) 168.081 168.081i 0.272858 0.272858i
\(617\) 169.497 + 632.571i 0.274712 + 1.02524i 0.956034 + 0.293254i \(0.0947383\pi\)
−0.681323 + 0.731983i \(0.738595\pi\)
\(618\) 100.579 26.9500i 0.162749 0.0436084i
\(619\) −739.075 739.075i −1.19398 1.19398i −0.975939 0.218042i \(-0.930033\pi\)
−0.218042 0.975939i \(-0.569967\pi\)
\(620\) 6.10590 10.5757i 0.00984822 0.0170576i
\(621\) −2.42936 + 1.40259i −0.00391202 + 0.00225860i
\(622\) 98.6100 368.018i 0.158537 0.591668i
\(623\) 180.447i 0.289642i
\(624\) 0 0
\(625\) 85.8635 0.137382
\(626\) 898.829 + 240.841i 1.43583 + 0.384729i
\(627\) −105.764 183.188i −0.168682 0.292166i
\(628\) 3.24605 + 1.87411i 0.00516887 + 0.00298425i
\(629\) −113.971 + 113.971i −0.181194 + 0.181194i
\(630\) −72.3981 270.193i −0.114918 0.428878i
\(631\) −822.253 + 220.322i −1.30309 + 0.349163i −0.842620 0.538509i \(-0.818988\pi\)
−0.460475 + 0.887673i \(0.652321\pi\)
\(632\) 282.958 + 282.958i 0.447719 + 0.447719i
\(633\) 96.0001 166.277i 0.151659 0.262681i
\(634\) 11.7396 6.77785i 0.0185167 0.0106906i
\(635\) 353.619 1319.72i 0.556881 2.07831i
\(636\) 1.65268i 0.00259856i
\(637\) 0 0
\(638\) 208.960 0.327524
\(639\) −72.1318 19.3277i −0.112882 0.0302467i
\(640\) 504.518 + 873.851i 0.788309 + 1.36539i
\(641\) 537.784 + 310.490i 0.838976 + 0.484383i 0.856916 0.515456i \(-0.172377\pi\)
−0.0179397 + 0.999839i \(0.505711\pi\)
\(642\) 101.139 101.139i 0.157537 0.157537i
\(643\) −33.3464 124.450i −0.0518607 0.193547i 0.935136 0.354290i \(-0.115277\pi\)
−0.986996 + 0.160744i \(0.948611\pi\)
\(644\) 0.0186304 0.00499200i 2.89292e−5 7.75156e-6i
\(645\) −137.107 137.107i −0.212569 0.212569i
\(646\) −285.200 + 493.982i −0.441487 + 0.764678i
\(647\) −492.538 + 284.367i −0.761264 + 0.439516i −0.829750 0.558136i \(-0.811517\pi\)
0.0684852 + 0.997652i \(0.478183\pi\)
\(648\) −148.541 + 554.364i −0.229231 + 0.855500i
\(649\) 523.857i 0.807176i
\(650\) 0 0
\(651\) −52.1456 −0.0801008
\(652\) 11.0486 + 2.96046i 0.0169457 + 0.00454058i
\(653\) 498.955 + 864.215i 0.764096 + 1.32345i 0.940723 + 0.339175i \(0.110148\pi\)
−0.176627 + 0.984278i \(0.556519\pi\)
\(654\) 128.389 + 74.1253i 0.196313 + 0.113341i
\(655\) 616.720 616.720i 0.941557 0.941557i
\(656\) 142.766 + 532.809i 0.217631 + 0.812208i
\(657\) 275.796 73.8992i 0.419780 0.112480i
\(658\) −40.0038 40.0038i −0.0607960 0.0607960i
\(659\) 218.812 378.994i 0.332037 0.575105i −0.650874 0.759186i \(-0.725598\pi\)
0.982911 + 0.184081i \(0.0589308\pi\)
\(660\) 2.15645 1.24503i 0.00326735 0.00188640i
\(661\) 24.5675 91.6872i 0.0371672 0.138710i −0.944849 0.327506i \(-0.893792\pi\)
0.982016 + 0.188796i \(0.0604585\pi\)
\(662\) 79.1678i 0.119589i
\(663\) 0 0
