Properties

Label 169.3.f.g.89.9
Level $169$
Weight $3$
Character 169.89
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.9
Character \(\chi\) \(=\) 169.89
Dual form 169.3.f.g.19.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.515320 - 1.92320i) q^{2} +(0.299764 + 0.519206i) q^{3} +(0.0309536 + 0.0178711i) q^{4} +(-5.65111 - 5.65111i) q^{5} +(1.15301 - 0.308949i) q^{6} +(0.526568 + 1.96518i) q^{7} +(5.68184 - 5.68184i) q^{8} +(4.32028 - 7.48295i) q^{9} +(-13.7804 + 7.95610i) q^{10} +(-14.0447 - 3.76327i) q^{11} +0.0214284i q^{12} +4.05079 q^{14} +(1.24009 - 4.62809i) q^{15} +(-7.92788 - 13.7315i) q^{16} +(-10.2245 - 5.90312i) q^{17} +(-12.1649 - 12.1649i) q^{18} +(23.4386 - 6.28035i) q^{19} +(-0.0739308 - 0.275914i) q^{20} +(-0.862488 + 0.862488i) q^{21} +(-14.4751 + 25.0716i) q^{22} +(0.229705 - 0.132620i) q^{23} +(4.65326 + 1.24684i) q^{24} +38.8702i q^{25} +10.5760 q^{27} +(-0.0188207 + 0.0702397i) q^{28} +(-3.60897 - 6.25092i) q^{29} +(-8.26171 - 4.76990i) q^{30} +(30.2298 + 30.2298i) q^{31} +(0.552371 - 0.148007i) q^{32} +(-2.25619 - 8.42021i) q^{33} +(-16.6218 + 16.6218i) q^{34} +(8.12976 - 14.0812i) q^{35} +(0.267457 - 0.154416i) q^{36} +(-13.1868 - 3.53340i) q^{37} -48.3135i q^{38} -64.2175 q^{40} +(-9.00403 + 33.6035i) q^{41} +(1.21428 + 2.10319i) q^{42} +(35.0467 + 20.2342i) q^{43} +(-0.367481 - 0.367481i) q^{44} +(-66.7014 + 17.8726i) q^{45} +(-0.136684 - 0.510111i) q^{46} +(9.87555 - 9.87555i) q^{47} +(4.75298 - 8.23241i) q^{48} +(38.8506 - 22.4304i) q^{49} +(74.7552 + 20.0306i) q^{50} -7.07817i q^{51} +77.1259 q^{53} +(5.45003 - 20.3398i) q^{54} +(58.1017 + 100.635i) q^{55} +(14.1577 + 8.17397i) q^{56} +(10.2868 + 10.2868i) q^{57} +(-13.8815 + 3.71955i) q^{58} +(9.32480 + 34.8006i) q^{59} +(0.121094 - 0.121094i) q^{60} +(15.4657 - 26.7873i) q^{61} +(73.7160 - 42.5599i) q^{62} +(16.9803 + 4.54985i) q^{63} -64.5616i q^{64} -17.3564 q^{66} +(16.1999 - 60.4589i) q^{67} +(-0.210990 - 0.365445i) q^{68} +(0.137715 + 0.0795095i) q^{69} +(-22.8915 - 22.8915i) q^{70} +(-8.34804 + 2.23685i) q^{71} +(-17.9698 - 67.0641i) q^{72} +(-23.3661 + 23.3661i) q^{73} +(-13.5909 + 23.5401i) q^{74} +(-20.1816 + 11.6519i) q^{75} +(0.837745 + 0.224473i) q^{76} -29.5820i q^{77} -49.8004 q^{79} +(-32.7969 + 122.400i) q^{80} +(-35.7122 - 61.8554i) q^{81} +(59.9863 + 34.6331i) q^{82} +(60.8000 + 60.8000i) q^{83} +(-0.0421107 + 0.0112835i) q^{84} +(24.4206 + 91.1390i) q^{85} +(56.9747 - 56.9747i) q^{86} +(2.16368 - 3.74760i) q^{87} +(-101.182 + 58.4176i) q^{88} +(-85.6713 - 22.9556i) q^{89} +137.490i q^{90} +0.00948026 q^{92} +(-6.63370 + 24.7573i) q^{93} +(-13.9036 - 24.0818i) q^{94} +(-167.945 - 96.9632i) q^{95} +(0.242427 + 0.242427i) q^{96} +(32.6665 - 8.75298i) q^{97} +(-23.1177 - 86.2763i) q^{98} +(-88.8376 + 88.8376i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.515320 1.92320i 0.257660 0.961601i −0.708931 0.705278i \(-0.750822\pi\)
0.966591 0.256323i \(-0.0825110\pi\)
\(3\) 0.299764 + 0.519206i 0.0999213 + 0.173069i 0.911652 0.410963i \(-0.134808\pi\)
−0.811731 + 0.584032i \(0.801474\pi\)
\(4\) 0.0309536 + 0.0178711i 0.00773840 + 0.00446777i
\(5\) −5.65111 5.65111i −1.13022 1.13022i −0.990140 0.140083i \(-0.955263\pi\)
−0.140083 0.990140i \(-0.544737\pi\)
\(6\) 1.15301 0.308949i 0.192169 0.0514915i
\(7\) 0.526568 + 1.96518i 0.0752241 + 0.280740i 0.993284 0.115702i \(-0.0369116\pi\)
−0.918060 + 0.396442i \(0.870245\pi\)
\(8\) 5.68184 5.68184i 0.710231 0.710231i
\(9\) 4.32028 7.48295i 0.480031 0.831439i
\(10\) −13.7804 + 7.95610i −1.37804 + 0.795610i
\(11\) −14.0447 3.76327i −1.27679 0.342116i −0.444164 0.895946i \(-0.646499\pi\)
−0.832630 + 0.553830i \(0.813166\pi\)
\(12\) 0.0214284i 0.00178570i
\(13\) 0 0
\(14\) 4.05079 0.289342
\(15\) 1.24009 4.62809i 0.0826729 0.308540i
\(16\) −7.92788 13.7315i −0.495492 0.858218i
\(17\) −10.2245 5.90312i −0.601441 0.347242i 0.168167 0.985759i \(-0.446215\pi\)
−0.769608 + 0.638516i \(0.779549\pi\)
\(18\) −12.1649 12.1649i −0.675827 0.675827i
\(19\) 23.4386 6.28035i 1.23361 0.330545i 0.417626 0.908619i \(-0.362862\pi\)
0.815984 + 0.578074i \(0.196196\pi\)
\(20\) −0.0739308 0.275914i −0.00369654 0.0137957i
\(21\) −0.862488 + 0.862488i −0.0410708 + 0.0410708i
