Properties

Label 169.3.f.g.150.4
Level $169$
Weight $3$
Character 169.150
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 150.4
Character \(\chi\) \(=\) 169.150
Dual form 169.3.f.g.80.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.92320 + 0.515320i) q^{2} +(0.299764 - 0.519206i) q^{3} +(-0.0309536 + 0.0178711i) q^{4} +(-5.65111 - 5.65111i) q^{5} +(-0.308949 + 1.15301i) q^{6} +(-1.96518 - 0.526568i) q^{7} +(5.68184 - 5.68184i) q^{8} +(4.32028 + 7.48295i) q^{9} +(13.7804 + 7.95610i) q^{10} +(3.76327 + 14.0447i) q^{11} +0.0214284i q^{12} +4.05079 q^{14} +(-4.62809 + 1.24009i) q^{15} +(-7.92788 + 13.7315i) q^{16} +(10.2245 - 5.90312i) q^{17} +(-12.1649 - 12.1649i) q^{18} +(-6.28035 + 23.4386i) q^{19} +(0.275914 + 0.0739308i) q^{20} +(-0.862488 + 0.862488i) q^{21} +(-14.4751 - 25.0716i) q^{22} +(-0.229705 - 0.132620i) q^{23} +(-1.24684 - 4.65326i) q^{24} +38.8702i q^{25} +10.5760 q^{27} +(0.0702397 - 0.0188207i) q^{28} +(-3.60897 + 6.25092i) q^{29} +(8.26171 - 4.76990i) q^{30} +(30.2298 + 30.2298i) q^{31} +(-0.148007 + 0.552371i) q^{32} +(8.42021 + 2.25619i) q^{33} +(-16.6218 + 16.6218i) q^{34} +(8.12976 + 14.0812i) q^{35} +(-0.267457 - 0.154416i) q^{36} +(3.53340 + 13.1868i) q^{37} -48.3135i q^{38} -64.2175 q^{40} +(33.6035 - 9.00403i) q^{41} +(1.21428 - 2.10319i) q^{42} +(-35.0467 + 20.2342i) q^{43} +(-0.367481 - 0.367481i) q^{44} +(17.8726 - 66.7014i) q^{45} +(0.510111 + 0.136684i) q^{46} +(9.87555 - 9.87555i) q^{47} +(4.75298 + 8.23241i) q^{48} +(-38.8506 - 22.4304i) q^{49} +(-20.0306 - 74.7552i) q^{50} -7.07817i q^{51} +77.1259 q^{53} +(-20.3398 + 5.45003i) q^{54} +(58.1017 - 100.635i) q^{55} +(-14.1577 + 8.17397i) q^{56} +(10.2868 + 10.2868i) q^{57} +(3.71955 - 13.8815i) q^{58} +(-34.8006 - 9.32480i) q^{59} +(0.121094 - 0.121094i) q^{60} +(15.4657 + 26.7873i) q^{61} +(-73.7160 - 42.5599i) q^{62} +(-4.54985 - 16.9803i) q^{63} -64.5616i q^{64} -17.3564 q^{66} +(-60.4589 + 16.1999i) q^{67} +(-0.210990 + 0.365445i) q^{68} +(-0.137715 + 0.0795095i) q^{69} +(-22.8915 - 22.8915i) q^{70} +(2.23685 - 8.34804i) q^{71} +(67.0641 + 17.9698i) q^{72} +(-23.3661 + 23.3661i) q^{73} +(-13.5909 - 23.5401i) q^{74} +(20.1816 + 11.6519i) q^{75} +(-0.224473 - 0.837745i) q^{76} -29.5820i q^{77} -49.8004 q^{79} +(122.400 - 32.7969i) q^{80} +(-35.7122 + 61.8554i) q^{81} +(-59.9863 + 34.6331i) q^{82} +(60.8000 + 60.8000i) q^{83} +(0.0112835 - 0.0421107i) q^{84} +(-91.1390 - 24.4206i) q^{85} +(56.9747 - 56.9747i) q^{86} +(2.16368 + 3.74760i) q^{87} +(101.182 + 58.4176i) q^{88} +(22.9556 + 85.6713i) q^{89} +137.490i q^{90} +0.00948026 q^{92} +(24.7573 - 6.63370i) q^{93} +(-13.9036 + 24.0818i) q^{94} +(167.945 - 96.9632i) q^{95} +(0.242427 + 0.242427i) q^{96} +(-8.75298 + 32.6665i) q^{97} +(86.2763 + 23.1177i) q^{98} +(-88.8376 + 88.8376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.92320 + 0.515320i −0.961601 + 0.257660i −0.705278 0.708931i \(-0.749178\pi\)
−0.256323 + 0.966591i \(0.582511\pi\)
\(3\) 0.299764 0.519206i 0.0999213 0.173069i −0.811731 0.584032i \(-0.801474\pi\)
0.911652 + 0.410963i \(0.134808\pi\)
\(4\) −0.0309536 + 0.0178711i −0.00773840 + 0.00446777i
\(5\) −5.65111 5.65111i −1.13022 1.13022i −0.990140 0.140083i \(-0.955263\pi\)
−0.140083 0.990140i \(-0.544737\pi\)
\(6\) −0.308949 + 1.15301i −0.0514915 + 0.192169i
\(7\) −1.96518 0.526568i −0.280740 0.0752241i 0.115702 0.993284i \(-0.463088\pi\)
−0.396442 + 0.918060i \(0.629755\pi\)
\(8\) 5.68184 5.68184i 0.710231 0.710231i
\(9\) 4.32028 + 7.48295i 0.480031 + 0.831439i
\(10\) 13.7804 + 7.95610i 1.37804 + 0.795610i
\(11\) 3.76327 + 14.0447i 0.342116 + 1.27679i 0.895946 + 0.444164i \(0.146499\pi\)
−0.553830 + 0.832630i \(0.686834\pi\)
\(12\) 0.0214284i 0.00178570i
\(13\) 0 0
\(14\) 4.05079 0.289342
\(15\) −4.62809 + 1.24009i −0.308540 + 0.0826729i
\(16\) −7.92788 + 13.7315i −0.495492 + 0.858218i
\(17\) 10.2245 5.90312i 0.601441 0.347242i −0.168167 0.985759i \(-0.553785\pi\)
0.769608 + 0.638516i \(0.220451\pi\)
\(18\) −12.1649 12.1649i −0.675827 0.675827i
\(19\) −6.28035 + 23.4386i −0.330545 + 1.23361i 0.578074 + 0.815984i \(0.303804\pi\)
−0.908619 + 0.417626i \(0.862862\pi\)
\(20\) 0.275914 + 0.0739308i 0.0137957 + 0.00369654i
\(21\) −0.862488 + 0.862488i −0.0410708 + 0.0410708i
\(22\) −14.4751 25.0716i −0.657958 1.13962i
\(23\) −0.229705 0.132620i −0.00998717 0.00576610i 0.494998 0.868894i \(-0.335169\pi\)
−0.504985 + 0.863128i \(0.668502\pi\)
\(24\) −1.24684 4.65326i −0.0519516 0.193886i
\(25\) 38.8702i 1.55481i
\(26\) 0 0
\(27\) 10.5760 0.391704
\(28\) 0.0702397 0.0188207i 0.00250856 0.000672167i
\(29\) −3.60897 + 6.25092i −0.124447 + 0.215549i −0.921517 0.388339i \(-0.873049\pi\)
0.797070 + 0.603888i \(0.206382\pi\)
\(30\) 8.26171 4.76990i 0.275390 0.158997i
\(31\) 30.2298 + 30.2298i 0.975154 + 0.975154i 0.999699 0.0245446i \(-0.00781356\pi\)
−0.0245446 + 0.999699i \(0.507814\pi\)
\(32\) −0.148007 + 0.552371i −0.00462523 + 0.0172616i
\(33\) 8.42021 + 2.25619i 0.255158 + 0.0683693i
\(34\) −16.6218 + 16.6218i −0.488876 + 0.488876i
\(35\) 8.12976 + 14.0812i 0.232279 + 0.402319i
\(36\) −0.267457 0.154416i −0.00742935 0.00428934i
\(37\) 3.53340 + 13.1868i 0.0954973 + 0.356401i 0.997094 0.0761760i \(-0.0242711\pi\)
−0.901597 + 0.432577i \(0.857604\pi\)
\(38\) 48.3135i 1.27141i
\(39\) 0 0
\(40\) −64.2175 −1.60544
\(41\) 33.6035 9.00403i 0.819597 0.219610i 0.175427 0.984492i \(-0.443869\pi\)
0.644170 + 0.764882i \(0.277203\pi\)
\(42\) 1.21428 2.10319i 0.0289114 0.0500761i
\(43\) −35.0467 + 20.2342i −0.815039 + 0.470563i −0.848703 0.528870i \(-0.822616\pi\)
0.0336635 + 0.999433i \(0.489283\pi\)
\(44\) −0.367481 0.367481i −0.00835184 0.00835184i
\(45\) 17.8726 66.7014i 0.397169 1.48225i
\(46\) 0.510111 + 0.136684i 0.0110894 + 0.00297139i
\(47\) 9.87555 9.87555i 0.210118 0.210118i −0.594200 0.804318i \(-0.702531\pi\)
0.804318 + 0.594200i \(0.202531\pi\)
\(48\) 4.75298 + 8.23241i 0.0990205 + 0.171508i
\(49\) −38.8506 22.4304i −0.792869 0.457763i
\(50\) −20.0306 74.7552i −0.400612 1.49510i
\(51\) 7.07817i 0.138788i
\(52\) 0 0
\(53\) 77.1259 1.45521 0.727603 0.685999i \(-0.240635\pi\)
0.727603 + 0.685999i \(0.240635\pi\)
\(54\) −20.3398 + 5.45003i −0.376663 + 0.100927i
\(55\) 58.1017 100.635i 1.05639 1.82973i
\(56\) −14.1577 + 8.17397i −0.252817 + 0.145964i
\(57\) 10.2868 + 10.2868i 0.180471 + 0.180471i
\(58\) 3.71955 13.8815i 0.0641302 0.239337i
\(59\) −34.8006 9.32480i −0.589841 0.158048i −0.0484607 0.998825i \(-0.515432\pi\)
−0.541381 + 0.840778i \(0.682098\pi\)
\(60\) 0.121094 0.121094i 0.00201824 0.00201824i
\(61\) 15.4657 + 26.7873i 0.253536 + 0.439137i 0.964497 0.264095i \(-0.0850732\pi\)
−0.710961 + 0.703231i \(0.751740\pi\)
\(62\) −73.7160 42.5599i −1.18897 0.686451i
\(63\) −4.54985 16.9803i −0.0722198 0.269528i
\(64\) 64.5616i 1.00878i
\(65\) 0 0
\(66\) −17.3564 −0.262976
\(67\) −60.4589 + 16.1999i −0.902372 + 0.241790i −0.680034 0.733180i \(-0.738035\pi\)
−0.222337 + 0.974970i \(0.571369\pi\)
\(68\) −0.210990 + 0.365445i −0.00310279 + 0.00537420i
\(69\) −0.137715 + 0.0795095i −0.00199586 + 0.00115231i
\(70\) −22.8915 22.8915i −0.327021 0.327021i
\(71\) 2.23685 8.34804i 0.0315049 0.117578i −0.948383 0.317128i \(-0.897281\pi\)
0.979888 + 0.199550i \(0.0639481\pi\)
\(72\) 67.0641 + 17.9698i 0.931446 + 0.249580i
\(73\) −23.3661 + 23.3661i −0.320084 + 0.320084i −0.848799 0.528715i \(-0.822674\pi\)