\(664\) 690.912 1.04053
\(665\) 381.100 + 102.115i 0.573083 + 0.153557i
\(666\) 117.433 + 203.400i 0.176326 + 0.305405i
\(667\) 1.65800 + 0.957245i 0.00248575 + 0.00143515i
\(668\) −4.99928 + 4.99928i −0.00748395 + 0.00748395i
\(669\) −51.3969 191.816i −0.0768265 0.286720i
\(670\) 962.034 257.776i 1.43587 0.384740i
\(671\) 318.019 + 318.019i 0.473948 + 0.473948i
\(672\) −0.348759 + 0.604068i −0.000518986 + 0.000898911i
\(673\) −263.517 + 152.141i −0.391555 + 0.226064i −0.682834 0.730574i \(-0.739253\pi\)
0.291279 + 0.956638i \(0.405919\pi\)
\(674\) 43.6358 162.851i 0.0647416 0.241619i
\(675\) 411.091i 0.609024i
\(676\) 0 0
\(677\) −535.082 −0.790372 −0.395186 0.918601i \(-0.629320\pi\)
−0.395186 + 0.918601i \(0.629320\pi\)
\(678\) −195.683 52.4332i −0.288618 0.0773351i
\(679\) 34.4023 + 59.5866i 0.0506662 + 0.0877564i
\(680\) −656.592 379.084i −0.965577 0.557476i
\(681\) −68.5006 + 68.5006i −0.100588 + 0.100588i
\(682\) −320.329 1195.49i −0.469691 1.75291i
\(683\) 488.481 130.888i 0.715199 0.191637i 0.117171 0.993112i \(-0.462618\pi\)
0.598029 + 0.801475i \(0.295951\pi\)
\(684\) −5.29902 5.29902i −0.00774710 0.00774710i
\(685\) 571.692 990.200i 0.834587 1.44555i
\(686\) −329.272 + 190.105i −0.479988 + 0.277121i
\(687\) −27.3145 + 101.939i −0.0397591 + 0.148383i
\(688\) 641.657i 0.932642i
\(689\) 0 0
\(690\) −2.53034 −0.00366716
\(691\) −574.894 154.042i −0.831974 0.222927i −0.182399 0.983225i \(-0.558386\pi\)
−0.649575 + 0.760298i \(0.725053\pi\)
\(692\) 4.97518 + 8.61726i 0.00718956 + 0.0124527i
\(693\) 221.361 + 127.803i 0.319424 + 0.184420i
\(694\) −478.389 + 478.389i −0.689322 + 0.689322i
\(695\) −346.839 1294.42i −0.499049 1.86248i
\(696\) −33.5869 + 8.99960i −0.0482571 + 0.0129305i
\(697\) −290.427 290.427i −0.416682 0.416682i
\(698\) 410.634 711.239i 0.588301 1.01897i
\(699\) −48.1588 + 27.8045i −0.0688967 + 0.0397775i
\(700\) −0.731563 + 2.73023i −0.00104509 + 0.00390033i
\(701\) 1080.69i 1.54164i 0.637052 + 0.770821i \(0.280154\pi\)
−0.637052 + 0.770821i \(0.719846\pi\)
\(702\) 0 0
\(703\) −331.272 −0.471226
\(704\) −906.751 242.963i −1.28800 0.345118i
\(705\) −33.4584 57.9516i −0.0474587 0.0822009i
\(706\) −514.922 297.290i −0.729351 0.421091i
\(707\) 24.0653 24.0653i 0.0340386 0.0340386i
\(708\) −0.199816 0.745722i −0.000282225 0.00105328i
\(709\) −527.703 + 141.398i −0.744292 + 0.199432i −0.610985 0.791642i \(-0.709226\pi\)
−0.133307 + 0.991075i \(0.542560\pi\)
\(710\) −97.2424 97.2424i −0.136961 0.136961i
\(711\) −215.152 + 372.654i −0.302605 + 0.524127i
\(712\) 617.201 356.341i 0.866855 0.500479i
\(713\) 2.93485 10.9530i 0.00411620 0.0153619i
\(714\) 28.6722i 0.0401571i
\(715\) 0 0