\(22\) −14.4751 + 25.0716i −0.657958 + 1.13962i
\(23\) 0.229705 0.132620i 0.00998717 0.00576610i −0.494998 0.868894i \(-0.664831\pi\)
0.504985 + 0.863128i \(0.331498\pi\)
\(24\) 4.65326 + 1.24684i 0.193886 + 0.0519516i
\(25\) 38.8702i 1.55481i
\(26\) 0 0
\(27\) 10.5760 0.391704
\(28\) −0.0188207 + 0.0702397i −0.000672167 + 0.00250856i
\(29\) −3.60897 6.25092i −0.124447 0.215549i 0.797070 0.603888i \(-0.206382\pi\)
−0.921517 + 0.388339i \(0.873049\pi\)
\(30\) −8.26171 4.76990i −0.275390 0.158997i
\(31\) 30.2298 + 30.2298i 0.975154 + 0.975154i 0.999699 0.0245446i \(-0.00781356\pi\)
−0.0245446 + 0.999699i \(0.507814\pi\)
\(32\) 0.552371 0.148007i 0.0172616 0.00462523i
\(33\) −2.25619 8.42021i −0.0683693 0.255158i
\(34\) −16.6218 + 16.6218i −0.488876 + 0.488876i
\(35\) 8.12976 14.0812i 0.232279 0.402319i
\(36\) 0.267457 0.154416i 0.00742935 0.00428934i
\(37\) −13.1868 3.53340i −0.356401 0.0954973i 0.0761760 0.997094i \(-0.475729\pi\)
−0.432577 + 0.901597i \(0.642396\pi\)
\(38\) 48.3135i 1.27141i
\(39\) 0 0
\(40\) −64.2175 −1.60544
\(41\) −9.00403 + 33.6035i −0.219610 + 0.819597i 0.764882 + 0.644170i \(0.222797\pi\)
−0.984492 + 0.175427i \(0.943869\pi\)
\(42\) 1.21428 + 2.10319i 0.0289114 + 0.0500761i
\(43\) 35.0467 + 20.2342i 0.815039 + 0.470563i 0.848703 0.528870i \(-0.177384\pi\)
−0.0336635 + 0.999433i \(0.510717\pi\)
\(44\) −0.367481 0.367481i −0.00835184 0.00835184i
\(45\) −66.7014 + 17.8726i −1.48225 + 0.397169i
\(46\) −0.136684 0.510111i −0.00297139 0.0110894i
\(47\) 9.87555 9.87555i 0.210118 0.210118i −0.594200 0.804318i \(-0.702531\pi\)
0.804318 + 0.594200i \(0.202531\pi\)
\(48\) 4.75298 8.23241i 0.0990205 0.171508i
\(49\) 38.8506 22.4304i 0.792869 0.457763i
\(50\) 74.7552 + 20.0306i 1.49510 + 0.400612i
\(51\) 7.07817i 0.138788i
\(52\) 0 0
\(53\) 77.1259 1.45521 0.727603 0.685999i \(-0.240635\pi\)
0.727603 + 0.685999i \(0.240635\pi\)
\(54\) 5.45003 20.3398i 0.100927 0.376663i
\(55\) 58.1017 + 100.635i 1.05639 + 1.82973i
\(56\) 14.1577 + 8.17397i 0.252817 + 0.145964i
\(57\) 10.2868 + 10.2868i 0.180471 + 0.180471i
\(58\) −13.8815 + 3.71955i −0.239337 + 0.0641302i
\(59\) 9.32480 + 34.8006i 0.158048 + 0.589841i 0.998825 + 0.0484607i \(0.0154315\pi\)
−0.840778 + 0.541381i \(0.817902\pi\)
\(60\) 0.121094 0.121094i 0.00201824 0.00201824i
\(61\) 15.4657 26.7873i 0.253536 0.439137i −0.710961 0.703231i \(-0.751740\pi\)
0.964497 + 0.264095i \(0.0850732\pi\)
\(62\) 73.7160 42.5599i 1.18897 0.686451i
\(63\) 16.9803 + 4.54985i 0.269528 + 0.0722198i
\(64\) 64.5616i 1.00878i
\(65\) 0 0
\(66\) −17.3564 −0.262976
\(67\) 16.1999 60.4589i 0.241790 0.902372i −0.733180 0.680034i \(-0.761965\pi\)
0.974970 0.222337i \(-0.0713685\pi\)
\(68\) −0.210990 0.365445i −0.00310279 0.00537420i
\(69\) 0.137715 + 0.0795095i 0.00199586 + 0.00115231i
\(70\) −22.8915 22.8915i −0.327021 0.327021i
\(71\) −8.34804 + 2.23685i −0.117578 + 0.0315049i −0.317128 0.948383i \(-0.602719\pi\)
0.199550 + 0.979888i \(0.436052\pi\)
\(72\) −17.9698 67.0641i −0.249580 0.931446i
\(73\) −23.3661 + 23.3661i −0.320084 + 0.320084i −0.848799 0.528715i \(-0.822674\pi\)
0.528715 + 0.848799i \(0.322674\pi\)
\(74\) −13.5909 + 23.5401i −0.183661 + 0.318109i
\(75\) −20.1816 + 11.6519i −0.269089 + 0.155358i
\(76\) 0.837745 + 0.224473i 0.0110230 + 0.00295359i
\(77\) 29.5820i 0.384182i
\(78\) 0 0
\(79\) −49.8004 −0.630385 −0.315193 0.949028i \(-0.602069\pi\)
−0.315193 + 0.949028i \(0.602069\pi\)
\(80\) −32.7969 + 122.400i −0.409961 + 1.52999i
\(81\) −35.7122 61.8554i −0.440892 0.763647i
\(82\) 59.9863 + 34.6331i 0.731541 + 0.422355i
\(83\) 60.8000 + 60.8000i 0.732530 + 0.732530i 0.971120 0.238590i \(-0.0766853\pi\)
−0.238590 + 0.971120i \(0.576685\pi\)
\(84\) −0.0421107 + 0.0112835i −0.000501317 + 0.000134328i
\(85\) 24.4206 + 91.1390i 0.287302 + 1.07222i
\(86\) 56.9747 56.9747i 0.662497 0.662497i
\(87\) 2.16368 3.74760i 0.0248699 0.0430758i
\(88\) −101.182 + 58.4176i −1.14980 + 0.663837i
\(89\) −85.6713 22.9556i −0.962599 0.257928i −0.256899 0.966438i \(-0.582701\pi\)
−0.705700 + 0.708511i \(0.749367\pi\)
\(90\) 137.490i 1.52767i
\(91\) 0 0
\(92\) 0.00948026 0.000103046
\(93\) −6.63370 + 24.7573i −0.0713301 + 0.266207i
\(94\) −13.9036 24.0818i −0.147911 0.256189i
\(95\) −167.945 96.9632i −1.76784 1.02066i