0.528715 + 0.848799i \(0.322674\pi\)
\(74\) −13.5909 23.5401i −0.183661 0.318109i
\(75\) 20.1816 + 11.6519i 0.269089 + 0.155358i
\(76\) −0.224473 0.837745i −0.00295359 0.0110230i
\(77\) 29.5820i 0.384182i
\(78\) 0 0
\(79\) −49.8004 −0.630385 −0.315193 0.949028i \(-0.602069\pi\)
−0.315193 + 0.949028i \(0.602069\pi\)
\(80\) 122.400 32.7969i 1.52999 0.409961i
\(81\) −35.7122 + 61.8554i −0.440892 + 0.763647i
\(82\) −59.9863 + 34.6331i −0.731541 + 0.422355i
\(83\) 60.8000 + 60.8000i 0.732530 + 0.732530i 0.971120 0.238590i \(-0.0766853\pi\)
−0.238590 + 0.971120i \(0.576685\pi\)
\(84\) 0.0112835 0.0421107i 0.000134328 0.000501317i
\(85\) −91.1390 24.4206i −1.07222 0.287302i
\(86\) 56.9747 56.9747i 0.662497 0.662497i
\(87\) 2.16368 + 3.74760i 0.0248699 + 0.0430758i
\(88\) 101.182 + 58.4176i 1.14980 + 0.663837i
\(89\) 22.9556 + 85.6713i 0.257928 + 0.962599i 0.966438 + 0.256899i \(0.0827007\pi\)
−0.708511 + 0.705700i \(0.750633\pi\)
\(90\) 137.490i 1.52767i
\(91\) 0 0
\(92\) 0.00948026 0.000103046
\(93\) 24.7573 6.63370i 0.266207 0.0713301i
\(94\) −13.9036 + 24.0818i −0.147911 + 0.256189i
\(95\) 167.945 96.9632i 1.76784 1.02066i
\(96\) 0.242427 + 0.242427i 0.00252528 + 0.00252528i
\(97\) −8.75298 + 32.6665i −0.0902369 + 0.336769i −0.996254 0.0864718i \(-0.972441\pi\)
0.906017 + 0.423240i \(0.139107\pi\)
\(98\) 86.2763 + 23.1177i 0.880371 + 0.235895i
\(99\) −88.8376 + 88.8376i −0.897350 + 0.897350i
\(100\) −0.694651 1.20317i −0.00694651 0.0120317i
\(101\) 14.4870 + 8.36406i 0.143435 + 0.0828125i 0.570000 0.821644i \(-0.306943\pi\)
−0.426565 + 0.904457i \(0.640276\pi\)
\(102\) 3.64752 + 13.6127i 0.0357600 + 0.133458i
\(103\) 87.2313i 0.846906i 0.905918 + 0.423453i \(0.139182\pi\)
−0.905918 + 0.423453i \(0.860818\pi\)
\(104\) 0 0
\(105\) 9.74803 0.0928384
\(106\) −148.329 + 39.7445i −1.39933 + 0.374948i
\(107\) −59.9117 + 103.770i −0.559923 + 0.969815i 0.437579 + 0.899180i \(0.355836\pi\)
−0.997502 + 0.0706350i \(0.977497\pi\)
\(108\) −0.327365 + 0.189005i −0.00303116 + 0.00175004i
\(109\) −87.8195 87.8195i −0.805684 0.805684i 0.178293 0.983977i \(-0.442942\pi\)
−0.983977 + 0.178293i \(0.942942\pi\)
\(110\) −59.8820 + 223.482i −0.544381 + 2.03166i
\(111\) 7.90587 + 2.11837i 0.0712241 + 0.0190844i
\(112\) 22.8103 22.8103i 0.203663 0.203663i
\(113\) −84.8574 146.977i −0.750950 1.30068i −0.947363 0.320163i \(-0.896262\pi\)
0.196412 0.980521i \(-0.437071\pi\)
\(114\) −25.0847 14.4826i −0.220041 0.127041i
\(115\) 0.548637 + 2.04754i 0.00477076 + 0.0178047i
\(116\) 0.257984i 0.00222400i
\(117\) 0 0
\(118\) 71.7339 0.607914
\(119\) −23.2014 + 6.21679i −0.194970 + 0.0522420i
\(120\) −19.2501 + 33.3421i −0.160417 + 0.277851i
\(121\) −78.3032 + 45.2084i −0.647134 + 0.373623i
\(122\) −43.5477 43.5477i −0.356948 0.356948i
\(123\) 5.39817 20.1462i 0.0438875 0.163790i
\(124\) −1.47596 0.395482i −0.0119029 0.00318937i
\(125\) 78.3820 78.3820i 0.627056 0.627056i
\(126\) 17.5006 + 30.3118i 0.138893 + 0.240570i
\(127\) 148.054 + 85.4792i 1.16578 + 0.673065i 0.952683 0.303966i \(-0.0983109\pi\)
0.213099 + 0.977031i \(0.431644\pi\)
\(128\) 32.6779 + 121.955i 0.255296 + 0.952777i
\(129\) 24.2619i 0.188077i
\(130\) 0 0
\(131\) 109.132 0.833072 0.416536 0.909119i \(-0.363244\pi\)
0.416536 + 0.909119i \(0.363244\pi\)
\(132\) −0.300956 + 0.0806409i −0.00227997 + 0.000610916i
\(133\) 24.6840 42.7540i 0.185594 0.321459i
\(134\) 107.926 62.3114i 0.805421 0.465010i
\(135\) −59.7662 59.7662i −0.442713 0.442713i
\(136\) 24.5534 91.6347i 0.180540 0.673784i
\(137\) −138.193 37.0288i −1.00871 0.270283i −0.283620 0.958937i \(-0.591535\pi\)
−0.725090 + 0.688654i \(0.758202\pi\)
\(138\) 0.223880 0.223880i 0.00162232 0.00162232i
\(139\) 83.8403 + 145.216i 0.603168 + 1.04472i 0.992338 + 0.123551i \(0.0394283\pi\)
−0.389171 + 0.921166i \(0.627238\pi\)
\(140\) −0.503290 0.290575i −0.00359493 0.00207553i
\(141\) −2.16712 8.08778i −0.0153696 0.0573602i
\(142\) 17.2077i 0.121181i
\(143\) 0 0
\(144\) −137.003 −0.951408
\(145\) 55.7193 14.9300i 0.384271 0.102965i
\(146\) 32.8967 56.9788i 0.225320 0.390266i
\(147\) −23.2920 + 13.4476i −0.158449 + 0.0914806i
\(148\) −0.345034 0.345034i −0.00233131 0.00233131i
\(149\) −11.2189 + 41.8695i −0.0752947 + 0.281004i −0.993300 0.115565i \(-0.963132\pi\)
0.918005 + 0.396568i \(0.129799\pi\)
\(150\) −44.8178 12.0089i −0.298785 0.0800593i
\(151\) 81.8840 81.8840i 0.542278 0.542278i −0.381918 0.924196i \(-0.624736\pi\)
0.924196 + 0.381918i \(0.124736\pi\)
\(152\) 97.4904 + 168.858i 0.641384 + 1.11091i
\(153\) 88.3455 + 51.0063i 0.577422 + 0.333375i
\(154\) 15.2442 + 56.8922i 0.0989885 + 0.369430i
\(155\) 341.664i 2.20428i
\(156\) 0 0
\(157\) −104.868 −0.667951 −0.333976 0.942582i \(-0.608390\pi\)
−0.333976 + 0.942582i \(0.608390\pi\)
\(158\) 95.7763 25.6632i 0.606179 0.162425i
\(159\) 23.1196 40.0442i 0.145406 0.251851i
\(160\) 3.95792 2.28511i 0.0247370 0.0142819i
\(161\) 0.381578 + 0.381578i 0.00237005 + 0.00237005i
\(162\) 36.8065 137.364i 0.227200 0.847924i
\(163\) 309.120 + 82.8284i 1.89644 + 0.508149i 0.997549 + 0.0699767i \(0.0222925\pi\)
0.898891 + 0.438173i \(0.144374\pi\)
\(164\) −0.879237 + 0.879237i −0.00536120 + 0.00536120i
\(165\) −34.8336 60.3335i −0.211113 0.365658i
\(166\) −148.262 85.5991i −0.893145 0.515657i
\(167\) −51.1962 191.067i −0.306564 1.14411i −0.931590 0.363510i \(-0.881578\pi\)
0.625026 0.780604i \(-0.285088\pi\)
\(168\) 9.80104i 0.0583395i
\(169\) 0 0
\(170\) 187.863 1.10508
\(171\) −202.523 + 54.2658i −1.18434 + 0.317344i
\(172\) 0.723214 1.25264i 0.00420473 0.00728281i
\(173\) −241.095 + 139.196i −1.39361 + 0.804604i −0.993713 0.111955i \(-0.964289\pi\)
−0.399901 + 0.916558i \(0.630956\pi\)
\(174\) −6.09240 6.09240i −0.0350138 0.0350138i
\(175\) 20.4678 76.3869i 0.116959 0.436497i
\(176\) −222.690 59.6696i −1.26528 0.339032i
\(177\) −15.2735 + 15.2735i −0.0862908 + 0.0862908i
\(178\) −88.2963 152.934i −0.496047 0.859178i
\(179\) −214.248 123.696i −1.19692 0.691039i −0.237049 0.971498i \(-0.576180\pi\)
−0.959866 + 0.280458i \(0.909514\pi\)
\(180\) 0.638804 + 2.38405i 0.00354891 + 0.0132447i
\(181\) 211.414i 1.16803i 0.811741 + 0.584017i \(0.198520\pi\)
−0.811741 + 0.584017i \(0.801480\pi\)
\(182\) 0 0
\(183\) 18.5442 0.101334
\(184\) −2.05868 + 0.551621i −0.0111885 + 0.00299794i
\(185\) 54.5526 94.4879i 0.294879 0.510746i
\(186\) −44.1948 + 25.5159i −0.237606 + 0.137182i
\(187\) 121.385 + 121.385i 0.649120 + 0.649120i
\(188\) −0.129197 + 0.482170i −0.000687219 + 0.00256474i
\(189\) −20.7838 5.56899i −0.109967 0.0294656i
\(190\) −273.025 + 273.025i −1.43697 + 1.43697i
\(191\) −26.6707 46.1950i −0.139637 0.241859i 0.787722 0.616031i \(-0.211260\pi\)
−0.927359 + 0.374172i \(0.877927\pi\)
\(192\) −33.5208 19.3532i −0.174587 0.100798i
\(193\) −49.1845 183.559i −0.254842 0.951084i −0.968178 0.250262i \(-0.919483\pi\)
0.713336 0.700822i \(-0.247183\pi\)
\(194\) 67.3349i 0.347087i
\(195\) 0 0
\(196\) 1.60342 0.00818071
\(197\) 156.072 41.8194i 0.792244 0.212281i 0.160068 0.987106i \(-0.448829\pi\)
0.632176 + 0.774825i \(0.282162\pi\)
\(198\) 125.073 216.632i 0.631681 1.09410i
\(199\) 269.633 155.673i 1.35494 0.782275i 0.366003 0.930613i \(-0.380726\pi\)
0.988937 + 0.148338i \(0.0473925\pi\)
\(200\) 220.854 + 220.854i 1.10427 + 1.10427i
\(201\) −9.71230 + 36.2468i −0.0483199 + 0.180332i