\(716\) 8.84232 0.0123496
\(717\) 21.3780 + 5.72821i 0.0298159 + 0.00798914i
\(718\) 386.623 + 669.651i 0.538472 + 0.932661i
\(719\) −1155.86 667.337i −1.60760 0.928146i −0.989906 0.141723i \(-0.954736\pi\)
−0.617689 0.786422i \(-0.711931\pi\)
\(720\) −774.218 + 774.218i −1.07530 + 1.07530i
\(721\) −45.9332 171.425i −0.0637077 0.237760i
\(722\) −438.125 + 117.395i −0.606821 + 0.162597i
\(723\) 19.9108 + 19.9108i 0.0275391 + 0.0275391i
\(724\) −3.77820 + 6.54403i −0.00521851 + 0.00903872i
\(725\) −242.974 + 140.281i −0.335137 + 0.193491i
\(726\) 27.9341 104.252i 0.0384768 0.143597i
\(727\) 1107.01i 1.52271i 0.648335 + 0.761356i \(0.275466\pi\)
−0.648335 + 0.761356i \(0.724534\pi\)
\(728\) 0 0
\(729\) −560.082 −0.768289
\(730\) 507.897 + 136.090i 0.695749 + 0.186425i
\(731\) −238.890 413.770i −0.326799 0.566032i
\(732\) −0.574010 0.331405i −0.000784166 0.000452738i
\(733\) 402.981 402.981i 0.549769 0.549769i −0.376605 0.926374i \(-0.622909\pi\)
0.926374 + 0.376605i \(0.122909\pi\)
\(734\) 143.227 + 534.529i 0.195132 + 0.728241i
\(735\) −207.620 + 55.6316i −0.282476 + 0.0756893i
\(736\) −0.107254 0.107254i −0.000145725 0.000145725i
\(737\) −455.047 + 788.164i −0.617431 + 1.06942i
\(738\) −518.316 + 299.250i −0.702325 + 0.405487i
\(739\) 152.340 568.542i 0.206144 0.769340i −0.782954 0.622080i \(-0.786288\pi\)
0.989098 0.147260i \(-0.0470454\pi\)
\(740\) 3.89965i 0.00526980i
\(741\) 0 0
\(742\) 312.421 0.421052
\(743\) −596.069 159.716i −0.802246 0.214961i −0.165676 0.986180i \(-0.552981\pi\)
−0.636570 + 0.771219i \(0.719647\pi\)
\(744\) 102.975 + 178.359i 0.138408 + 0.239729i
\(745\) 300.009 + 173.210i 0.402697 + 0.232497i
\(746\) −803.888 + 803.888i −1.07760 + 1.07760i
\(747\) 192.290 + 717.636i 0.257416 + 0.960691i
\(748\) 5.92660 1.58803i 0.00792326 0.00212303i
\(749\) −172.379 172.379i −0.230146 0.230146i
\(750\) 66.1594 114.591i 0.0882125 0.152789i
\(751\) −863.544 + 498.567i −1.14986 + 0.663871i −0.948853 0.315719i \(-0.897754\pi\)
−0.201006 + 0.979590i \(0.564421\pi\)
\(752\) −57.3139 + 213.898i −0.0762152 + 0.284439i
\(753\) 108.400i 0.143957i
\(754\) 0 0
\(755\) −925.472 −1.22579
\(756\) −0.742856 0.199048i −0.000982614 0.000263290i
\(757\) 48.7879 + 84.5031i 0.0644490 + 0.111629i 0.896449 0.443146i \(-0.146138\pi\)
−0.832000 + 0.554775i \(0.812804\pi\)
\(758\) 440.719 + 254.449i 0.581424 + 0.335685i
\(759\) 1.63495 1.63495i 0.00215408 0.00215408i
\(760\) −403.308 1505.17i −0.530669 1.98048i
\(761\) 286.709 76.8236i 0.376754 0.100951i −0.0654727 0.997854i \(-0.520856\pi\)
0.442226 + 0.896904i \(0.354189\pi\)
\(762\) 144.300 + 144.300i 0.189370 + 0.189370i
\(763\) 126.338 218.824i 0.165581 0.286795i