\(96\) 0.242427 + 0.242427i 0.00252528 + 0.00252528i
\(97\) 32.6665 8.75298i 0.336769 0.0902369i −0.0864718 0.996254i \(-0.527559\pi\)
0.423240 + 0.906017i \(0.360893\pi\)
\(98\) −23.1177 86.2763i −0.235895 0.880371i
\(99\) −88.8376 + 88.8376i −0.897350 + 0.897350i
\(100\) −0.694651 + 1.20317i −0.00694651 + 0.0120317i
\(101\) −14.4870 + 8.36406i −0.143435 + 0.0828125i −0.570000 0.821644i \(-0.693057\pi\)
0.426565 + 0.904457i \(0.359724\pi\)
\(102\) −13.6127 3.64752i −0.133458 0.0357600i
\(103\) 87.2313i 0.846906i 0.905918 + 0.423453i \(0.139182\pi\)
−0.905918 + 0.423453i \(0.860818\pi\)
\(104\) 0 0
\(105\) 9.74803 0.0928384
\(106\) 39.7445 148.329i 0.374948 1.39933i
\(107\) −59.9117 103.770i −0.559923 0.969815i −0.997502 0.0706350i \(-0.977497\pi\)
0.437579 0.899180i \(-0.355836\pi\)
\(108\) 0.327365 + 0.189005i 0.00303116 + 0.00175004i
\(109\) −87.8195 87.8195i −0.805684 0.805684i 0.178293 0.983977i \(-0.442942\pi\)
−0.983977 + 0.178293i \(0.942942\pi\)
\(110\) 223.482 59.8820i 2.03166 0.544381i
\(111\) −2.11837 7.90587i −0.0190844 0.0712241i
\(112\) 22.8103 22.8103i 0.203663 0.203663i
\(113\) −84.8574 + 146.977i −0.750950 + 1.30068i 0.196412 + 0.980521i \(0.437071\pi\)
−0.947363 + 0.320163i \(0.896262\pi\)
\(114\) 25.0847 14.4826i 0.220041 0.127041i
\(115\) −2.04754 0.548637i −0.0178047 0.00477076i
\(116\) 0.257984i 0.00222400i
\(117\) 0 0
\(118\) 71.7339 0.607914
\(119\) 6.21679 23.2014i 0.0522420 0.194970i
\(120\) −19.2501 33.3421i −0.160417 0.277851i
\(121\) 78.3032 + 45.2084i 0.647134 + 0.373623i
\(122\) −43.5477 43.5477i −0.356948 0.356948i
\(123\) −20.1462 + 5.39817i −0.163790 + 0.0438875i
\(124\) 0.395482 + 1.47596i 0.00318937 + 0.0119029i
\(125\) 78.3820 78.3820i 0.627056 0.627056i
\(126\) 17.5006 30.3118i 0.138893 0.240570i
\(127\) −148.054 + 85.4792i −1.16578 + 0.673065i −0.952683 0.303966i \(-0.901689\pi\)
−0.213099 + 0.977031i \(0.568356\pi\)
\(128\) −121.955 32.6779i −0.952777 0.255296i
\(129\) 24.2619i 0.188077i
\(130\) 0 0
\(131\) 109.132 0.833072 0.416536 0.909119i \(-0.363244\pi\)
0.416536 + 0.909119i \(0.363244\pi\)
\(132\) 0.0806409 0.300956i 0.000610916 0.00227997i
\(133\) 24.6840 + 42.7540i 0.185594 + 0.321459i
\(134\) −107.926 62.3114i −0.805421 0.465010i
\(135\) −59.7662 59.7662i −0.442713 0.442713i
\(136\) −91.6347 + 24.5534i −0.673784 + 0.180540i
\(137\) 37.0288 + 138.193i 0.270283 + 1.00871i 0.958937 + 0.283620i \(0.0915354\pi\)
−0.688654 + 0.725090i \(0.741798\pi\)
\(138\) 0.223880 0.223880i 0.00162232 0.00162232i
\(139\) 83.8403 145.216i 0.603168 1.04472i −0.389171 0.921166i \(-0.627238\pi\)
0.992338 0.123551i \(-0.0394283\pi\)
\(140\) 0.503290 0.290575i 0.00359493 0.00207553i
\(141\) 8.08778 + 2.16712i 0.0573602 + 0.0153696i
\(142\) 17.2077i 0.121181i
\(143\) 0 0
\(144\) −137.003 −0.951408
\(145\) −14.9300 + 55.7193i −0.102965 + 0.384271i
\(146\) 32.8967 + 56.9788i 0.225320 + 0.390266i
\(147\) 23.2920 + 13.4476i 0.158449 + 0.0914806i
\(148\) −0.345034 0.345034i −0.00233131 0.00233131i
\(149\) 41.8695 11.2189i 0.281004 0.0752947i −0.115565 0.993300i \(-0.536868\pi\)
0.396568 + 0.918005i \(0.370201\pi\)
\(150\) 12.0089 + 44.8178i 0.0800593 + 0.298785i
\(151\) 81.8840 81.8840i 0.542278 0.542278i −0.381918 0.924196i \(-0.624736\pi\)
0.924196 + 0.381918i \(0.124736\pi\)
\(152\) 97.4904 168.858i 0.641384 1.11091i
\(153\) −88.3455 + 51.0063i −0.577422 + 0.333375i
\(154\) −56.8922 15.2442i −0.369430 0.0989885i
\(155\) 341.664i 2.20428i
\(156\) 0 0
\(157\) −104.868 −0.667951 −0.333976 0.942582i \(-0.608390\pi\)
−0.333976 + 0.942582i \(0.608390\pi\)
\(158\) −25.6632 + 95.7763i −0.162425 + 0.606179i
\(159\) 23.1196 + 40.0442i 0.145406 + 0.251851i
\(160\) −3.95792 2.28511i −0.0247370 0.0142819i
\(161\) 0.381578 + 0.381578i 0.00237005 + 0.00237005i
\(162\) −137.364 + 36.8065i −0.847924 + 0.227200i
\(163\) −82.8284 309.120i −0.508149 1.89644i −0.438173 0.898891i \(-0.644374\pi\)
−0.0699767 0.997549i \(-0.522292\pi\)
\(164\) −0.879237 + 0.879237i −0.00536120 + 0.00536120i
\(165\) −34.8336 + 60.3335i −0.211113 + 0.365658i
\(166\) 148.262 85.5991i 0.893145 0.515657i
\(167\) 191.067 + 51.1962i 1.14411 + 0.306564i 0.780604 0.625026i \(-0.214912\pi\)
0.363510 + 0.931590i \(0.381578\pi\)
\(168\) 9.80104i 0.0583395i