\(202\) −32.1715 8.62034i −0.159265 0.0426749i
\(203\) 10.3838 10.3838i 0.0511518 0.0511518i
\(204\) 0.126494 + 0.219095i 0.000620071 + 0.00107399i
\(205\) −240.780 139.014i −1.17454 0.678119i
\(206\) −44.9521 167.763i −0.218214 0.814385i
\(207\) 2.29183i 0.0110716i
\(208\) 0 0
\(209\) −352.823 −1.68815
\(210\) −18.7474 + 5.02336i −0.0892735 + 0.0239208i
\(211\) −160.126 + 277.347i −0.758892 + 1.31444i 0.184524 + 0.982828i \(0.440926\pi\)
−0.943416 + 0.331611i \(0.892408\pi\)
\(212\) −2.38732 + 1.37832i −0.0112610 + 0.00650152i
\(213\) −3.66383 3.66383i −0.0172011 0.0172011i
\(214\) 61.7475 230.445i 0.288540 1.07684i
\(215\) 312.399 + 83.7070i 1.45302 + 0.389335i
\(216\) 60.0912 60.0912i 0.278200 0.278200i
\(217\) −43.4889 75.3250i −0.200410 0.347120i
\(218\) 214.150 + 123.639i 0.982339 + 0.567154i
\(219\) 5.12752 + 19.1362i 0.0234133 + 0.0873797i
\(220\) 4.15336i 0.0188789i
\(221\) 0 0
\(222\) −16.2962 −0.0734064
\(223\) 319.945 85.7290i 1.43473 0.384435i 0.544046 0.839055i \(-0.316892\pi\)
0.890685 + 0.454620i \(0.150225\pi\)
\(224\) 0.581722 1.00757i 0.00259698 0.00449809i
\(225\) −290.864 + 167.930i −1.29273 + 0.746356i
\(226\) 238.938 + 238.938i 1.05725 + 1.05725i
\(227\) −41.8212 + 156.079i −0.184234 + 0.687572i 0.810559 + 0.585657i \(0.199164\pi\)
−0.994793 + 0.101915i \(0.967503\pi\)
\(228\) −0.502251 0.134578i −0.00220286 0.000590254i
\(229\) −124.472 + 124.472i −0.543547 + 0.543547i −0.924567 0.381020i \(-0.875573\pi\)
0.381020 + 0.924567i \(0.375573\pi\)
\(230\) −2.11028 3.65511i −0.00917513 0.0158918i
\(231\) −15.3592 8.86763i −0.0664900 0.0383880i
\(232\) 15.0111 + 56.0223i 0.0647032 + 0.241476i
\(233\) 92.7546i 0.398088i −0.979991 0.199044i \(-0.936216\pi\)
0.979991 0.199044i \(-0.0637837\pi\)
\(234\) 0 0
\(235\) −111.616 −0.474961
\(236\) 1.24385 0.333288i 0.00527055 0.00141224i
\(237\) −14.9284 + 25.8567i −0.0629889 + 0.109100i
\(238\) 41.4173 23.9123i 0.174022 0.100472i
\(239\) −26.1035 26.1035i −0.109220 0.109220i 0.650385 0.759605i \(-0.274608\pi\)
−0.759605 + 0.650385i \(0.774608\pi\)
\(240\) 19.6626 73.3819i 0.0819276 0.305758i
\(241\) −45.3667 12.1560i −0.188244 0.0504397i 0.163466 0.986549i \(-0.447733\pi\)
−0.351709 + 0.936109i \(0.614399\pi\)
\(242\) 127.296 127.296i 0.526017 0.526017i
\(243\) 69.0025 + 119.516i 0.283961 + 0.491835i
\(244\) −0.957436 0.552776i −0.00392392 0.00226548i
\(245\) 92.7924 + 346.306i 0.378744 + 1.41349i
\(246\) 41.5270i 0.168809i
\(247\) 0 0
\(248\) 343.522 1.38517
\(249\) 49.7934 13.3421i 0.199973 0.0535827i
\(250\) −110.353 + 191.136i −0.441410 + 0.764545i
\(251\) 156.585 90.4045i 0.623845 0.360177i −0.154519 0.987990i \(-0.549383\pi\)
0.778365 + 0.627813i \(0.216050\pi\)
\(252\) 0.444290 + 0.444290i 0.00176305 + 0.00176305i
\(253\) 0.998173 3.72523i 0.00394535 0.0147242i
\(254\) −328.787 88.0983i −1.29444 0.346844i
\(255\) −39.9995 + 39.9995i −0.156861 + 0.156861i
\(256\) 3.43097 + 5.94261i 0.0134022 + 0.0232133i
\(257\) −153.535 88.6435i −0.597413 0.344916i 0.170610 0.985339i \(-0.445426\pi\)
−0.768023 + 0.640422i \(0.778759\pi\)
\(258\) −12.5027 46.6606i −0.0484600 0.180855i
\(259\) 27.7751i 0.107240i
\(260\) 0 0
\(261\) −62.3671 −0.238954
\(262\) −209.884 + 56.2381i −0.801083 + 0.214649i
\(263\) 240.275 416.169i 0.913595 1.58239i 0.104649 0.994509i \(-0.466628\pi\)
0.808946 0.587883i \(-0.200038\pi\)
\(264\) 60.6616 35.0230i 0.229779 0.132663i
\(265\) −435.847 435.847i −1.64471 1.64471i
\(266\) −25.4404 + 94.9447i −0.0956405 + 0.356935i
\(267\) 51.3623 + 13.7625i 0.192368 + 0.0515449i
\(268\) 1.58191 1.58191i 0.00590265 0.00590265i
\(269\) −53.3932 92.4798i −0.198488 0.343791i 0.749550 0.661947i \(-0.230270\pi\)
−0.948038 + 0.318156i \(0.896936\pi\)
\(270\) 145.741 + 84.1438i 0.539782 + 0.311644i
\(271\) −78.9475 294.636i −0.291319 1.08722i −0.944097 0.329669i \(-0.893063\pi\)
0.652777 0.757550i \(-0.273604\pi\)
\(272\) 187.197i 0.688224i
\(273\) 0 0
\(274\) 284.855 1.03962
\(275\) −545.921 + 146.279i −1.98517 + 0.531924i
\(276\) 0.00284184 0.00492221i 1.02965e−5 1.78341e-5i
\(277\) 51.6492 29.8197i 0.186459 0.107652i −0.403865 0.914819i \(-0.632333\pi\)
0.590324 + 0.807166i \(0.299000\pi\)
\(278\) −236.074 236.074i −0.849188 0.849188i
\(279\) −95.6067 + 356.809i −0.342676 + 1.27889i
\(280\) 126.199 + 33.8149i 0.450711 + 0.120768i
\(281\) 266.125 266.125i 0.947063 0.947063i −0.0516049 0.998668i \(-0.516434\pi\)
0.998668 + 0.0516049i \(0.0164337\pi\)
\(282\) 8.33560 + 14.4377i 0.0295589 + 0.0511974i
\(283\) 372.572 + 215.104i 1.31651 + 0.760087i 0.983165 0.182719i \(-0.0584899\pi\)
0.333343 + 0.942806i \(0.391823\pi\)
\(284\) 0.0799498 + 0.298377i 0.000281513 + 0.00105062i
\(285\) 116.264i 0.407945i
\(286\) 0 0
\(287\) −70.7781 −0.246614
\(288\) −4.77280 + 1.27887i −0.0165722 + 0.00444051i
\(289\) −74.8063 + 129.568i −0.258845 + 0.448333i
\(290\) −99.4658 + 57.4266i −0.342985 + 0.198023i
\(291\) 14.3369 + 14.3369i 0.0492675 + 0.0492675i
\(292\) 0.305688 1.14084i 0.00104688 0.00390699i
\(293\) 103.475 + 27.7261i 0.353158 + 0.0946284i 0.431037 0.902334i \(-0.358148\pi\)
−0.0778785 + 0.996963i \(0.524815\pi\)
\(294\) 37.8654 37.8654i 0.128794 0.128794i
\(295\) 143.967 + 249.358i 0.488023 + 0.845281i
\(296\) 95.0018 + 54.8493i 0.320952 + 0.185302i
\(297\) 39.8004 + 148.537i 0.134008 + 0.500125i
\(298\) 86.3049i 0.289614i
\(299\) 0 0
\(300\) −0.832926 −0.00277642
\(301\) 79.5277 21.3094i 0.264212 0.0707953i
\(302\) −115.283 + 199.676i −0.381732 + 0.661178i
\(303\) 8.68535 5.01449i 0.0286645 0.0165495i
\(304\) −272.057 272.057i −0.894924 0.894924i
\(305\) 63.9800 238.777i 0.209770 0.782874i
\(306\) −196.191 52.5692i −0.641146 0.171795i
\(307\) 279.598 279.598i 0.910742 0.910742i −0.0855884 0.996331i \(-0.527277\pi\)
0.996331 + 0.0855884i \(0.0272770\pi\)
\(308\) 0.528663 + 0.915670i 0.00171644 + 0.00297296i
\(309\) 45.2910 + 26.1488i 0.146573 + 0.0846239i
\(310\) 176.066 + 657.088i 0.567956 + 2.11964i
\(311\) 191.357i 0.615295i 0.951500 + 0.307648i \(0.0995418\pi\)
−0.951500 + 0.307648i \(0.900458\pi\)
\(312\) 0 0
\(313\) 467.361 1.49317 0.746583 0.665292i \(-0.231693\pi\)
0.746583 + 0.665292i \(0.231693\pi\)
\(314\) 201.683 54.0408i 0.642302 0.172104i
\(315\) −70.2457 + 121.669i −0.223002 + 0.386251i
\(316\) 1.54150 0.889987i 0.00487817 0.00281641i
\(317\) −4.81422 4.81422i −0.0151868 0.0151868i 0.699473 0.714659i \(-0.253418\pi\)
−0.714659 + 0.699473i \(0.753418\pi\)
\(318\) −23.8279 + 88.9271i −0.0749306 + 0.279645i
\(319\) −101.374 27.1631i −0.317787 0.0851507i
\(320\) −364.845 + 364.845i −1.14014 + 1.14014i
\(321\) 35.9188 + 62.2131i 0.111896 + 0.193810i
\(322\) −0.930486 0.537216i −0.00288971 0.00166837i
\(323\) 74.1473 + 276.722i 0.229558 + 0.856723i
\(324\) 2.55286i 0.00787921i
\(325\) 0 0
\(326\) −637.182 −1.95455
\(327\) −71.9216 + 19.2713i −0.219944 + 0.0589337i
\(328\) 139.770 242.089i 0.426129 0.738077i
\(329\) −24.6074 + 14.2071i −0.0747945 + 0.0431826i
\(330\) 98.0831 + 98.0831i 0.297221 + 0.297221i
\(331\) 10.2911 38.4071i 0.0310911 0.116034i −0.948636 0.316369i \(-0.897536\pi\)
0.979727 + 0.200335i \(0.0642031\pi\)
\(332\) −2.96854 0.795417i −0.00894138 0.00239584i
\(333\) −83.4111 + 83.4111i −0.250484 + 0.250484i
\(334\) 196.921 + 341.078i 0.589585 + 1.02119i
\(335\) 433.208 + 250.113i 1.29316 + 0.746605i