\(764\) 1.65111 0.953267i 0.00216113 0.00124773i
\(765\) 211.008 787.493i 0.275828 1.02940i
\(766\) 242.149i 0.316121i
\(767\) 0 0
\(768\) 4.11392 0.00535667
\(769\) 137.314 + 36.7932i 0.178562 + 0.0478455i 0.346992 0.937868i \(-0.387203\pi\)
−0.168430 + 0.985714i \(0.553870\pi\)
\(770\) 235.358 + 407.651i 0.305659 + 0.529417i
\(771\) −92.0486 53.1443i −0.119389 0.0689290i
\(772\) −4.80284 + 4.80284i −0.00622129 + 0.00622129i
\(773\) 174.835 + 652.494i 0.226178 + 0.844107i 0.981929 + 0.189248i \(0.0606051\pi\)
−0.755752 + 0.654858i \(0.772728\pi\)
\(774\) −672.486 + 180.192i −0.868845 + 0.232806i
\(775\) 1175.04 + 1175.04i 1.51618 + 1.51618i
\(776\) 135.873 235.339i 0.175094 0.303272i
\(777\) −14.4210 + 8.32596i −0.0185598 + 0.0107155i
\(778\) 197.186 735.907i 0.253452 0.945895i
\(779\) 844.167i 1.08365i
\(780\) 0 0
\(781\) 125.664 0.160901
\(782\) −6.02249 1.61372i −0.00770140 0.00206358i
\(783\) −38.1685 66.1098i −0.0487465 0.0844314i
\(784\) 616.005 + 355.651i 0.785721 + 0.453636i
\(785\) −592.623 + 592.623i −0.754934 + 0.754934i
\(786\) 33.7163 + 125.831i 0.0428961 + 0.160090i
\(787\) 653.790 175.182i 0.830737 0.222595i 0.181702 0.983354i \(-0.441839\pi\)
0.649035 + 0.760758i \(0.275173\pi\)
\(788\) 4.08363 + 4.08363i 0.00518227 + 0.00518227i
\(789\) −144.052 + 249.505i −0.182575 + 0.316229i
\(790\) −686.268 + 396.217i −0.868694 + 0.501541i
\(791\) −89.3664 + 333.520i −0.112979 + 0.421644i
\(792\) 1009.52i 1.27465i
\(793\) 0 0
\(794\) 1381.60 1.74004
\(795\) 356.946 + 95.6433i 0.448988 + 0.120306i
\(796\) −5.56407 9.63726i −0.00699004 0.0121071i
\(797\) 827.418 + 477.710i 1.03817 + 0.599385i 0.919313 0.393527i \(-0.128745\pi\)
0.118852 + 0.992912i \(0.462078\pi\)
\(798\) −41.6698 + 41.6698i −0.0522178 + 0.0522178i
\(799\) −42.6761 159.269i −0.0534118 0.199336i
\(800\) 21.4708 5.75308i 0.0268385 0.00719134i
\(801\) 541.899 + 541.899i 0.676529 + 0.676529i
\(802\) −150.073 + 259.933i −0.187123 + 0.324107i
\(803\) −416.104 + 240.238i −0.518187 + 0.299175i
\(804\) 0.347138 1.29554i 0.000431764 0.00161136i
\(805\) 4.31268i 0.00535737i
\(806\) 0 0
\(807\) −64.0215 −0.0793327
\(808\) −129.836 34.7895i −0.160688 0.0430563i
\(809\) 120.894 + 209.395i 0.149436 + 0.258831i 0.931019 0.364970i \(-0.118921\pi\)
−0.781583 + 0.623801i \(0.785587\pi\)
\(810\) −984.255 568.260i −1.21513 0.701556i
\(811\) 444.795 444.795i 0.548452 0.548452i −0.377541 0.925993i \(-0.623230\pi\)
0.925993 + 0.377541i \(0.123230\pi\)
\(812\) 0.135846 + 0.506986i 0.000167299 + 0.000624367i
\(813\) 176.643 47.3312i 0.217273 0.0582180i
\(814\) −279.468 279.468i −0.343327 0.343327i
\(815\) −1278.80 + 2214.94i −1.56908 + 2.71772i