\(169\) 0 0
\(170\) 187.863 1.10508
\(171\) 54.2658 202.523i 0.317344 1.18434i
\(172\) 0.723214 + 1.25264i 0.00420473 + 0.00728281i
\(173\) 241.095 + 139.196i 1.39361 + 0.804604i 0.993713 0.111955i \(-0.0357111\pi\)
0.399901 + 0.916558i \(0.369044\pi\)
\(174\) −6.09240 6.09240i −0.0350138 0.0350138i
\(175\) −76.3869 + 20.4678i −0.436497 + 0.116959i
\(176\) 59.6696 + 222.690i 0.339032 + 1.26528i
\(177\) −15.2735 + 15.2735i −0.0862908 + 0.0862908i
\(178\) −88.2963 + 152.934i −0.496047 + 0.859178i
\(179\) 214.248 123.696i 1.19692 0.691039i 0.237049 0.971498i \(-0.423820\pi\)
0.959866 + 0.280458i \(0.0904864\pi\)
\(180\) −2.38405 0.638804i −0.0132447 0.00354891i
\(181\) 211.414i 1.16803i 0.811741 + 0.584017i \(0.198520\pi\)
−0.811741 + 0.584017i \(0.801480\pi\)
\(182\) 0 0
\(183\) 18.5442 0.101334
\(184\) 0.551621 2.05868i 0.00299794 0.0111885i
\(185\) 54.5526 + 94.4879i 0.294879 + 0.510746i
\(186\) 44.1948 + 25.5159i 0.237606 + 0.137182i
\(187\) 121.385 + 121.385i 0.649120 + 0.649120i
\(188\) 0.482170 0.129197i 0.00256474 0.000687219i
\(189\) 5.56899 + 20.7838i 0.0294656 + 0.109967i
\(190\) −273.025 + 273.025i −1.43697 + 1.43697i
\(191\) −26.6707 + 46.1950i −0.139637 + 0.241859i −0.927359 0.374172i \(-0.877927\pi\)
0.787722 + 0.616031i \(0.211260\pi\)
\(192\) 33.5208 19.3532i 0.174587 0.100798i
\(193\) 183.559 + 49.1845i 0.951084 + 0.254842i 0.700822 0.713336i \(-0.252817\pi\)
0.250262 + 0.968178i \(0.419483\pi\)
\(194\) 67.3349i 0.347087i
\(195\) 0 0
\(196\) 1.60342 0.00818071
\(197\) −41.8194 + 156.072i −0.212281 + 0.792244i 0.774825 + 0.632176i \(0.217838\pi\)
−0.987106 + 0.160068i \(0.948829\pi\)
\(198\) 125.073 + 216.632i 0.631681 + 1.09410i
\(199\) −269.633 155.673i −1.35494 0.782275i −0.366003 0.930613i \(-0.619274\pi\)
−0.988937 + 0.148338i \(0.952607\pi\)
\(200\) 220.854 + 220.854i 1.10427 + 1.10427i
\(201\) 36.2468 9.71230i 0.180332 0.0483199i
\(202\) 8.62034 + 32.1715i 0.0426749 + 0.159265i
\(203\) 10.3838 10.3838i 0.0511518 0.0511518i
\(204\) 0.126494 0.219095i 0.000620071 0.00107399i
\(205\) 240.780 139.014i 1.17454 0.678119i
\(206\) 167.763 + 44.9521i 0.814385 + 0.218214i
\(207\) 2.29183i 0.0110716i
\(208\) 0 0
\(209\) −352.823 −1.68815
\(210\) 5.02336 18.7474i 0.0239208 0.0892735i
\(211\) −160.126 277.347i −0.758892 1.31444i −0.943416 0.331611i \(-0.892408\pi\)
0.184524 0.982828i \(-0.440926\pi\)
\(212\) 2.38732 + 1.37832i 0.0112610 + 0.00650152i
\(213\) −3.66383 3.66383i −0.0172011 0.0172011i
\(214\) −230.445 + 61.7475i −1.07684 + 0.288540i
\(215\) −83.7070 312.399i −0.389335 1.45302i
\(216\) 60.0912 60.0912i 0.278200 0.278200i
\(217\) −43.4889 + 75.3250i −0.200410 + 0.347120i
\(218\) −214.150 + 123.639i −0.982339 + 0.567154i
\(219\) −19.1362 5.12752i −0.0873797 0.0234133i
\(220\) 4.15336i 0.0188789i
\(221\) 0 0
\(222\) −16.2962 −0.0734064
\(223\) −85.7290 + 319.945i −0.384435 + 1.43473i 0.454620 + 0.890685i \(0.349775\pi\)
−0.839055 + 0.544046i \(0.816892\pi\)
\(224\) 0.581722 + 1.00757i 0.00259698 + 0.00449809i
\(225\) 290.864 + 167.930i 1.29273 + 0.746356i
\(226\) 238.938 + 238.938i 1.05725 + 1.05725i
\(227\) 156.079 41.8212i 0.687572 0.184234i 0.101915 0.994793i \(-0.467503\pi\)
0.585657 + 0.810559i \(0.300836\pi\)
\(228\) 0.134578 + 0.502251i 0.000590254 + 0.00220286i
\(229\) −124.472 + 124.472i −0.543547 + 0.543547i −0.924567 0.381020i \(-0.875573\pi\)
0.381020 + 0.924567i \(0.375573\pi\)
\(230\) −2.11028 + 3.65511i −0.00917513 + 0.0158918i
\(231\) 15.3592 8.86763i 0.0664900 0.0383880i
\(232\) −56.0223 15.0111i −0.241476 0.0647032i
\(233\) 92.7546i 0.398088i −0.979991 0.199044i \(-0.936216\pi\)
0.979991 0.199044i \(-0.0637837\pi\)
\(234\) 0 0
\(235\) −111.616 −0.474961
\(236\) −0.333288 + 1.24385i −0.00141224 + 0.00527055i
\(237\) −14.9284 25.8567i −0.0629889 0.109100i
\(238\) −41.4173 23.9123i −0.174022 0.100472i
\(239\) −26.1035 26.1035i −0.109220 0.109220i 0.650385 0.759605i \(-0.274608\pi\)
−0.759605 + 0.650385i \(0.774608\pi\)
\(240\) −73.3819 + 19.6626i −0.305758 + 0.0819276i
\(241\) 12.1560 + 45.3667i 0.0504397 + 0.188244i 0.986549 0.163466i \(-0.0522673\pi\)
−0.936109 + 0.351709i \(0.885601\pi\)
\(242\) 127.296 127.296i 0.526017 0.526017i
\(243\) 69.0025 119.516i 0.283961 0.491835i