\(336\) −5.00554 18.6809i −0.0148974 0.0555980i
\(337\) 84.6771i 0.251267i 0.992077 + 0.125634i \(0.0400964\pi\)
−0.992077 + 0.125634i \(0.959904\pi\)
\(338\) 0 0
\(339\) −101.749 −0.300144
\(340\) 3.25750 0.872845i 0.00958089 0.00256719i
\(341\) −310.806 + 538.332i −0.911455 + 1.57869i
\(342\) 361.528 208.728i 1.05710 0.610316i
\(343\) 135.029 + 135.029i 0.393671 + 0.393671i
\(344\) −84.1622 + 314.098i −0.244657 + 0.913074i
\(345\) 1.22756 + 0.328923i 0.00355814 + 0.000953401i
\(346\) 391.944 391.944i 1.13279 1.13279i
\(347\) −169.897 294.270i −0.489616 0.848040i 0.510312 0.859989i \(-0.329530\pi\)
−0.999929 + 0.0119488i \(0.996196\pi\)
\(348\) −0.133947 0.0773344i −0.000384906 0.000222225i
\(349\) −106.758 398.426i −0.305897 1.14162i −0.932171 0.362019i \(-0.882088\pi\)
0.626274 0.779603i \(-0.284579\pi\)
\(350\) 157.455i 0.449871i
\(351\) 0 0
\(352\) −8.31490 −0.0236219
\(353\) 288.452 77.2905i 0.817145 0.218953i 0.174047 0.984737i \(-0.444316\pi\)
0.643098 + 0.765784i \(0.277649\pi\)
\(354\) 21.5032 37.2447i 0.0607436 0.105211i
\(355\) −59.8164 + 34.5350i −0.168497 + 0.0972818i
\(356\) −2.24159 2.24159i −0.00629661 0.00629661i
\(357\) −3.72714 + 13.9099i −0.0104402 + 0.0389632i
\(358\) 475.785 + 127.486i 1.32901 + 0.356107i
\(359\) −274.613 + 274.613i −0.764940 + 0.764940i −0.977211 0.212271i \(-0.931914\pi\)
0.212271 + 0.977211i \(0.431914\pi\)
\(360\) −277.438 480.536i −0.770661 1.33482i
\(361\) −197.289 113.905i −0.546508 0.315527i
\(362\) −108.946 406.592i −0.300956 1.12318i
\(363\) 54.2074i 0.149332i
\(364\) 0 0
\(365\) 264.089 0.723532
\(366\) −35.6642 + 9.55620i −0.0974433 + 0.0261098i
\(367\) 138.968 240.700i 0.378661 0.655860i −0.612207 0.790698i \(-0.709718\pi\)
0.990868 + 0.134838i \(0.0430514\pi\)
\(368\) 3.64215 2.10279i 0.00989714 0.00571411i
\(369\) 212.553 + 212.553i 0.576025 + 0.576025i
\(370\) −56.2241 + 209.831i −0.151957 + 0.567112i
\(371\) −151.566 40.6120i −0.408534 0.109466i
\(372\) −0.647776 + 0.647776i −0.00174133 + 0.00174133i
\(373\) −285.496 494.493i −0.765404 1.32572i −0.940033 0.341084i \(-0.889206\pi\)
0.174629 0.984634i \(-0.444127\pi\)
\(374\) −296.001 170.896i −0.791446 0.456942i
\(375\) −17.2003 64.1925i −0.0458676 0.171180i
\(376\) 112.223i 0.298465i
\(377\) 0 0
\(378\) 42.8412 0.113336
\(379\) −246.885 + 66.1526i −0.651411 + 0.174545i −0.569367 0.822084i \(-0.692812\pi\)
−0.0820441 + 0.996629i \(0.526145\pi\)
\(380\) −3.46567 + 6.00272i −0.00912018 + 0.0157966i
\(381\) 88.7627 51.2472i 0.232973 0.134507i
\(382\) 75.0983 + 75.0983i 0.196592 + 0.196592i
\(383\) 31.4773 117.475i 0.0821861 0.306723i −0.912580 0.408897i \(-0.865913\pi\)
0.994766 + 0.102175i \(0.0325800\pi\)
\(384\) 73.1157 + 19.5913i 0.190405 + 0.0510190i
\(385\) −167.172 + 167.172i −0.434212 + 0.434212i
\(386\) 189.184 + 327.676i 0.490113 + 0.848900i
\(387\) −302.823 174.835i −0.782489 0.451770i
\(388\) −0.312850 1.16757i −0.000806314 0.00300921i
\(389\) 382.647i 0.983668i 0.870689 + 0.491834i \(0.163673\pi\)
−0.870689 + 0.491834i \(0.836327\pi\)
\(390\) 0 0
\(391\) −3.13149 −0.00800893
\(392\) −348.189 + 93.2970i −0.888237 + 0.238002i
\(393\) 32.7140 56.6622i 0.0832416 0.144179i
\(394\) −278.608 + 160.854i −0.707126 + 0.408259i
\(395\) 281.428 + 281.428i 0.712476 + 0.712476i
\(396\) 1.16222 4.33747i 0.00293490 0.0109532i
\(397\) −670.261 179.596i −1.68831 0.452382i −0.718360 0.695671i \(-0.755107\pi\)
−0.969954 + 0.243289i \(0.921774\pi\)
\(398\) −438.337 + 438.337i −1.10135 + 1.10135i
\(399\) −14.7988 25.6322i −0.0370896 0.0642411i
\(400\) −533.745 308.158i −1.33436 0.770395i
\(401\) 39.0164 + 145.611i 0.0972977 + 0.363120i 0.997358 0.0726459i \(-0.0231443\pi\)
−0.900060 + 0.435766i \(0.856478\pi\)
\(402\) 74.7148i 0.185858i
\(403\) 0 0
\(404\) −0.597899 −0.00147995
\(405\) 551.366 147.738i 1.36140 0.364785i
\(406\) −14.6192 + 25.3211i −0.0360078 + 0.0623673i
\(407\) −171.908 + 99.2513i −0.422379 + 0.243861i
\(408\) −40.2171 40.2171i −0.0985712 0.0985712i
\(409\) 80.8194 301.622i 0.197602 0.737462i −0.793975 0.607950i \(-0.791992\pi\)
0.991578 0.129512i \(-0.0413412\pi\)
\(410\) 534.705 + 143.274i 1.30416 + 0.349448i
\(411\) −60.6510 + 60.6510i −0.147569 + 0.147569i
\(412\) −1.55892 2.70012i −0.00378378 0.00655369i
\(413\) 63.4794 + 36.6498i 0.153703 + 0.0887405i
\(414\) 1.18103 + 4.40765i 0.00285272 + 0.0106465i
\(415\) 687.175i 1.65584i
\(416\) 0 0
\(417\) 100.529 0.241077
\(418\) 678.550 181.817i 1.62333 0.434969i
\(419\) 138.039 239.091i 0.329450 0.570624i −0.652953 0.757398i \(-0.726470\pi\)
0.982403 + 0.186775i \(0.0598034\pi\)
\(420\) −0.301737 + 0.174208i −0.000718420 + 0.000414780i
\(421\) 188.700 + 188.700i 0.448218 + 0.448218i 0.894762 0.446544i \(-0.147345\pi\)
−0.446544 + 0.894762i \(0.647345\pi\)
\(422\) 165.033 615.910i 0.391072 1.45950i
\(423\) 116.563 + 31.2331i 0.275564 + 0.0738371i
\(424\) 438.217 438.217i 1.03353 1.03353i
\(425\) 229.455 + 397.428i 0.539895 + 0.935126i
\(426\) 8.93432 + 5.15823i 0.0209726 + 0.0121085i
\(427\) −16.2875 60.7857i −0.0381440 0.142355i
\(428\) 4.28275i 0.0100064i
\(429\) 0 0
\(430\) −643.941 −1.49754
\(431\) −332.145 + 88.9981i −0.770639 + 0.206492i −0.622654 0.782497i \(-0.713945\pi\)
−0.147985 + 0.988990i \(0.547279\pi\)
\(432\) −83.8453 + 145.224i −0.194086 + 0.336167i
\(433\) 167.611 96.7701i 0.387092 0.223488i −0.293807 0.955865i \(-0.594922\pi\)
0.680899 + 0.732377i \(0.261589\pi\)
\(434\) 122.454 + 122.454i 0.282153 + 0.282153i
\(435\) 8.95092 33.4053i 0.0205768 0.0767938i
\(436\) 4.28776 + 1.14890i 0.00983431 + 0.00263509i
\(437\) 4.55106 4.55106i 0.0104143 0.0104143i
\(438\) −19.7225 34.1604i −0.0450285 0.0779917i
\(439\) 304.574 + 175.846i 0.693790 + 0.400560i 0.805030 0.593234i \(-0.202149\pi\)
−0.111240 + 0.993794i \(0.535482\pi\)
\(440\) −241.668 901.918i −0.549246 2.04981i
\(441\) 387.623i 0.878963i
\(442\) 0 0
\(443\) −336.467 −0.759520 −0.379760 0.925085i \(-0.623993\pi\)
−0.379760 + 0.925085i \(0.623993\pi\)
\(444\) −0.282573 + 0.0757151i −0.000636425 + 0.000170530i
\(445\) 354.414 613.863i 0.796435 1.37947i
\(446\) −571.141 + 329.748i −1.28058 + 0.739346i
\(447\) 18.3759 + 18.3759i 0.0411094 + 0.0411094i
\(448\) −33.9961 + 126.875i −0.0758842 + 0.283204i
\(449\) 132.735 + 35.5663i 0.295624 + 0.0792122i 0.403583 0.914943i \(-0.367765\pi\)
−0.107959 + 0.994155i \(0.534431\pi\)
\(450\) 472.851 472.851i 1.05078 1.05078i
\(451\) 252.918 + 438.067i 0.560795 + 0.971325i
\(452\) 5.25328 + 3.03298i 0.0116223 + 0.00671014i
\(453\) −17.9688 67.0606i −0.0396663 0.148037i
\(454\) 321.722i 0.708639i
\(455\) 0 0
\(456\) 116.896 0.256352
\(457\) −191.805 + 51.3939i −0.419704 + 0.112459i −0.462489 0.886625i \(-0.653044\pi\)
0.0427852 + 0.999084i \(0.486377\pi\)
\(458\) 175.242 303.529i 0.382625 0.662726i
\(459\) 108.134 62.4315i 0.235587 0.136016i
\(460\) −0.0535740 0.0535740i −0.000116465 0.000116465i
\(461\) 234.825 876.380i 0.509382 1.90104i 0.0828682 0.996561i \(-0.473592\pi\)
0.426514 0.904481i \(-0.359741\pi\)
\(462\) 34.1085 + 9.13934i 0.0738279 + 0.0197821i
\(463\) −592.689 + 592.689i −1.28011 + 1.28011i −0.339498 + 0.940607i \(0.610257\pi\)
−0.940607 + 0.339498i \(0.889743\pi\)
\(464\) −57.2229 99.1130i −0.123325 0.213606i
\(465\) −177.394 102.418i −0.381493 0.220255i
\(466\) 47.7983 + 178.386i 0.102572 + 0.382802i
\(467\) 151.923i 0.325318i 0.986682 + 0.162659i \(0.0520070\pi\)