\(816\) 97.1938 56.1149i 0.119110 0.0687682i
\(817\) 254.156 948.523i 0.311084 1.16098i
\(818\) 621.728i 0.760059i
\(819\) 0 0
\(820\) 9.93734 0.0121187
\(821\) −352.928 94.5667i −0.429876 0.115185i 0.0373921 0.999301i \(-0.488095\pi\)
−0.467268 + 0.884116i \(0.654762\pi\)
\(822\) 85.3893 + 147.899i 0.103880 + 0.179925i
\(823\) −595.727 343.943i −0.723848 0.417914i 0.0923192 0.995729i \(-0.470572\pi\)
−0.816167 + 0.577815i \(0.803905\pi\)
\(824\) −495.635 + 495.635i −0.601498 + 0.601498i
\(825\) 87.6984 + 327.295i 0.106301 + 0.396721i
\(826\) 140.970 37.7728i 0.170666 0.0457298i
\(827\) −486.409 486.409i −0.588161 0.588161i 0.348972 0.937133i \(-0.386531\pi\)
−0.937133 + 0.348972i \(0.886531\pi\)
\(828\) 0.0409574 0.0709403i 4.94655e−5 8.56767e-5i
\(829\) 617.844 356.712i 0.745288 0.430292i −0.0787009 0.996898i \(-0.525077\pi\)
0.823989 + 0.566606i \(0.191744\pi\)
\(830\) −354.115 + 1321.58i −0.426645 + 1.59226i
\(831\) 35.7555i 0.0430270i
\(832\) 0 0
\(833\) −529.637 −0.635819
\(834\) 193.338 + 51.8047i 0.231820 + 0.0621160i
\(835\) −790.425 1369.06i −0.946617 1.63959i
\(836\) 10.9211 + 6.30533i 0.0130636 + 0.00754226i
\(837\) −319.710 + 319.710i −0.381972 + 0.381972i
\(838\) 142.269 + 530.955i 0.169772 + 0.633598i
\(839\) −397.410 + 106.486i −0.473671 + 0.126920i −0.487754 0.872981i \(-0.662184\pi\)
0.0140828 + 0.999901i \(0.495517\pi\)
\(840\) −55.3868 55.3868i −0.0659367 0.0659367i
\(841\) 394.451 683.209i 0.469026 0.812377i
\(842\) −460.149 + 265.667i −0.546495 + 0.315519i
\(843\) 58.3990 217.948i 0.0692752 0.258539i
\(844\) 11.4465i 0.0135622i
\(845\) 0 0
\(846\) −240.270 −0.284007
\(847\) −177.685 47.6106i −0.209782 0.0562109i
\(848\) −611.444 1059.05i −0.721043 1.24888i
\(849\) 223.367 + 128.961i 0.263094 + 0.151898i
\(850\) 646.092 646.092i 0.760108 0.760108i
\(851\) −0.937201 3.49768i −0.00110129 0.00411008i
\(852\) −0.178885 + 0.0479321i −0.000209959 + 5.62584e-5i
\(853\) 100.188 + 100.188i 0.117454 + 0.117454i 0.763391 0.645937i \(-0.223533\pi\)
−0.645937 + 0.763391i \(0.723533\pi\)
\(854\) 62.6482 108.510i 0.0733585 0.127061i
\(855\) 1451.14 837.817i 1.69724 0.979902i
\(856\) −249.197 + 930.015i −0.291118 + 1.08647i
\(857\) 1105.86i 1.29039i 0.764019 + 0.645194i \(0.223224\pi\)
−0.764019 + 0.645194i \(0.776776\pi\)
\(858\) 0 0
\(859\) −98.7915 −0.115008 −0.0575038 0.998345i \(-0.518314\pi\)
−0.0575038 + 0.998345i \(0.518314\pi\)
\(860\) 11.1658 + 2.99187i 0.0129835 + 0.00347891i
\(861\) −21.2167 36.7485i −0.0246420 0.0426811i
\(862\) 592.920 + 342.322i 0.687842 + 0.397126i
\(863\) 14.6470 14.6470i 0.0169722 0.0169722i −0.698570 0.715542i \(-0.746180\pi\)
0.715542 + 0.698570i \(0.246180\pi\)