\(244\) 0.957436 0.552776i 0.00392392 0.00226548i
\(245\) −346.306 92.7924i −1.41349 0.378744i
\(246\) 41.5270i 0.168809i
\(247\) 0 0
\(248\) 343.522 1.38517
\(249\) −13.3421 + 49.7934i −0.0535827 + 0.199973i
\(250\) −110.353 191.136i −0.441410 0.764545i
\(251\) −156.585 90.4045i −0.623845 0.360177i 0.154519 0.987990i \(-0.450617\pi\)
−0.778365 + 0.627813i \(0.783950\pi\)
\(252\) 0.444290 + 0.444290i 0.00176305 + 0.00176305i
\(253\) −3.72523 + 0.998173i −0.0147242 + 0.00394535i
\(254\) 88.0983 + 328.787i 0.346844 + 1.29444i
\(255\) −39.9995 + 39.9995i −0.156861 + 0.156861i
\(256\) 3.43097 5.94261i 0.0134022 0.0232133i
\(257\) 153.535 88.6435i 0.597413 0.344916i −0.170610 0.985339i \(-0.554574\pi\)
0.768023 + 0.640422i \(0.221241\pi\)
\(258\) 46.6606 + 12.5027i 0.180855 + 0.0484600i
\(259\) 27.7751i 0.107240i
\(260\) 0 0
\(261\) −62.3671 −0.238954
\(262\) 56.2381 209.884i 0.214649 0.801083i
\(263\) 240.275 + 416.169i 0.913595 + 1.58239i 0.808946 + 0.587883i \(0.200038\pi\)
0.104649 + 0.994509i \(0.466628\pi\)
\(264\) −60.6616 35.0230i −0.229779 0.132663i
\(265\) −435.847 435.847i −1.64471 1.64471i
\(266\) 94.9447 25.4404i 0.356935 0.0956405i
\(267\) −13.7625 51.3623i −0.0515449 0.192368i
\(268\) 1.58191 1.58191i 0.00590265 0.00590265i
\(269\) −53.3932 + 92.4798i −0.198488 + 0.343791i −0.948038 0.318156i \(-0.896936\pi\)
0.749550 + 0.661947i \(0.230270\pi\)
\(270\) −145.741 + 84.1438i −0.539782 + 0.311644i
\(271\) 294.636 + 78.9475i 1.08722 + 0.291319i 0.757550 0.652777i \(-0.226396\pi\)
0.329669 + 0.944097i \(0.393063\pi\)
\(272\) 187.197i 0.688224i
\(273\) 0 0
\(274\) 284.855 1.03962
\(275\) 146.279 545.921i 0.531924 1.98517i
\(276\) 0.00284184 + 0.00492221i 1.02965e−5 + 1.78341e-5i
\(277\) −51.6492 29.8197i −0.186459 0.107652i 0.403865 0.914819i \(-0.367667\pi\)
−0.590324 + 0.807166i \(0.701000\pi\)
\(278\) −236.074 236.074i −0.849188 0.849188i
\(279\) 356.809 95.6067i 1.27889 0.342676i
\(280\) −33.8149 126.199i −0.120768 0.450711i
\(281\) 266.125 266.125i 0.947063 0.947063i −0.0516049 0.998668i \(-0.516434\pi\)
0.998668 + 0.0516049i \(0.0164337\pi\)
\(282\) 8.33560 14.4377i 0.0295589 0.0511974i
\(283\) −372.572 + 215.104i −1.31651 + 0.760087i −0.983165 0.182719i \(-0.941510\pi\)
−0.333343 + 0.942806i \(0.608177\pi\)
\(284\) −0.298377 0.0799498i −0.00105062 0.000281513i
\(285\) 116.264i 0.407945i
\(286\) 0 0
\(287\) −70.7781 −0.246614
\(288\) 1.27887 4.77280i 0.00444051 0.0165722i
\(289\) −74.8063 129.568i −0.258845 0.448333i
\(290\) 99.4658 + 57.4266i 0.342985 + 0.198023i
\(291\) 14.3369 + 14.3369i 0.0492675 + 0.0492675i
\(292\) −1.14084 + 0.305688i −0.00390699 + 0.00104688i
\(293\) −27.7261 103.475i −0.0946284 0.353158i 0.902334 0.431037i \(-0.141852\pi\)
−0.996963 + 0.0778785i \(0.975185\pi\)
\(294\) 37.8654 37.8654i 0.128794 0.128794i
\(295\) 143.967 249.358i 0.488023 0.845281i
\(296\) −95.0018 + 54.8493i −0.320952 + 0.185302i
\(297\) −148.537 39.8004i −0.500125 0.134008i
\(298\) 86.3049i 0.289614i
\(299\) 0 0
\(300\) −0.832926 −0.00277642
\(301\) −21.3094 + 79.5277i −0.0707953 + 0.264212i
\(302\) −115.283 199.676i −0.381732 0.661178i
\(303\) −8.68535 5.01449i −0.0286645 0.0165495i
\(304\) −272.057 272.057i −0.894924 0.894924i
\(305\) −238.777 + 63.9800i −0.782874 + 0.209770i
\(306\) 52.5692 + 196.191i 0.171795 + 0.641146i
\(307\) 279.598 279.598i 0.910742 0.910742i −0.0855884 0.996331i \(-0.527277\pi\)
0.996331 + 0.0855884i \(0.0272770\pi\)
\(308\) 0.528663 0.915670i 0.00171644 0.00297296i
\(309\) −45.2910 + 26.1488i −0.146573 + 0.0846239i
\(310\) −657.088 176.066i −2.11964 0.567956i
\(311\) 191.357i 0.615295i 0.951500 + 0.307648i \(0.0995418\pi\)
−0.951500 + 0.307648i \(0.900458\pi\)
\(312\) 0 0
\(313\) 467.361 1.49317 0.746583 0.665292i \(-0.231693\pi\)
0.746583 + 0.665292i \(0.231693\pi\)
\(314\) −54.0408 + 201.683i −0.172104 + 0.642302i
\(315\) −70.2457 121.669i −0.223002 0.386251i
\(316\) −1.54150 0.889987i −0.00487817 0.00281641i
\(317\) −4.81422 4.81422i −0.0151868 0.0151868i 0.699473 0.714659i \(-0.253418\pi\)
−0.714659 + 0.699473i \(0.753418\pi\)
\(318\) 88.9271 23.8279i 0.279645 0.0749306i
\(319\) 27.1631 + 101.374i 0.0851507 + 0.317787i
\(320\) −364.845 + 364.845i −1.14014 + 1.14014i
\(321\) 35.9188 62.2131i 0.111896 0.193810i