−0.986682 + 0.162659i \(0.947993\pi\)
\(468\) 0 0
\(469\) 127.343 0.271520
\(470\) 214.660 57.5179i 0.456723 0.122378i
\(471\) −31.4358 + 54.4483i −0.0667426 + 0.115602i
\(472\) −250.714 + 144.750i −0.531174 + 0.306673i
\(473\) −416.074 416.074i −0.879650 0.879650i
\(474\) 15.3858 57.4205i 0.0324595 0.121140i
\(475\) −911.062 244.118i −1.91803 0.513933i
\(476\) 0.607065 0.607065i 0.00127535 0.00127535i
\(477\) 333.206 + 577.129i 0.698544 + 1.20991i
\(478\) 63.6539 + 36.7506i 0.133167 + 0.0768841i
\(479\) 130.457 + 486.873i 0.272353 + 1.01644i 0.957594 + 0.288120i \(0.0930301\pi\)
−0.685241 + 0.728316i \(0.740303\pi\)
\(480\) 2.73997i 0.00570827i
\(481\) 0 0
\(482\) 93.5136 0.194012
\(483\) 0.312501 0.0837344i 0.000647000 0.000173363i
\(484\) 1.61584 2.79872i 0.00333852 0.00578248i
\(485\) 234.066 135.138i 0.482611 0.278636i
\(486\) −194.295 194.295i −0.399783 0.399783i
\(487\) −142.989 + 533.641i −0.293611 + 1.09577i 0.648703 + 0.761042i \(0.275312\pi\)
−0.942314 + 0.334730i \(0.891355\pi\)
\(488\) 240.075 + 64.3279i 0.491957 + 0.131819i
\(489\) 135.668 135.668i 0.277439 0.277439i
\(490\) −356.917 618.198i −0.728402 1.26163i
\(491\) −714.499 412.516i −1.45519 0.840155i −0.456422 0.889764i \(-0.650869\pi\)
−0.998769 + 0.0496089i \(0.984203\pi\)
\(492\) 0.192942 + 0.720069i 0.000392158 + 0.00146355i
\(493\) 85.2167i 0.172853i
\(494\) 0 0
\(495\) 1004.06 2.02841
\(496\) −654.758 + 175.442i −1.32008 + 0.353713i
\(497\) −8.79163 + 15.2275i −0.0176894 + 0.0306389i
\(498\) −88.8872 + 51.3191i −0.178488 + 0.103050i
\(499\) 225.404 + 225.404i 0.451711 + 0.451711i 0.895922 0.444211i \(-0.146516\pi\)
−0.444211 + 0.895922i \(0.646516\pi\)
\(500\) −1.02543 + 3.82697i −0.00205087 + 0.00765395i
\(501\) −114.550 30.6936i −0.228643 0.0612646i
\(502\) −254.557 + 254.557i −0.507087 + 0.507087i
\(503\) −117.302 203.173i −0.233205 0.403923i 0.725545 0.688175i \(-0.241588\pi\)
−0.958749 + 0.284252i \(0.908255\pi\)
\(504\) −122.331 70.6277i −0.242720 0.140134i
\(505\) −34.6013 129.134i −0.0685174 0.255711i
\(506\) 7.67875i 0.0151754i
\(507\) 0 0
\(508\) −6.11042 −0.0120284
\(509\) −668.249 + 179.057i −1.31287 + 0.351782i −0.846301 0.532705i \(-0.821176\pi\)
−0.466566 + 0.884486i \(0.654509\pi\)
\(510\) 56.3146 97.5398i 0.110421 0.191254i
\(511\) 58.2225 33.6148i 0.113938 0.0657823i
\(512\) −366.771 366.771i −0.716350 0.716350i
\(513\) −66.4211 + 247.887i −0.129476 + 0.483210i
\(514\) 340.959 + 91.3596i 0.663344 + 0.177742i
\(515\) 492.954 492.954i 0.957192 0.957192i
\(516\) −0.433587 0.750994i −0.000840284 0.00145542i
\(517\) 175.864 + 101.535i 0.340162 + 0.196393i
\(518\) 14.3131 + 53.4171i 0.0276314 + 0.103122i
\(519\) 166.904i 0.321588i
\(520\) 0 0
\(521\) −297.695 −0.571391 −0.285695 0.958320i \(-0.592225\pi\)
−0.285695 + 0.958320i \(0.592225\pi\)
\(522\) 119.944 32.1390i 0.229779 0.0615690i
\(523\) −169.819 + 294.135i −0.324701 + 0.562399i −0.981452 0.191709i \(-0.938597\pi\)
0.656751 + 0.754108i \(0.271930\pi\)
\(524\) −3.37804 + 1.95031i −0.00644664 + 0.00372197i
\(525\) −33.5251 33.5251i −0.0638572 0.0638572i
\(526\) −247.638 + 924.196i −0.470794 + 1.75703i
\(527\) 487.535 + 130.634i 0.925113 + 0.247883i
\(528\) −97.7352 + 97.7352i −0.185105 + 0.185105i
\(529\) −264.465 458.067i −0.499934 0.865910i
\(530\) 1062.82 + 613.621i 2.00533 + 1.15778i
\(531\) −80.5716 300.697i −0.151736 0.566285i
\(532\) 1.76452i 0.00331677i
\(533\) 0 0
\(534\) −105.872 −0.198262
\(535\) 924.985 247.849i 1.72894 0.463269i
\(536\) −251.473 + 435.563i −0.469165 + 0.812618i
\(537\) −128.448 + 74.1592i −0.239195 + 0.138099i
\(538\) 150.343 + 150.343i 0.279447 + 0.279447i
\(539\) 168.823 630.058i 0.313216 1.16894i
\(540\) 2.91807 + 0.781893i 0.00540383 + 0.00144795i
\(541\) 123.367 123.367i 0.228036 0.228036i −0.583836 0.811872i \(-0.698449\pi\)
0.811872 + 0.583836i \(0.198449\pi\)
\(542\) 303.664 + 525.961i 0.560266 + 0.970408i
\(543\) 109.768 + 63.3744i 0.202150 + 0.116712i
\(544\) 1.74741 + 6.52143i 0.00321215 + 0.0119879i
\(545\) 992.557i 1.82120i
\(546\) 0 0
\(547\) −193.679 −0.354074 −0.177037 0.984204i \(-0.556651\pi\)
−0.177037 + 0.984204i \(0.556651\pi\)
\(548\) 4.93932 1.32349i 0.00901336 0.00241512i
\(549\) −133.632 + 231.458i −0.243410 + 0.421599i
\(550\) 974.536 562.649i 1.77188 1.02300i
\(551\) −123.847 123.847i −0.224768 0.224768i
\(552\) −0.330712 + 1.23423i −0.000599116 + 0.00223593i
\(553\) 97.8668 + 26.2233i 0.176974 + 0.0474201i
\(554\) −83.9652 + 83.9652i −0.151562 + 0.151562i
\(555\) −32.7058 56.6481i −0.0589294 0.102069i
\(556\) −5.19032 2.99663i −0.00933510 0.00538962i
\(557\) 233.565 + 871.675i 0.419326 + 1.56495i 0.776010 + 0.630721i \(0.217241\pi\)
−0.356684 + 0.934225i \(0.616093\pi\)
\(558\) 735.484i 1.31807i
\(559\) 0 0
\(560\) −257.807 −0.460369
\(561\) 99.4110 26.6371i 0.177203 0.0474815i
\(562\) −374.672 + 648.951i −0.666676 + 1.15472i
\(563\) 412.904 238.390i 0.733399 0.423428i −0.0862652 0.996272i \(-0.527493\pi\)
0.819664 + 0.572844i \(0.194160\pi\)
\(564\) 0.211617 + 0.211617i 0.000375208 + 0.000375208i
\(565\) −351.047 + 1310.12i −0.621322 + 2.31880i
\(566\) −827.378 221.695i −1.46180 0.391688i
\(567\) 102.752 102.752i 0.181221 0.181221i
\(568\) −34.7228 60.1417i −0.0611317 0.105883i
\(569\) 737.875 + 426.012i 1.29679 + 0.748704i 0.979849 0.199741i \(-0.0640100\pi\)
0.316944 + 0.948444i \(0.397343\pi\)
\(570\) 59.9133 + 223.600i 0.105111 + 0.392280i
\(571\) 839.202i 1.46971i 0.678227 + 0.734853i \(0.262749\pi\)
−0.678227 + 0.734853i \(0.737251\pi\)
\(572\) 0 0
\(573\) −31.9796 −0.0558109
\(574\) 136.121 36.4734i 0.237144 0.0635425i
\(575\) 5.15497 8.92868i 0.00896517 0.0155281i
\(576\) 483.111 278.924i 0.838735 0.484244i
\(577\) 699.005 + 699.005i 1.21145 + 1.21145i 0.970551 + 0.240897i \(0.0774417\pi\)
0.240897 + 0.970551i \(0.422558\pi\)
\(578\) 77.0984 287.735i 0.133388 0.497812i
\(579\) −110.049 29.4875i −0.190067 0.0509283i
\(580\) −1.45790 + 1.45790i −0.00251362 + 0.00251362i
\(581\) −87.4676 151.498i −0.150547 0.260754i
\(582\) −34.9607 20.1846i −0.0600700 0.0346814i
\(583\) 290.246 + 1083.21i 0.497849 + 1.85800i
\(584\) 265.525i 0.454667i
\(585\) 0 0
\(586\) −213.292 −0.363979
\(587\) 224.194 60.0726i 0.381932 0.102338i −0.0627446 0.998030i \(-0.519985\pi\)
0.444676 + 0.895691i \(0.353319\pi\)
\(588\) 0.480647 0.832506i 0.000817428 0.00141583i
\(589\) −898.397 + 518.690i −1.52529 + 0.880628i
\(590\) −405.376 405.376i −0.687079 0.687079i
\(591\) 25.0719 93.5695i 0.0424228 0.158324i
\(592\) −209.087 56.0247i −0.353188 0.0946364i
\(593\) −500.788 + 500.788i −0.844499 + 0.844499i −0.989440 0.144941i \(-0.953701\pi\)
0.144941 + 0.989440i \(0.453701\pi\)
\(594\) −153.088 265.157i −0.257725 0.446392i
\(595\) 166.245 + 95.9819i 0.279404 + 0.161314i
\(596\) −0.400988 1.49651i −0.000672798 0.00251092i
\(597\) 186.660i 0.312664i
\(598\) 0 0
\(599\) 563.203 0.940239 0.470119 0.882603i \(-0.344211\pi\)
0.470119 + 0.882603i \(0.344211\pi\)
\(600\) 180.873 48.4648i 0.301455 0.0807747i
\(601\) −67.6406 + 117.157i −0.112547 + 0.194937i −0.916796 0.399355i \(-0.869234\pi\)
0.804250 + 0.594292i \(0.202567\pi\)
\(602\) −141.967 + 81.9645i −0.235825 + 0.136154i
\(603\) −382.423 382.423i −0.634200 0.634200i
\(604\) −1.07125 + 3.99796i −0.00177359 + 0.00661913i
\(605\) 697.978 + 187.023i 1.15368 + 0.309128i
