Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,3,Mod(19,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.19");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 169 = 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 169.f (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.60491646769\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −0.834643 | − | 3.11493i | 1.02304 | − | 1.77195i | −5.54206 | + | 3.19971i | −5.50472 | + | 5.50472i | −6.37336 | − | 1.70774i | −0.846854 | + | 3.16050i | 5.47136 | + | 5.47136i | 2.40680 | + | 4.16870i | 21.7413 | + | 12.5523i |
19.2 | −0.739915 | − | 2.76140i | −2.32422 | + | 4.02567i | −3.61376 | + | 2.08640i | 2.43155 | − | 2.43155i | 12.8362 | + | 3.43945i | 0.277954 | − | 1.03734i | 0.349324 | + | 0.349324i | −6.30402 | − | 10.9189i | −8.51361 | − | 4.91533i |
19.3 | −0.609234 | − | 2.27369i | 2.51175 | − | 4.35048i | −1.33442 | + | 0.770425i | 1.10964 | − | 1.10964i | −11.4219 | − | 3.06049i | −1.70128 | + | 6.34925i | −4.09315 | − | 4.09315i | −8.11776 | − | 14.0604i | −3.19902 | − | 1.84696i |
19.4 | −0.515320 | − | 1.92320i | 0.299764 | − | 0.519206i | 0.0309536 | − | 0.0178711i | 5.65111 | − | 5.65111i | −1.15301 | − | 0.308949i | −0.526568 | + | 1.96518i | −5.68184 | − | 5.68184i | 4.32028 | + | 7.48295i | −13.7804 | − | 7.95610i |
19.5 | −0.429937 | − | 1.60455i | −0.677024 | + | 1.17264i | 1.07438 | − | 0.620291i | −1.57408 | + | 1.57408i | 2.17264 | + | 0.582156i | −3.25921 | + | 12.1635i | −6.15564 | − | 6.15564i | 3.58328 | + | 6.20642i | 3.20245 | + | 1.84893i |
19.6 | −0.104575 | − | 0.390278i | −2.33330 | + | 4.04139i | 3.32272 | − | 1.91837i | 4.14024 | − | 4.14024i | 1.82127 | + | 0.488008i | 0.591332 | − | 2.20688i | −2.23898 | − | 2.23898i | −6.38858 | − | 11.0653i | −2.04881 | − | 1.18288i |
19.7 | 0.104575 | + | 0.390278i | −2.33330 | + | 4.04139i | 3.32272 | − | 1.91837i | −4.14024 | + | 4.14024i | −1.82127 | − | 0.488008i | −0.591332 | + | 2.20688i | 2.23898 | + | 2.23898i | −6.38858 | − | 11.0653i | −2.04881 | − | 1.18288i |
19.8 | 0.429937 | + | 1.60455i | −0.677024 | + | 1.17264i | 1.07438 | − | 0.620291i | 1.57408 | − | 1.57408i | −2.17264 | − | 0.582156i | 3.25921 | − | 12.1635i | 6.15564 | + | 6.15564i | 3.58328 | + | 6.20642i | 3.20245 | + | 1.84893i |
19.9 | 0.515320 | + | 1.92320i | 0.299764 | − | 0.519206i | 0.0309536 | − | 0.0178711i | −5.65111 | + | 5.65111i | 1.15301 | + | 0.308949i | 0.526568 | − | 1.96518i | 5.68184 | + | 5.68184i | 4.32028 | + | 7.48295i | −13.7804 | − | 7.95610i |
19.10 | 0.609234 | + | 2.27369i | 2.51175 | − | 4.35048i | −1.33442 | + | 0.770425i | −1.10964 | + | 1.10964i | 11.4219 | + | 3.06049i | 1.70128 | − | 6.34925i | 4.09315 | + | 4.09315i | −8.11776 | − | 14.0604i | −3.19902 | − | 1.84696i |
19.11 | 0.739915 | + | 2.76140i | −2.32422 | + | 4.02567i | −3.61376 | + | 2.08640i | −2.43155 | + | 2.43155i | −12.8362 | − | 3.43945i | −0.277954 | + | 1.03734i | −0.349324 | − | 0.349324i | −6.30402 | − | 10.9189i | −8.51361 | − | 4.91533i |
19.12 | 0.834643 | + | 3.11493i | 1.02304 | − | 1.77195i | −5.54206 | + | 3.19971i | 5.50472 | − | 5.50472i | 6.37336 | + | 1.70774i | 0.846854 | − | 3.16050i | −5.47136 | − | 5.47136i | 2.40680 | + | 4.16870i | 21.7413 | + | 12.5523i |