\(322\) 0.930486 0.537216i 0.00288971 0.00166837i
\(323\) −276.722 74.1473i −0.856723 0.229558i
\(324\) 2.55286i 0.00787921i
\(325\) 0 0
\(326\) −637.182 −1.95455
\(327\) 19.2713 71.9216i 0.0589337 0.219944i
\(328\) 139.770 + 242.089i 0.426129 + 0.738077i
\(329\) 24.6074 + 14.2071i 0.0747945 + 0.0431826i
\(330\) 98.0831 + 98.0831i 0.297221 + 0.297221i
\(331\) −38.4071 + 10.2911i −0.116034 + 0.0310911i −0.316369 0.948636i \(-0.602464\pi\)
0.200335 + 0.979727i \(0.435797\pi\)
\(332\) 0.795417 + 2.96854i 0.00239584 + 0.00894138i
\(333\) −83.4111 + 83.4111i −0.250484 + 0.250484i
\(334\) 196.921 341.078i 0.589585 1.02119i
\(335\) −433.208 + 250.113i −1.29316 + 0.746605i
\(336\) 18.6809 + 5.00554i 0.0555980 + 0.0148974i
\(337\) 84.6771i 0.251267i 0.992077 + 0.125634i \(0.0400964\pi\)
−0.992077 + 0.125634i \(0.959904\pi\)
\(338\) 0 0
\(339\) −101.749 −0.300144
\(340\) −0.872845 + 3.25750i −0.00256719 + 0.00958089i
\(341\) −310.806 538.332i −0.911455 1.57869i
\(342\) −361.528 208.728i −1.05710 0.610316i
\(343\) 135.029 + 135.029i 0.393671 + 0.393671i
\(344\) 314.098 84.1622i 0.913074 0.244657i
\(345\) −0.328923 1.22756i −0.000953401 0.00355814i
\(346\) 391.944 391.944i 1.13279 1.13279i
\(347\) −169.897 + 294.270i −0.489616 + 0.848040i −0.999929 0.0119488i \(-0.996196\pi\)
0.510312 + 0.859989i \(0.329530\pi\)
\(348\) 0.133947 0.0773344i 0.000384906 0.000222225i
\(349\) 398.426 + 106.758i 1.14162 + 0.305897i 0.779603 0.626274i \(-0.215421\pi\)
0.362019 + 0.932171i \(0.382088\pi\)
\(350\) 157.455i 0.449871i
\(351\) 0 0
\(352\) −8.31490 −0.0236219
\(353\) −77.2905 + 288.452i −0.218953 + 0.817145i 0.765784 + 0.643098i \(0.222351\pi\)
−0.984737 + 0.174047i \(0.944316\pi\)
\(354\) 21.5032 + 37.2447i 0.0607436 + 0.105211i
\(355\) 59.8164 + 34.5350i 0.168497 + 0.0972818i
\(356\) −2.24159 2.24159i −0.00629661 0.00629661i
\(357\) 13.9099 3.72714i 0.0389632 0.0104402i
\(358\) −127.486 475.785i −0.356107 1.32901i
\(359\) −274.613 + 274.613i −0.764940 + 0.764940i −0.977211 0.212271i \(-0.931914\pi\)
0.212271 + 0.977211i \(0.431914\pi\)
\(360\) −277.438 + 480.536i −0.770661 + 1.33482i
\(361\) 197.289 113.905i 0.546508 0.315527i
\(362\) 406.592 + 108.946i 1.12318 + 0.300956i
\(363\) 54.2074i 0.149332i
\(364\) 0 0
\(365\) 264.089 0.723532
\(366\) 9.55620 35.6642i 0.0261098 0.0974433i
\(367\) 138.968 + 240.700i 0.378661 + 0.655860i 0.990868 0.134838i \(-0.0430514\pi\)
−0.612207 + 0.790698i \(0.709718\pi\)
\(368\) −3.64215 2.10279i −0.00989714 0.00571411i
\(369\) 212.553 + 212.553i 0.576025 + 0.576025i
\(370\) 209.831 56.2241i 0.567112 0.151957i
\(371\) 40.6120 + 151.566i 0.109466 + 0.408534i
\(372\) −0.647776 + 0.647776i −0.00174133 + 0.00174133i
\(373\) −285.496 + 494.493i −0.765404 + 1.32572i 0.174629 + 0.984634i \(0.444127\pi\)
−0.940033 + 0.341084i \(0.889206\pi\)
\(374\) 296.001 170.896i 0.791446 0.456942i
\(375\) 64.1925 + 17.2003i 0.171180 + 0.0458676i
\(376\) 112.223i 0.298465i
\(377\) 0 0
\(378\) 42.8412 0.113336
\(379\) 66.1526 246.885i 0.174545 0.651411i −0.822084 0.569367i \(-0.807188\pi\)
0.996629 0.0820441i \(-0.0261448\pi\)
\(380\) −3.46567 6.00272i −0.00912018 0.0157966i
\(381\) −88.7627 51.2472i −0.232973 0.134507i
\(382\) 75.0983 + 75.0983i 0.196592 + 0.196592i
\(383\) −117.475 + 31.4773i −0.306723 + 0.0821861i −0.408897 0.912580i \(-0.634087\pi\)
0.102175 + 0.994766i \(0.467420\pi\)
\(384\) −19.5913 73.1157i −0.0510190 0.190405i
\(385\) −167.172 + 167.172i −0.434212 + 0.434212i
\(386\) 189.184 327.676i 0.490113 0.848900i
\(387\) 302.823 174.835i 0.782489 0.451770i
\(388\) 1.16757 + 0.312850i 0.00300921 + 0.000806314i
\(389\) 382.647i 0.983668i 0.870689 + 0.491834i \(0.163673\pi\)
−0.870689 + 0.491834i \(0.836327\pi\)
\(390\) 0 0
\(391\) −3.13149 −0.00800893
\(392\) 93.2970 348.189i 0.238002 0.888237i
\(393\) 32.7140 + 56.6622i 0.0832416 + 0.144179i
\(394\) 278.608 + 160.854i 0.707126 + 0.408259i
\(395\) 281.428 + 281.428i 0.712476 + 0.712476i
\(396\) −4.33747 + 1.16222i −0.0109532 + 0.00293490i
\(397\) 179.596 + 670.261i 0.452382 + 1.68831i 0.695671 + 0.718360i \(0.255107\pi\)
−0.243289 + 0.969954i \(0.578226\pi\)
\(398\) −438.337 + 438.337i −1.10135 + 1.10135i
\(399\) −14.7988 + 25.6322i −0.0370896 + 0.0642411i