\(606\) −14.1196 + 14.1196i −0.0232997 + 0.0232997i
\(607\) −20.0524 34.7318i −0.0330352 0.0572187i 0.849035 0.528336i \(-0.177184\pi\)
−0.882070 + 0.471118i \(0.843851\pi\)
\(608\) −12.0173 6.93817i −0.0197652 0.0114115i
\(609\) −2.27865 8.50403i −0.00374162 0.0139639i
\(610\) 492.185i 0.806861i
\(611\) 0 0
\(612\) −3.64615 −0.00595776
\(613\) −714.402 + 191.423i −1.16542 + 0.312273i −0.789128 0.614228i \(-0.789467\pi\)
−0.376291 + 0.926501i \(0.622801\pi\)
\(614\) −393.640 + 681.805i −0.641108 + 1.11043i
\(615\) −144.354 + 83.3430i −0.234722 + 0.135517i
\(616\) −168.081 168.081i −0.272858 0.272858i
\(617\) −169.497 + 632.571i −0.274712 + 1.02524i 0.681323 + 0.731983i \(0.261405\pi\)
−0.956034 + 0.293254i \(0.905262\pi\)
\(618\) −100.579 26.9500i −0.162749 0.0436084i
\(619\) 739.075 739.075i 1.19398 1.19398i 0.218042 0.975939i \(-0.430033\pi\)
0.975939 0.218042i \(-0.0699671\pi\)
\(620\) 6.10590 + 10.5757i 0.00984822 + 0.0170576i
\(621\) −2.42936 1.40259i −0.00391202 0.00225860i
\(622\) −98.6100 368.018i −0.158537 0.591668i
\(623\) 180.447i 0.289642i
\(624\) 0 0
\(625\) 85.8635 0.137382
\(626\) −898.829 + 240.841i −1.43583 + 0.384729i
\(627\) −105.764 + 183.188i −0.168682 + 0.292166i
\(628\) 3.24605 1.87411i 0.00516887 0.00298425i
\(629\) 113.971 + 113.971i 0.181194 + 0.181194i
\(630\) 72.3981 270.193i 0.114918 0.428878i
\(631\) 822.253 + 220.322i 1.30309 + 0.349163i 0.842620 0.538509i \(-0.181012\pi\)
0.460475 + 0.887673i \(0.347679\pi\)
\(632\) −282.958 + 282.958i −0.447719 + 0.447719i
\(633\) 96.0001 + 166.277i 0.151659 + 0.262681i
\(634\) 11.7396 + 6.77785i 0.0185167 + 0.0106906i
\(635\) −353.619 1319.72i −0.556881 2.07831i
\(636\) 1.65268i 0.00259856i
\(637\) 0 0
\(638\) 208.960 0.327524
\(639\) 72.1318 19.3277i 0.112882 0.0302467i
\(640\) 504.518 873.851i 0.788309 1.36539i
\(641\) 537.784 310.490i 0.838976 0.484383i −0.0179397 0.999839i \(-0.505711\pi\)
0.856916 + 0.515456i \(0.172377\pi\)
\(642\) −101.139 101.139i −0.157537 0.157537i
\(643\) 33.3464 124.450i 0.0518607 0.193547i −0.935136 0.354290i \(-0.884723\pi\)
0.986996 + 0.160744i \(0.0513892\pi\)
\(644\) −0.0186304 0.00499200i −2.89292e−5 7.75156e-6i
\(645\) 137.107 137.107i 0.212569 0.212569i
\(646\) −285.200 493.982i −0.441487 0.764678i
\(647\) −492.538 284.367i −0.761264 0.439516i 0.0684852 0.997652i \(-0.478183\pi\)
−0.829750 + 0.558136i \(0.811517\pi\)
\(648\) 148.541 + 554.364i 0.229231 + 0.855500i
\(649\) 523.857i 0.807176i
\(650\) 0 0
\(651\) −52.1456 −0.0801008
\(652\) −11.0486 + 2.96046i −0.0169457 + 0.00454058i
\(653\) 498.955 864.215i 0.764096 1.32345i −0.176627 0.984278i \(-0.556519\pi\)
0.940723 0.339175i \(-0.110148\pi\)
\(654\) 128.389 74.1253i 0.196313 0.113341i
\(655\) −616.720 616.720i −0.941557 0.941557i
\(656\) −142.766 + 532.809i −0.217631 + 0.812208i
\(657\) −275.796 73.8992i −0.419780 0.112480i
\(658\) 40.0038 40.0038i 0.0607960 0.0607960i
\(659\) 218.812 + 378.994i 0.332037 + 0.575105i 0.982911 0.184081i \(-0.0589308\pi\)
−0.650874 + 0.759186i \(0.725598\pi\)
\(660\) 2.15645 + 1.24503i 0.00326735 + 0.00188640i
\(661\) −24.5675 91.6872i −0.0371672 0.138710i 0.944849 0.327506i \(-0.106208\pi\)
−0.982016 + 0.188796i \(0.939541\pi\)
\(662\) 79.1678i 0.119589i
\(663\) 0 0
\(664\) 690.912 1.04053
\(665\) −381.100 + 102.115i −0.573083 + 0.153557i
\(666\) 117.433 203.400i 0.176326 0.305405i
\(667\) 1.65800 0.957245i 0.00248575 0.00143515i
\(668\) 4.99928 + 4.99928i 0.00748395 + 0.00748395i
\(669\) 51.3969 191.816i 0.0768265 0.286720i
\(670\) −962.034 257.776i −1.43587 0.384740i
\(671\) −318.019 + 318.019i −0.473948 + 0.473948i
\(672\) −0.348759 0.604068i −0.000518986 0.000898911i
\(673\) −263.517 152.141i −0.391555 0.226064i 0.291279 0.956638i \(-0.405919\pi\)
−0.682834 + 0.730574i \(0.739253\pi\)
\(674\) −43.6358 162.851i −0.0647416 0.241619i
\(675\) 411.091i 0.609024i
\(676\) 0 0
\(677\) −535.082 −0.790372 −0.395186 0.918601i \(-0.629320\pi\)
−0.395186 + 0.918601i \(0.629320\pi\)
\(678\) 195.683 52.4332i 0.288618 0.0773351i
\(679\) 34.4023 59.5866i 0.0506662 0.0877564i
\(680\) −656.592 + 379.084i −0.965577 + 0.557476i
\(681\) 68.5006 + 68.5006i 0.100588 + 0.100588i
\(682\) 320.329 1195.49i 0.469691 1.75291i
\(683\) −488.481 130.888i −0.715199 0.191637i −0.117171 0.993112i \(-0.537382\pi\)
−0.598029 + 0.801475i \(0.704049\pi\)
\(684\) 5.29902 5.29902i 0.00774710 0.00774710i
\(685\) 571.692 + 990.200i 0.834587 + 1.44555i
\(686\) −329.272 190.105i −0.479988 0.277121i
\(687\) 27.3145 + 101.939i 0.0397591 + 0.148383i
\(688\) 641.657i 0.932642i
\(689\) 0 0
\(690\) −2.53034 −0.00366716
\(691\) 574.894 154.042i 0.831974 0.222927i 0.182399 0.983225i \(-0.441614\pi\)
0.649575 + 0.760298i \(0.274947\pi\)
\(692\) 4.97518 8.61726i 0.00718956 0.0124527i
\(693\) 221.361 127.803i 0.319424 0.184420i
\(694\) 478.389 + 478.389i 0.689322 + 0.689322i
\(695\) 346.839 1294.42i 0.499049 1.86248i
\(696\) 33.5869 + 8.99960i 0.0482571 + 0.0129305i
\(697\) 290.427 290.427i 0.416682 0.416682i
\(698\) 410.634 + 711.239i 0.588301 + 1.01897i
\(699\) −48.1588 27.8045i −0.0688967 0.0397775i
\(700\) 0.731563 + 2.73023i 0.00104509 + 0.00390033i
\(701\) 1080.69i 1.54164i −0.637052 0.770821i \(-0.719846\pi\)
0.637052 0.770821i \(-0.280154\pi\)
\(702\) 0 0
\(703\) −331.272 −0.471226
\(704\) 906.751 242.963i 1.28800 0.345118i
\(705\) −33.4584 + 57.9516i −0.0474587 + 0.0822009i
\(706\) −514.922 + 297.290i −0.729351 + 0.421091i
\(707\) −24.0653 24.0653i −0.0340386 0.0340386i
\(708\) 0.199816 0.745722i 0.000282225 0.00105328i
\(709\) 527.703 + 141.398i 0.744292 + 0.199432i 0.610985 0.791642i \(-0.290774\pi\)
0.133307 + 0.991075i \(0.457440\pi\)
\(710\) 97.2424 97.2424i 0.136961 0.136961i
\(711\) −215.152 372.654i −0.302605 0.524127i
\(712\) 617.201 + 356.341i 0.866855 + 0.500479i
\(713\) −2.93485 10.9530i −0.00411620 0.0153619i
\(714\) 28.6722i 0.0401571i
\(715\) 0 0
\(716\) 8.84232 0.0123496
\(717\) −21.3780 + 5.72821i −0.0298159 + 0.00798914i
\(718\) 386.623 669.651i 0.538472 0.932661i
\(719\) −1155.86 + 667.337i −1.60760 + 0.928146i −0.617689 + 0.786422i \(0.711931\pi\)
−0.989906 + 0.141723i \(0.954736\pi\)
\(720\) 774.218 + 774.218i 1.07530 + 1.07530i
\(721\) 45.9332 171.425i 0.0637077 0.237760i
\(722\) 438.125 + 117.395i 0.606821 + 0.162597i
\(723\) −19.9108 + 19.9108i −0.0275391 + 0.0275391i
\(724\) −3.77820 6.54403i −0.00521851 0.00903872i
\(725\) −242.974 140.281i −0.335137 0.193491i
\(726\) −27.9341 104.252i −0.0384768 0.143597i
\(727\) 1107.01i 1.52271i −0.648335 0.761356i \(-0.724534\pi\)
0.648335 0.761356i \(-0.275466\pi\)
\(728\) 0 0
\(729\) −560.082 −0.768289
\(730\) −507.897 + 136.090i −0.695749 + 0.186425i
\(731\) −238.890 + 413.770i −0.326799 + 0.566032i
\(732\) −0.574010 + 0.331405i −0.000784166 + 0.000452738i
\(733\) −402.981 402.981i −0.549769 0.549769i 0.376605 0.926374i \(-0.377091\pi\)
−0.926374 + 0.376605i \(0.877091\pi\)
\(734\) −143.227 + 534.529i −0.195132 + 0.728241i
\(735\) 207.620 + 55.6316i 0.282476 + 0.0756893i
\(736\) 0.107254 0.107254i 0.000145725 0.000145725i
\(737\) −455.047 788.164i −0.617431 1.06942i
\(738\) −518.316 299.250i −0.702325 0.405487i
\(739\) −152.340 568.542i −0.206144 0.769340i −0.989098 0.147260i \(-0.952955\pi\)
0.782954 0.622080i \(-0.213712\pi\)
\(740\) 3.89965i 0.00526980i
\(741\) 0 0
\(742\) 312.421 0.421052