\(864\) 1.56533 + 5.84188i 0.00181172 + 0.00676144i
\(865\) −2149.07 + 575.842i −2.48448 + 0.665713i
\(866\) 272.482 + 272.482i 0.314644 + 0.314644i
\(867\) 44.8485 77.6799i 0.0517284 0.0895961i
\(868\) 2.69228 1.55439i 0.00310170 0.00179077i
\(869\) 187.413 699.434i 0.215665 0.804872i
\(870\) 68.8577i 0.0791468i
\(871\) 0 0
\(872\) −997.954 −1.14444
\(873\) 282.257 + 75.6307i 0.323319 + 0.0866331i
\(874\) −6.40735 11.0979i −0.00733106 0.0126978i
\(875\) −195.308 112.761i −0.223209 0.128870i
\(876\) 0.500698 0.500698i 0.000571573 0.000571573i
\(877\) −196.106 731.877i −0.223610 0.834524i −0.982957 0.183837i \(-0.941148\pi\)
0.759347 0.650686i \(-0.225519\pi\)
\(878\) 676.373 181.234i 0.770357 0.206417i
\(879\) −45.4138 45.4138i −0.0516652 0.0516652i
\(880\) 921.246 1595.65i 1.04687 1.81323i
\(881\) 1427.91 824.403i 1.62078 0.935758i 0.634069 0.773277i \(-0.281384\pi\)
0.986712 0.162481i \(-0.0519498\pi\)
\(882\) −199.750 + 745.476i −0.226474 + 0.845211i
\(883\) 360.322i 0.408065i −0.978964 0.204033i \(-0.934595\pi\)
0.978964 0.204033i \(-0.0654049\pi\)
\(884\) 0 0
\(885\) 172.624 0.195056
\(886\) −647.095 173.388i −0.730355 0.195698i
\(887\) 524.092 + 907.755i 0.590860 + 1.02340i 0.994117 + 0.108312i \(0.0345446\pi\)
−0.403257 + 0.915087i \(0.632122\pi\)
\(888\) 56.9562 + 32.8837i 0.0641399 + 0.0370312i
\(889\) 245.943 245.943i 0.276651 0.276651i
\(890\) 365.273 + 1363.22i 0.410419 + 1.53171i
\(891\) 1003.14 268.790i 1.12586 0.301672i
\(892\) 8.37138 + 8.37138i 0.00938495 + 0.00938495i
\(893\) 169.447 293.491i 0.189750 0.328657i
\(894\) −44.8100 + 25.8711i −0.0501231 + 0.0289386i
\(895\) −511.719 + 1909.76i −0.571753 + 2.13381i
\(896\) 256.872i 0.286687i
\(897\) 0 0
\(898\) −273.604 −0.304682
\(899\) 298.062 + 79.8655i 0.331549 + 0.0888382i
\(900\) 6.00218 + 10.3961i 0.00666909 + 0.0115512i
\(901\) 788.574 + 455.283i 0.875221 + 0.505309i
\(902\) 712.158 712.158i 0.789532 0.789532i
\(903\) −12.7756 47.6791i −0.0141479 0.0528008i
\(904\) 1317.25 352.956i 1.45713 0.390438i
\(905\) −1194.73 1194.73i −1.32014 1.32014i
\(906\) 69.1153 119.711i 0.0762862 0.132132i
\(907\) −141.664 + 81.7900i −0.156190 + 0.0901764i −0.576058 0.817409i \(-0.695410\pi\)
0.419868 + 0.907585i \(0.362076\pi\)
\(908\) 1.49478 5.57859i 0.00164623 0.00614382i
\(909\) 144.540i 0.159010i
\(910\) 0 0
\(911\) 826.177 0.906890 0.453445 0.891284i \(-0.350195\pi\)
0.453445 + 0.891284i \(0.350195\pi\)
\(912\) 222.806 + 59.7008i 0.244305 + 0.0654614i
\(913\) −625.112 1082.73i −0.684680 1.18590i
\(914\) 342.395 + 197.682i 0.374611 + 0.216282i
\(915\) 104.795 104.795i 0.114530 0.114530i
\(916\) −1.62841 6.07732i −0.00177774 0.00663463i