\(400\) 533.745 308.158i 1.33436 0.770395i
\(401\) −145.611 39.0164i −0.363120 0.0972977i 0.0726459 0.997358i \(-0.476856\pi\)
−0.435766 + 0.900060i \(0.643522\pi\)
\(402\) 74.7148i 0.185858i
\(403\) 0 0
\(404\) −0.597899 −0.00147995
\(405\) −147.738 + 551.366i −0.364785 + 1.36140i
\(406\) −14.6192 25.3211i −0.0360078 0.0623673i
\(407\) 171.908 + 99.2513i 0.422379 + 0.243861i
\(408\) −40.2171 40.2171i −0.0985712 0.0985712i
\(409\) −301.622 + 80.8194i −0.737462 + 0.197602i −0.607950 0.793975i \(-0.708008\pi\)
−0.129512 + 0.991578i \(0.541341\pi\)
\(410\) −143.274 534.705i −0.349448 1.30416i
\(411\) −60.6510 + 60.6510i −0.147569 + 0.147569i
\(412\) −1.55892 + 2.70012i −0.00378378 + 0.00655369i
\(413\) −63.4794 + 36.6498i −0.153703 + 0.0887405i
\(414\) −4.40765 1.18103i −0.0106465 0.00285272i
\(415\) 687.175i 1.65584i
\(416\) 0 0
\(417\) 100.529 0.241077
\(418\) −181.817 + 678.550i −0.434969 + 1.62333i
\(419\) 138.039 + 239.091i 0.329450 + 0.570624i 0.982403 0.186775i \(-0.0598034\pi\)
−0.652953 + 0.757398i \(0.726470\pi\)
\(420\) 0.301737 + 0.174208i 0.000718420 + 0.000414780i
\(421\) 188.700 + 188.700i 0.448218 + 0.448218i 0.894762 0.446544i \(-0.147345\pi\)
−0.446544 + 0.894762i \(0.647345\pi\)
\(422\) −615.910 + 165.033i −1.45950 + 0.391072i
\(423\) −31.2331 116.563i −0.0738371 0.275564i
\(424\) 438.217 438.217i 1.03353 1.03353i
\(425\) 229.455 397.428i 0.539895 0.935126i
\(426\) −8.93432 + 5.15823i −0.0209726 + 0.0121085i
\(427\) 60.7857 + 16.2875i 0.142355 + 0.0381440i
\(428\) 4.28275i 0.0100064i
\(429\) 0 0
\(430\) −643.941 −1.49754
\(431\) 88.9981 332.145i 0.206492 0.770639i −0.782497 0.622654i \(-0.786055\pi\)
0.988990 0.147985i \(-0.0472788\pi\)
\(432\) −83.8453 145.224i −0.194086 0.336167i
\(433\) −167.611 96.7701i −0.387092 0.223488i 0.293807 0.955865i \(-0.405078\pi\)
−0.680899 + 0.732377i \(0.738411\pi\)
\(434\) 122.454 + 122.454i 0.282153 + 0.282153i
\(435\) −33.4053 + 8.95092i −0.0767938 + 0.0205768i
\(436\) −1.14890 4.28776i −0.00263509 0.00983431i
\(437\) 4.55106 4.55106i 0.0104143 0.0104143i
\(438\) −19.7225 + 34.1604i −0.0450285 + 0.0779917i
\(439\) −304.574 + 175.846i −0.693790 + 0.400560i −0.805030 0.593234i \(-0.797851\pi\)
0.111240 + 0.993794i \(0.464518\pi\)
\(440\) 901.918 + 241.668i 2.04981 + 0.549246i
\(441\) 387.623i 0.878963i
\(442\) 0 0
\(443\) −336.467 −0.759520 −0.379760 0.925085i \(-0.623993\pi\)
−0.379760 + 0.925085i \(0.623993\pi\)
\(444\) 0.0757151 0.282573i 0.000170530 0.000636425i
\(445\) 354.414 + 613.863i 0.796435 + 1.37947i
\(446\) 571.141 + 329.748i 1.28058 + 0.739346i
\(447\) 18.3759 + 18.3759i 0.0411094 + 0.0411094i
\(448\) 126.875 33.9961i 0.283204 0.0758842i
\(449\) −35.5663 132.735i −0.0792122 0.295624i 0.914943 0.403583i \(-0.132235\pi\)
−0.994155 + 0.107959i \(0.965569\pi\)
\(450\) 472.851 472.851i 1.05078 1.05078i
\(451\) 252.918 438.067i 0.560795 0.971325i
\(452\) −5.25328 + 3.03298i −0.0116223 + 0.00671014i
\(453\) 67.0606 + 17.9688i 0.148037 + 0.0396663i
\(454\) 321.722i 0.708639i
\(455\) 0 0
\(456\) 116.896 0.256352
\(457\) 51.3939 191.805i 0.112459 0.419704i −0.886625 0.462489i \(-0.846956\pi\)
0.999084 + 0.0427852i \(0.0136231\pi\)
\(458\) 175.242 + 303.529i 0.382625 + 0.662726i
\(459\) −108.134 62.4315i −0.235587 0.136016i
\(460\) −0.0535740 0.0535740i −0.000116465 0.000116465i
\(461\) −876.380 + 234.825i −1.90104 + 0.509382i −0.904481 + 0.426514i \(0.859741\pi\)
−0.996561 + 0.0828682i \(0.973592\pi\)
\(462\) −9.13934 34.1085i −0.0197821 0.0738279i
\(463\) −592.689 + 592.689i −1.28011 + 1.28011i −0.339498 + 0.940607i \(0.610257\pi\)
−0.940607 + 0.339498i \(0.889743\pi\)
\(464\) −57.2229 + 99.1130i −0.123325 + 0.213606i
\(465\) 177.394 102.418i 0.381493 0.220255i
\(466\) −178.386 47.7983i −0.382802 0.102572i
\(467\) 151.923i 0.325318i 0.986682 + 0.162659i \(0.0520070\pi\)
−0.986682 + 0.162659i \(0.947993\pi\)
\(468\) 0 0
\(469\) 127.343 0.271520
\(470\) −57.5179 + 214.660i −0.122378 + 0.456723i
\(471\) −31.4358 54.4483i −0.0667426 0.115602i
\(472\) 250.714 + 144.750i 0.531174 + 0.306673i
\(473\) −416.074 416.074i −0.879650 0.879650i
\(474\) −57.4205 + 15.3858i −0.121140 + 0.0324595i
\(475\) 244.118 + 911.062i 0.513933 + 1.91803i
\(476\) 0.607065 0.607065i 0.00127535 0.00127535i