80.1 | −3.11493 | − | 0.834643i | 1.02304 | + | 1.77195i | 5.54206 | + | 3.19971i | 5.50472 | − | 5.50472i | −1.70774 | − | 6.37336i | −3.16050 | + | 0.846854i | −5.47136 | − | 5.47136i | 2.40680 | − | 4.16870i | −21.7413 | + | 12.5523i |
80.2 | −2.76140 | − | 0.739915i | −2.32422 | − | 4.02567i | 3.61376 | + | 2.08640i | −2.43155 | + | 2.43155i | 3.43945 | + | 12.8362i | 1.03734 | − | 0.277954i | −0.349324 | − | 0.349324i | −6.30402 | + | 10.9189i | 8.51361 | − | 4.91533i |
80.3 | −2.27369 | − | 0.609234i | 2.51175 | + | 4.35048i | 1.33442 | + | 0.770425i | −1.10964 | + | 1.10964i | −3.06049 | − | 11.4219i | −6.34925 | + | 1.70128i | 4.09315 | + | 4.09315i | −8.11776 | + | 14.0604i | 3.19902 | − | 1.84696i |
80.4 | −1.92320 | − | 0.515320i | 0.299764 | + | 0.519206i | −0.0309536 | − | 0.0178711i | −5.65111 | + | 5.65111i | −0.308949 | − | 1.15301i | −1.96518 | + | 0.526568i | 5.68184 | + | 5.68184i | 4.32028 | − | 7.48295i | 13.7804 | − | 7.95610i |
80.5 | −1.60455 | − | 0.429937i | −0.677024 | − | 1.17264i | −1.07438 | − | 0.620291i | 1.57408 | − | 1.57408i | 0.582156 | + | 2.17264i | −12.1635 | + | 3.25921i | 6.15564 | + | 6.15564i | 3.58328 | − | 6.20642i | −3.20245 | + | 1.84893i |
80.6 | −0.390278 | − | 0.104575i | −2.33330 | − | 4.04139i | −3.32272 | − | 1.91837i | −4.14024 | + | 4.14024i | 0.488008 | + | 1.82127i | 2.20688 | − | 0.591332i | 2.23898 | + | 2.23898i | −6.38858 | + | 11.0653i | 2.04881 | − | 1.18288i |
80.7 | 0.390278 | + | 0.104575i | −2.33330 | − | 4.04139i | −3.32272 | − | 1.91837i | 4.14024 | − | 4.14024i | −0.488008 | − | 1.82127i | −2.20688 | + | 0.591332i | −2.23898 | − | 2.23898i | −6.38858 | + | 11.0653i | 2.04881 | − | 1.18288i |
80.8 | 1.60455 | + | 0.429937i | −0.677024 | − | 1.17264i | −1.07438 | − | 0.620291i | −1.57408 | + | 1.57408i | −0.582156 | − | 2.17264i | 12.1635 | − | 3.25921i | −6.15564 | − | 6.15564i | 3.58328 | − | 6.20642i | −3.20245 | + | 1.84893i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.d | odd | 4 | 2 | inner |
13.e | even | 6 | 1 | inner |
13.f | odd | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.3.f.g | 48 | |
13.b | even | 2 | 1 | inner | 169.3.f.g | 48 | |
13.c | even | 3 | 1 | 169.3.d.e | ✓ | 24 | |
13.c | even | 3 | 1 | inner | 169.3.f.g | 48 | |
13.d | odd | 4 | 2 | inner | 169.3.f.g | 48 | |
13.e | even | 6 | 1 | 169.3.d.e | ✓ | 24 | |
13.e | even | 6 | 1 | inner | 169.3.f.g | 48 | |
13.f | odd | 12 | 2 | 169.3.d.e | ✓ | 24 | |
13.f | odd | 12 | 2 | inner | 169.3.f.g | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
169.3.d.e | ✓ | 24 | 13.c | even | 3 | 1 | |
169.3.d.e | ✓ | 24 | 13.e | even | 6 | 1 | |
169.3.d.e | ✓ | 24 | 13.f | odd | 12 | 2 | |
169.3.f.g | 48 | 1.a | even | 1 | 1 | trivial | |
169.3.f.g | 48 | 13.b | even | 2 | 1 | inner | |
169.3.f.g | 48 | 13.c | even | 3 | 1 | inner | |
169.3.f.g | 48 | 13.d | odd | 4 | 2 | inner | |
169.3.f.g | 48 | 13.e | even | 6 | 1 | inner | |
169.3.f.g | 48 | 13.f | odd | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{48} - 229 T_{2}^{44} + 34923 T_{2}^{40} - 2930264 T_{2}^{36} + 176369373 T_{2}^{32} + \cdots + 500246412961 \) acting on \(S_{3}^{\mathrm{new}}(169, [\chi])\).