\(917\) 214.465 57.4657i 0.233877 0.0626670i
\(918\) 175.792 + 175.792i 0.191495 + 0.191495i
\(919\) −178.535 + 309.231i −0.194271 + 0.336487i −0.946661 0.322231i \(-0.895567\pi\)
0.752391 + 0.658717i \(0.228901\pi\)
\(920\) 14.7511 8.51654i 0.0160338 0.00925711i
\(921\) 61.3556 228.982i 0.0666185 0.248624i
\(922\) 1806.47i 1.95929i
\(923\) 0 0
\(924\) 0.633896 0.000686034
\(925\) 512.574 + 137.344i 0.554135 + 0.148480i
\(926\) 834.435 + 1445.28i 0.901118 + 1.56078i
\(927\) −652.748 376.864i −0.704150 0.406541i
\(928\) 2.91867 2.91867i 0.00314512 0.00314512i
\(929\) 61.3191 + 228.846i 0.0660055 + 0.246336i 0.991044 0.133538i \(-0.0426340\pi\)
−0.925038 + 0.379874i \(0.875967\pi\)
\(930\) −393.943 + 105.557i −0.423594 + 0.113502i
\(931\) −769.732 769.732i −0.826780 0.826780i
\(932\) 1.65762 2.87109i 0.00177857 0.00308057i
\(933\) 99.3537 57.3619i 0.106488 0.0614811i
\(934\) 78.2892 292.179i 0.0838215 0.312826i
\(935\) 1371.93i 1.46730i
\(936\) 0 0
\(937\) 1610.13 1.71838 0.859192 0.511654i \(-0.170967\pi\)
0.859192 + 0.511654i \(0.170967\pi\)
\(938\) 244.906 + 65.6224i 0.261094 + 0.0699599i
\(939\) 140.098 + 242.657i 0.149199 + 0.258420i
\(940\) 3.45491 + 1.99469i 0.00367543 + 0.00212201i
\(941\) 930.926 930.926i 0.989295 0.989295i −0.0106488 0.999943i \(-0.503390\pi\)
0.999943 + 0.0106488i \(0.00338967\pi\)
\(942\) −32.3990 120.915i −0.0343938 0.128359i
\(943\) 8.91301 2.38823i 0.00945176 0.00253259i
\(944\) −403.939 403.939i −0.427901 0.427901i
\(945\) 85.9804 148.922i 0.0909846 0.157590i
\(946\) 1014.61 585.783i 1.07252 0.619221i
\(947\) 51.1956 191.065i 0.0540608 0.201758i −0.933613 0.358283i \(-0.883362\pi\)
0.987674 + 0.156525i \(0.0500291\pi\)
\(948\) 1.06714i 0.00112568i
\(949\) 0 0
\(950\) 1877.96 1.97679
\(951\) 3.94270 + 1.05644i 0.00414585 + 0.00111088i
\(952\) −96.5038 167.150i −0.101370 0.175577i
\(953\) 363.857 + 210.073i 0.381802 + 0.220433i 0.678602 0.734506i \(-0.262586\pi\)
−0.296800 + 0.954940i \(0.595920\pi\)
\(954\) 938.228 938.228i 0.983467 0.983467i
\(955\) 110.334 + 411.772i 0.115533 + 0.431175i
\(956\) −1.27449 + 0.341499i −0.00133315 + 0.000357217i
\(957\) 44.4915 + 44.4915i 0.0464906 + 0.0464906i
\(958\) −501.791 + 869.127i −0.523790 + 0.907231i
\(959\) 252.077 145.536i 0.262854 0.151759i
\(960\) −80.0625 + 298.797i −0.0833984 + 0.311247i
\(961\) 866.679i 0.901851i
\(962\) 0 0
\(963\) −1035.34 −1.07512
\(964\) −1.62150 0.434480i −0.00168206 0.000450706i
\(965\) −759.367 1315.26i −0.786908 1.36297i
\(966\) −0.557852 0.322076i −0.000577487 0.000333412i
\(967\) 957.774 957.774i 0.990459 0.990459i −0.00949545 0.999955i \(-0.503023\pi\)
0.999955 + 0.00949545i \(0.00302254\pi\)