\(743\) 596.069 159.716i 0.802246 0.214961i 0.165676 0.986180i \(-0.447019\pi\)
0.636570 + 0.771219i \(0.280353\pi\)
\(744\) 102.975 178.359i 0.138408 0.239729i
\(745\) 300.009 173.210i 0.402697 0.232497i
\(746\) 803.888 + 803.888i 1.07760 + 1.07760i
\(747\) −192.290 + 717.636i −0.257416 + 0.960691i
\(748\) −5.92660 1.58803i −0.00792326 0.00212303i
\(749\) 172.379 172.379i 0.230146 0.230146i
\(750\) 66.1594 + 114.591i 0.0882125 + 0.152789i
\(751\) −863.544 498.567i −1.14986 0.663871i −0.201006 0.979590i \(-0.564421\pi\)
−0.948853 + 0.315719i \(0.897754\pi\)
\(752\) 57.3139 + 213.898i 0.0762152 + 0.284439i
\(753\) 108.400i 0.143957i
\(754\) 0 0
\(755\) −925.472 −1.22579
\(756\) 0.742856 0.199048i 0.000982614 0.000263290i
\(757\) 48.7879 84.5031i 0.0644490 0.111629i −0.832000 0.554775i \(-0.812804\pi\)
0.896449 + 0.443146i \(0.146138\pi\)
\(758\) 440.719 254.449i 0.581424 0.335685i
\(759\) −1.63495 1.63495i −0.00215408 0.00215408i
\(760\) 403.308 1505.17i 0.530669 1.98048i
\(761\) −286.709 76.8236i −0.376754 0.100951i 0.0654727 0.997854i \(-0.479144\pi\)
−0.442226 + 0.896904i \(0.645811\pi\)
\(762\) −144.300 + 144.300i −0.189370 + 0.189370i
\(763\) 126.338 + 218.824i 0.165581 + 0.286795i
\(764\) 1.65111 + 0.953267i 0.00216113 + 0.00124773i
\(765\) −211.008 787.493i −0.275828 1.02940i
\(766\) 242.149i 0.316121i
\(767\) 0 0
\(768\) 4.11392 0.00535667
\(769\) −137.314 + 36.7932i −0.178562 + 0.0478455i −0.346992 0.937868i \(-0.612797\pi\)
0.168430 + 0.985714i \(0.446130\pi\)
\(770\) 235.358 407.651i 0.305659 0.529417i
\(771\) −92.0486 + 53.1443i −0.119389 + 0.0689290i
\(772\) 4.80284 + 4.80284i 0.00622129 + 0.00622129i
\(773\) −174.835 + 652.494i −0.226178 + 0.844107i 0.755752 + 0.654858i \(0.227272\pi\)
−0.981929 + 0.189248i \(0.939395\pi\)
\(774\) 672.486 + 180.192i 0.868845 + 0.232806i
\(775\) −1175.04 + 1175.04i −1.51618 + 1.51618i
\(776\) 135.873 + 235.339i 0.175094 + 0.303272i
\(777\) −14.4210 8.32596i −0.0185598 0.0107155i
\(778\) −197.186 735.907i −0.253452 0.945895i
\(779\) 844.167i 1.08365i
\(780\) 0 0
\(781\) 125.664 0.160901
\(782\) 6.02249 1.61372i 0.00770140 0.00206358i
\(783\) −38.1685 + 66.1098i −0.0487465 + 0.0844314i
\(784\) 616.005 355.651i 0.785721 0.453636i
\(785\) 592.623 + 592.623i 0.754934 + 0.754934i
\(786\) −33.7163 + 125.831i −0.0428961 + 0.160090i
\(787\) −653.790 175.182i −0.830737 0.222595i −0.181702 0.983354i \(-0.558161\pi\)
−0.649035 + 0.760758i \(0.724827\pi\)
\(788\) −4.08363 + 4.08363i −0.00518227 + 0.00518227i
\(789\) −144.052 249.505i −0.182575 0.316229i
\(790\) −686.268 396.217i −0.868694 0.501541i
\(791\) 89.3664 + 333.520i 0.112979 + 0.421644i
\(792\) 1009.52i 1.27465i
\(793\) 0 0
\(794\) 1381.60 1.74004
\(795\) −356.946 + 95.6433i −0.448988 + 0.120306i
\(796\) −5.56407 + 9.63726i −0.00699004 + 0.0121071i
\(797\) 827.418 477.710i 1.03817 0.599385i 0.118852 0.992912i \(-0.462078\pi\)
0.919313 + 0.393527i \(0.128745\pi\)
\(798\) 41.6698 + 41.6698i 0.0522178 + 0.0522178i
\(799\) 42.6761 159.269i 0.0534118 0.199336i
\(800\) −21.4708 5.75308i −0.0268385 0.00719134i
\(801\) −541.899 + 541.899i −0.676529 + 0.676529i
\(802\) −150.073 259.933i −0.187123 0.324107i
\(803\) −416.104 240.238i −0.518187 0.299175i
\(804\) −0.347138 1.29554i −0.000431764 0.00161136i
\(805\) 4.31268i 0.00535737i
\(806\) 0 0
\(807\) −64.0215 −0.0793327
\(808\) 129.836 34.7895i 0.160688 0.0430563i
\(809\) 120.894 209.395i 0.149436 0.258831i −0.781583 0.623801i \(-0.785587\pi\)
0.931019 + 0.364970i \(0.118921\pi\)
\(810\) −984.255 + 568.260i −1.21513 + 0.701556i
\(811\) −444.795 444.795i −0.548452 0.548452i 0.377541 0.925993i \(-0.376770\pi\)
−0.925993 + 0.377541i \(0.876770\pi\)
\(812\) −0.135846 + 0.506986i −0.000167299 + 0.000624367i
\(813\) −176.643 47.3312i −0.217273 0.0582180i
\(814\) 279.468 279.468i 0.343327 0.343327i
\(815\) −1278.80 2214.94i −1.56908 2.71772i
\(816\) 97.1938 + 56.1149i 0.119110 + 0.0687682i
\(817\) −254.156 948.523i −0.311084 1.16098i
\(818\) 621.728i 0.760059i
\(819\) 0 0
\(820\) 9.93734 0.0121187
\(821\) 352.928 94.5667i 0.429876 0.115185i −0.0373921 0.999301i \(-0.511905\pi\)
0.467268 + 0.884116i \(0.345238\pi\)
\(822\) 85.3893 147.899i 0.103880 0.179925i
\(823\) −595.727 + 343.943i −0.723848 + 0.417914i −0.816167 0.577815i \(-0.803905\pi\)
0.0923192 + 0.995729i \(0.470572\pi\)
\(824\) 495.635 + 495.635i 0.601498 + 0.601498i
\(825\) −87.6984 + 327.295i −0.106301 + 0.396721i
\(826\) −140.970 37.7728i −0.170666 0.0457298i
\(827\) 486.409 486.409i 0.588161 0.588161i −0.348972 0.937133i \(-0.613469\pi\)
0.937133 + 0.348972i \(0.113469\pi\)
\(828\) 0.0409574 + 0.0709403i 4.94655e−5 + 8.56767e-5i
\(829\) 617.844 + 356.712i 0.745288 + 0.430292i 0.823989 0.566606i \(-0.191744\pi\)
−0.0787009 + 0.996898i \(0.525077\pi\)
\(830\) 354.115 + 1321.58i 0.426645 + 1.59226i
\(831\) 35.7555i 0.0430270i
\(832\) 0 0
\(833\) −529.637 −0.635819
\(834\) −193.338 + 51.8047i −0.231820 + 0.0621160i
\(835\) −790.425 + 1369.06i −0.946617 + 1.63959i
\(836\) 10.9211 6.30533i 0.0130636 0.00754226i
\(837\) 319.710 + 319.710i 0.381972 + 0.381972i
\(838\) −142.269 + 530.955i −0.169772 + 0.633598i
\(839\) 397.410 + 106.486i 0.473671 + 0.126920i 0.487754 0.872981i \(-0.337816\pi\)
−0.0140828 + 0.999901i \(0.504483\pi\)
\(840\) 55.3868 55.3868i 0.0659367 0.0659367i
\(841\) 394.451 + 683.209i 0.469026 + 0.812377i
\(842\) −460.149 265.667i −0.546495 0.315519i
\(843\) −58.3990 217.948i −0.0692752 0.258539i
\(844\) 11.4465i 0.0135622i
\(845\) 0 0
\(846\) −240.270 −0.284007
\(847\) 177.685 47.6106i 0.209782 0.0562109i
\(848\) −611.444 + 1059.05i −0.721043 + 1.24888i
\(849\) 223.367 128.961i 0.263094 0.151898i
\(850\) −646.092 646.092i −0.760108 0.760108i
\(851\) 0.937201 3.49768i 0.00110129 0.00411008i
\(852\) 0.178885 + 0.0479321i 0.000209959 + 5.62584e-5i
\(853\) −100.188 + 100.188i −0.117454 + 0.117454i −0.763391 0.645937i \(-0.776467\pi\)
0.645937 + 0.763391i \(0.276467\pi\)
\(854\) 62.6482 + 108.510i 0.0733585 + 0.127061i
\(855\) 1451.14 + 837.817i 1.69724 + 0.979902i
\(856\) 249.197 + 930.015i 0.291118 + 1.08647i
\(857\) 1105.86i 1.29039i −0.764019 0.645194i \(-0.776776\pi\)
0.764019 0.645194i \(-0.223224\pi\)
\(858\) 0 0
\(859\) −98.7915 −0.115008 −0.0575038 0.998345i \(-0.518314\pi\)
−0.0575038 + 0.998345i \(0.518314\pi\)
\(860\) −11.1658 + 2.99187i −0.0129835 + 0.00347891i
\(861\) −21.2167 + 36.7485i −0.0246420 + 0.0426811i
\(862\) 592.920 342.322i 0.687842 0.397126i
\(863\) −14.6470 14.6470i −0.0169722 0.0169722i 0.698570 0.715542i \(-0.253820\pi\)
−0.715542 + 0.698570i \(0.753820\pi\)
\(864\) −1.56533 + 5.84188i −0.00181172 + 0.00676144i
\(865\) 2149.07 + 575.842i 2.48448 + 0.665713i
\(866\) −272.482 + 272.482i −0.314644 + 0.314644i
\(867\) 44.8485 + 77.6799i 0.0517284 + 0.0895961i
\(868\) 2.69228 + 1.55439i 0.00310170 + 0.00179077i
\(869\) −187.413 699.434i −0.215665 0.804872i
\(870\) 68.8577i 0.0791468i
\(871\) 0 0
\(872\) −997.954 −1.14444
\(873\) −282.257 + 75.6307i −0.323319 + 0.0866331i
\(874\) −6.40735 + 11.0979i −0.00733106 + 0.0126978i
\(875\) −195.308 + 112.761i −0.223209 + 0.128870i
\(876\) −0.500698 0.500698i −0.000571573 0.000571573i
\(877\) 196.106 731.877i 0.223610 0.834524i −0.759347 0.650686i \(-0.774481\pi\)
0.982957 0.183837i \(-0.0588520\pi\)
\(878\) −676.373 181.234i −0.770357 0.206417i