\(968\) 188.040 + 701.774i 0.194256 + 0.724973i
\(969\) −165.902 + 44.4534i −0.171210 + 0.0458755i
\(970\) 380.517 + 380.517i 0.392286 + 0.392286i
\(971\) 351.176 608.255i 0.361664 0.626421i −0.626571 0.779365i \(-0.715542\pi\)
0.988235 + 0.152944i \(0.0488753\pi\)
\(972\) −4.27175 + 2.46630i −0.00439481 + 0.00253734i
\(973\) 88.2953 329.523i 0.0907454 0.338667i
\(974\) 1099.98i 1.12935i
\(975\) 0 0
\(976\) −490.440 −0.502500
\(977\) 645.113 + 172.858i 0.660300 + 0.176927i 0.573381 0.819289i \(-0.305631\pi\)
0.0869186 + 0.996215i \(0.472298\pi\)
\(978\) −191.004 330.829i −0.195301 0.338271i
\(979\) −1116.84 644.809i −1.14080 0.658641i
\(980\) 9.06111 9.06111i 0.00924603 0.00924603i
\(981\) −277.744 1036.55i −0.283123 1.05663i
\(982\) −1586.70 + 425.156i −1.61579 + 0.432949i
\(983\) −507.852 507.852i −0.516635 0.516635i 0.399916 0.916552i \(-0.369039\pi\)
−0.916552 + 0.399916i \(0.869039\pi\)
\(984\) −83.7962 + 145.139i −0.0851587 + 0.147499i
\(985\) −1118.31 + 645.655i −1.13534 + 0.655487i
\(986\) 43.9139 163.889i 0.0445374 0.166216i
\(987\) 17.0351i 0.0172595i
\(988\) 0 0
\(989\) 10.7339 0.0108533
\(990\) 1931.02 + 517.414i 1.95052 + 0.522640i
\(991\) 418.667 + 725.153i 0.422469 + 0.731738i 0.996180 0.0873195i \(-0.0278301\pi\)
−0.573711 + 0.819058i \(0.694497\pi\)
\(992\) −21.1723 12.2238i −0.0213430 0.0123224i
\(993\) 16.8563 16.8563i 0.0169751 0.0169751i
\(994\) −9.06101 33.8161i −0.00911570 0.0340203i
\(995\) 2403.45 644.003i 2.41553 0.647239i
\(996\) 1.30285 + 1.30285i 0.00130808 + 0.00130808i
\(997\) −305.867 + 529.777i −0.306787 + 0.531371i −0.977658 0.210204i \(-0.932587\pi\)
0.670870 + 0.741575i \(0.265921\pi\)
\(998\) −549.651 + 317.341i −0.550753 + 0.317977i
\(999\) −37.3693 + 139.464i −0.0374067 + 0.139604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.80.9 48
13.2 odd 12 169.3.d.e.99.9 yes 24
13.3 even 3 169.3.d.e.70.4 24
13.4 even 6 inner 169.3.f.g.19.9 48
13.5 odd 4 inner 169.3.f.g.89.9 48
13.6 odd 12 inner 169.3.f.g.150.4 48
13.7 odd 12 inner 169.3.f.g.150.9 48
13.8 odd 4 inner 169.3.f.g.89.4 48
13.9 even 3 inner 169.3.f.g.19.4 48
13.10 even 6 169.3.d.e.70.9 yes 24
13.11 odd 12 169.3.d.e.99.4 yes 24
13.12 even 2 inner 169.3.f.g.80.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.4 24 13.3 even 3
169.3.d.e.70.9 yes 24 13.10 even 6
169.3.d.e.99.4 yes 24 13.11 odd 12
169.3.d.e.99.9 yes 24 13.2 odd 12
169.3.f.g.19.4 48 13.9 even 3 inner
169.3.f.g.19.9 48 13.4 even 6 inner
169.3.f.g.80.4 48 13.12 even 2 inner
169.3.f.g.80.9 48 1.1 even 1 trivial
169.3.f.g.89.4 48 13.8 odd 4 inner
169.3.f.g.89.9 48 13.5 odd 4 inner
169.3.f.g.150.4 48 13.6 odd 12 inner
169.3.f.g.150.9 48 13.7 odd 12 inner