\(879\) 45.4138 45.4138i 0.0516652 0.0516652i
\(880\) 921.246 + 1595.65i 1.04687 + 1.81323i
\(881\) 1427.91 + 824.403i 1.62078 + 0.935758i 0.986712 + 0.162481i \(0.0519498\pi\)
0.634069 + 0.773277i \(0.281384\pi\)
\(882\) 199.750 + 745.476i 0.226474 + 0.845211i
\(883\) 360.322i 0.408065i 0.978964 + 0.204033i \(0.0654049\pi\)
−0.978964 + 0.204033i \(0.934595\pi\)
\(884\) 0 0
\(885\) 172.624 0.195056
\(886\) 647.095 173.388i 0.730355 0.195698i
\(887\) 524.092 907.755i 0.590860 1.02340i −0.403257 0.915087i \(-0.632122\pi\)
0.994117 0.108312i \(-0.0345446\pi\)
\(888\) 56.9562 32.8837i 0.0641399 0.0370312i
\(889\) −245.943 245.943i −0.276651 0.276651i
\(890\) −365.273 + 1363.22i −0.410419 + 1.53171i
\(891\) −1003.14 268.790i −1.12586 0.301672i
\(892\) −8.37138 + 8.37138i −0.00938495 + 0.00938495i
\(893\) 169.447 + 293.491i 0.189750 + 0.328657i
\(894\) −44.8100 25.8711i −0.0501231 0.0289386i
\(895\) 511.719 + 1909.76i 0.571753 + 2.13381i
\(896\) 256.872i 0.286687i
\(897\) 0 0
\(898\) −273.604 −0.304682
\(899\) −298.062 + 79.8655i −0.331549 + 0.0888382i
\(900\) 6.00218 10.3961i 0.00666909 0.0115512i
\(901\) 788.574 455.283i 0.875221 0.505309i
\(902\) −712.158 712.158i −0.789532 0.789532i
\(903\) 12.7756 47.6791i 0.0141479 0.0528008i
\(904\) −1317.25 352.956i −1.45713 0.390438i
\(905\) 1194.73 1194.73i 1.32014 1.32014i
\(906\) 69.1153 + 119.711i 0.0762862 + 0.132132i
\(907\) −141.664 81.7900i −0.156190 0.0901764i 0.419868 0.907585i \(-0.362076\pi\)
−0.576058 + 0.817409i \(0.695410\pi\)
\(908\) −1.49478 5.57859i −0.00164623 0.00614382i
\(909\) 144.540i 0.159010i
\(910\) 0 0
\(911\) 826.177 0.906890 0.453445 0.891284i \(-0.350195\pi\)
0.453445 + 0.891284i \(0.350195\pi\)
\(912\) −222.806 + 59.7008i −0.244305 + 0.0654614i
\(913\) −625.112 + 1082.73i −0.684680 + 1.18590i
\(914\) 342.395 197.682i 0.374611 0.216282i
\(915\) −104.795 104.795i −0.114530 0.114530i
\(916\) 1.62841 6.07732i 0.00177774 0.00663463i
\(917\) −214.465 57.4657i −0.233877 0.0626670i
\(918\) −175.792 + 175.792i −0.191495 + 0.191495i
\(919\) −178.535 309.231i −0.194271 0.336487i 0.752391 0.658717i \(-0.228901\pi\)
−0.946661 + 0.322231i \(0.895567\pi\)
\(920\) 14.7511 + 8.51654i 0.0160338 + 0.00925711i
\(921\) −61.3556 228.982i −0.0666185 0.248624i
\(922\) 1806.47i 1.95929i
\(923\) 0 0
\(924\) 0.633896 0.000686034
\(925\) −512.574 + 137.344i −0.554135 + 0.148480i
\(926\) 834.435 1445.28i 0.901118 1.56078i
\(927\) −652.748 + 376.864i −0.704150 + 0.406541i
\(928\) −2.91867 2.91867i −0.00314512 0.00314512i
\(929\) −61.3191 + 228.846i −0.0660055 + 0.246336i −0.991044 0.133538i \(-0.957366\pi\)
0.925038 + 0.379874i \(0.124033\pi\)
\(930\) 393.943 + 105.557i 0.423594 + 0.113502i
\(931\) 769.732 769.732i 0.826780 0.826780i
\(932\) 1.65762 + 2.87109i 0.00177857 + 0.00308057i
\(933\) 99.3537 + 57.3619i 0.106488 + 0.0614811i
\(934\) −78.2892 292.179i −0.0838215 0.312826i
\(935\) 1371.93i 1.46730i
\(936\) 0 0
\(937\) 1610.13 1.71838 0.859192 0.511654i \(-0.170967\pi\)
0.859192 + 0.511654i \(0.170967\pi\)
\(938\) −244.906 + 65.6224i −0.261094 + 0.0699599i
\(939\) 140.098 242.657i 0.149199 0.258420i
\(940\) 3.45491 1.99469i 0.00367543 0.00212201i
\(941\) −930.926 930.926i −0.989295 0.989295i 0.0106488 0.999943i \(-0.496610\pi\)
−0.999943 + 0.0106488i \(0.996610\pi\)
\(942\) 32.3990 120.915i 0.0343938 0.128359i
\(943\) −8.91301 2.38823i −0.00945176 0.00253259i
\(944\) 403.939 403.939i 0.427901 0.427901i
\(945\) 85.9804 + 148.922i 0.0909846 + 0.157590i
\(946\) 1014.61 + 585.783i 1.07252 + 0.619221i
\(947\) −51.1956 191.065i −0.0540608 0.201758i 0.933613 0.358283i \(-0.116638\pi\)
−0.987674 + 0.156525i \(0.949971\pi\)
\(948\) 1.06714i 0.00112568i
\(949\) 0 0
\(950\) 1877.96 1.97679
\(951\) −3.94270 + 1.05644i −0.00414585 + 0.00111088i
\(952\) −96.5038 + 167.150i −0.101370 + 0.175577i
\(953\) 363.857 210.073i 0.381802 0.220433i −0.296800 0.954940i \(-0.595920\pi\)
0.678602 + 0.734506i \(0.262586\pi\)
\(954\) −938.228 938.228i −0.983467 0.983467i
\(955\) −110.334 + 411.772i −0.115533 + 0.431175i
\(956\) 1.27449 + 0.341499i 0.00133315 + 0.000357217i
\(957\) −44.4915 + 44.4915i −0.0464906 + 0.0464906i
\(958\) −501.791 869.127i −0.523790 0.907231i
\(959\) 252.077 + 145.536i 0.262854 + 0.151759i
\(960\) 80.0625 + 298.797i 0.0833984 + 0.311247i
\(961\) 866.679i 0.901851i
\(962\) 0 0
\(963\) −1035.34 −1.07512
\(964\) 1.62150 0.434480i 0.00168206 0.000450706i
\(965\) −759.367 + 1315.26i −0.786908 + 1.36297i
\(966\) −0.557852 + 0.322076i −0.000577487 + 0.000333412i
\(967\) −957.774 957.774i −0.990459 0.990459i 0.00949545 0.999955i \(-0.496977\pi\)
−0.999955 + 0.00949545i \(0.996977\pi\)
\(968\) −188.040 + 701.774i −0.194256 + 0.724973i
\(969\) 165.902 + 44.4534i 0.171210 + 0.0458755i
\(970\) −380.517 + 380.517i −0.392286 + 0.392286i
\(971\) 351.176 + 608.255i 0.361664 + 0.626421i 0.988235 0.152944i \(-0.0488753\pi\)
−0.626571 + 0.779365i \(0.715542\pi\)
\(972\) −4.27175 2.46630i −0.00439481 0.00253734i
\(973\) −88.2953 329.523i −0.0907454 0.338667i
\(974\) 1099.98i 1.12935i
\(975\) 0 0
\(976\) −490.440 −0.502500
\(977\) −645.113 + 172.858i −0.660300 + 0.176927i −0.573381 0.819289i \(-0.694369\pi\)
−0.0869186 + 0.996215i \(0.527702\pi\)
\(978\) −191.004 + 330.829i −0.195301 + 0.338271i
\(979\) −1116.84 + 644.809i −1.14080 + 0.658641i
\(980\) −9.06111 9.06111i −0.00924603 0.00924603i
\(981\) 277.744 1036.55i 0.283123 1.05663i
\(982\) 1586.70 + 425.156i 1.61579 + 0.432949i
\(983\) 507.852 507.852i 0.516635 0.516635i −0.399916 0.916552i \(-0.630961\pi\)
0.916552 + 0.399916i \(0.130961\pi\)
\(984\) −83.7962 145.139i −0.0851587 0.147499i
\(985\) −1118.31 645.655i −1.13534 0.655487i
\(986\) −43.9139 163.889i −0.0445374 0.166216i
\(987\) 17.0351i 0.0172595i
\(988\) 0 0
\(989\) 10.7339 0.0108533
\(990\) −1931.02 + 517.414i −1.95052 + 0.522640i
\(991\) 418.667 725.153i 0.422469 0.731738i −0.573711 0.819058i \(-0.694497\pi\)
0.996180 + 0.0873195i \(0.0278301\pi\)
\(992\) −21.1723 + 12.2238i −0.0213430 + 0.0123224i
\(993\) −16.8563 16.8563i −0.0169751 0.0169751i
\(994\) 9.06101 33.8161i 0.00911570 0.0340203i
\(995\) −2403.45 644.003i −2.41553 0.647239i
\(996\) −1.30285 + 1.30285i −0.00130808 + 0.00130808i
\(997\) −305.867 529.777i −0.306787 0.531371i 0.670870 0.741575i \(-0.265921\pi\)
−0.977658 + 0.210204i \(0.932587\pi\)
\(998\) −549.651 317.341i −0.550753 0.317977i
\(999\) 37.3693 + 139.464i 0.0374067 + 0.139604i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.150.4 48
13.2 odd 12 inner 169.3.f.g.80.4 48
13.3 even 3 inner 169.3.f.g.89.9 48
13.4 even 6 169.3.d.e.99.4 yes 24
13.5 odd 4 inner 169.3.f.g.19.9 48
13.6 odd 12 169.3.d.e.70.9 yes 24
13.7 odd 12 169.3.d.e.70.4 24
13.8 odd 4 inner 169.3.f.g.19.4 48
13.9 even 3 169.3.d.e.99.9 yes 24
13.10 even 6 inner 169.3.f.g.89.4 48
13.11 odd 12 inner 169.3.f.g.80.9 48
13.12 even 2 inner 169.3.f.g.150.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.4 24 13.7 odd 12
169.3.d.e.70.9 yes 24 13.6 odd 12
169.3.d.e.99.4 yes 24 13.4 even 6
169.3.d.e.99.9 yes 24 13.9 even 3
169.3.f.g.19.4 48 13.8 odd 4 inner
169.3.f.g.19.9 48 13.5 odd 4 inner
169.3.f.g.80.4 48 13.2 odd 12 inner
169.3.f.g.80.9 48 13.11 odd 12 inner
169.3.f.g.89.4 48 13.10 even 6 inner
169.3.f.g.89.9 48 13.3 even 3 inner
169.3.f.g.150.4 48 1.1 even 1 trivial
169.3.f.g.150.9 48 13.12 even 2 inner