\(477\) 333.206 577.129i 0.698544 1.20991i
\(478\) −63.6539 + 36.7506i −0.133167 + 0.0768841i
\(479\) −486.873 130.457i −1.01644 0.272353i −0.288120 0.957594i \(-0.593030\pi\)
−0.728316 + 0.685241i \(0.759697\pi\)
\(480\) 2.73997i 0.00570827i
\(481\) 0 0
\(482\) 93.5136 0.194012
\(483\) −0.0837344 + 0.312501i −0.000173363 + 0.000647000i
\(484\) 1.61584 + 2.79872i 0.00333852 + 0.00578248i
\(485\) −234.066 135.138i −0.482611 0.278636i
\(486\) −194.295 194.295i −0.399783 0.399783i
\(487\) 533.641 142.989i 1.09577 0.293611i 0.334730 0.942314i \(-0.391355\pi\)
0.761042 + 0.648703i \(0.224688\pi\)
\(488\) −64.3279 240.075i −0.131819 0.491957i
\(489\) 135.668 135.668i 0.277439 0.277439i
\(490\) −356.917 + 618.198i −0.728402 + 1.26163i
\(491\) 714.499 412.516i 1.45519 0.840155i 0.456422 0.889764i \(-0.349131\pi\)
0.998769 + 0.0496089i \(0.0157975\pi\)
\(492\) −0.720069 0.192942i −0.00146355 0.000392158i
\(493\) 85.2167i 0.172853i
\(494\) 0 0
\(495\) 1004.06 2.02841
\(496\) 175.442 654.758i 0.353713 1.32008i
\(497\) −8.79163 15.2275i −0.0176894 0.0306389i
\(498\) 88.8872 + 51.3191i 0.178488 + 0.103050i
\(499\) 225.404 + 225.404i 0.451711 + 0.451711i 0.895922 0.444211i \(-0.146516\pi\)
−0.444211 + 0.895922i \(0.646516\pi\)
\(500\) 3.82697 1.02543i 0.00765395 0.00205087i
\(501\) 30.6936 + 114.550i 0.0612646 + 0.228643i
\(502\) −254.557 + 254.557i −0.507087 + 0.507087i
\(503\) −117.302 + 203.173i −0.233205 + 0.403923i −0.958749 0.284252i \(-0.908255\pi\)
0.725545 + 0.688175i \(0.241588\pi\)
\(504\) 122.331 70.6277i 0.242720 0.140134i
\(505\) 129.134 + 34.6013i 0.255711 + 0.0685174i
\(506\) 7.67875i 0.0151754i
\(507\) 0 0
\(508\) −6.11042 −0.0120284
\(509\) 179.057 668.249i 0.351782 1.31287i −0.532705 0.846301i \(-0.678824\pi\)
0.884486 0.466566i \(-0.154509\pi\)
\(510\) 56.3146 + 97.5398i 0.110421 + 0.191254i
\(511\) −58.2225 33.6148i −0.113938 0.0657823i
\(512\) −366.771 366.771i −0.716350 0.716350i
\(513\) 247.887 66.4211i 0.483210 0.129476i
\(514\) −91.3596 340.959i −0.177742 0.663344i
\(515\) 492.954 492.954i 0.957192 0.957192i
\(516\) −0.433587 + 0.750994i −0.000840284 + 0.00145542i
\(517\) −175.864 + 101.535i −0.340162 + 0.196393i
\(518\) −53.4171 14.3131i −0.103122 0.0276314i
\(519\) 166.904i 0.321588i
\(520\) 0 0
\(521\) −297.695 −0.571391 −0.285695 0.958320i \(-0.592225\pi\)
−0.285695 + 0.958320i \(0.592225\pi\)
\(522\) −32.1390 + 119.944i −0.0615690 + 0.229779i
\(523\) −169.819 294.135i −0.324701 0.562399i 0.656751 0.754108i \(-0.271930\pi\)
−0.981452 + 0.191709i \(0.938597\pi\)
\(524\) 3.37804 + 1.95031i 0.00644664 + 0.00372197i
\(525\) −33.5251 33.5251i −0.0638572 0.0638572i
\(526\) 924.196 247.638i 1.75703 0.470794i
\(527\) −130.634 487.535i −0.247883 0.925113i
\(528\) −97.7352 + 97.7352i −0.185105 + 0.185105i
\(529\) −264.465 + 458.067i −0.499934 + 0.865910i
\(530\) −1062.82 + 613.621i −2.00533 + 1.15778i
\(531\) 300.697 + 80.5716i 0.566285 + 0.151736i
\(532\) 1.76452i 0.00331677i
\(533\) 0 0
\(534\) −105.872 −0.198262
\(535\) −247.849 + 924.985i −0.463269 + 1.72894i
\(536\) −251.473 435.563i −0.469165 0.812618i
\(537\) 128.448 + 74.1592i 0.239195 + 0.138099i
\(538\) 150.343 + 150.343i 0.279447 + 0.279447i
\(539\) −630.058 + 168.823i −1.16894 + 0.313216i
\(540\) −0.781893 2.91807i −0.00144795 0.00540383i
\(541\) 123.367 123.367i 0.228036 0.228036i −0.583836 0.811872i \(-0.698449\pi\)
0.811872 + 0.583836i \(0.198449\pi\)
\(542\) 303.664 525.961i 0.560266 0.970408i
\(543\) −109.768 + 63.3744i −0.202150 + 0.116712i
\(544\) −6.52143 1.74741i −0.0119879 0.00321215i
\(545\) 992.557i 1.82120i
\(546\) 0 0
\(547\) −193.679 −0.354074 −0.177037 0.984204i \(-0.556651\pi\)
−0.177037 + 0.984204i \(0.556651\pi\)
\(548\) −1.32349 + 4.93932i −0.00241512 + 0.00901336i
\(549\) −133.632 231.458i −0.243410 0.421599i
\(550\) −974.536 562.649i −1.77188 1.02300i
\(551\) −123.847 123.847i −0.224768 0.224768i
\(552\) 1.23423 0.330712i 0.00223593 0.000599116i
\(553\) −26.2233 97.8668i −0.0474201 0.176974i
\(554\) −83.9652 + 83.9652i −0.151562 + 0.151562i
\(555\) −32.7058 + 56.6481i −0.0589294 + 0.102069i
\(556\) 5.19032 2.99663i 0.00933510 0.00538962i
\(557\) −871.675 233.565i −1.56495 0.419326i −0.630721 0.776010i \(-0.717241\pi\)
−0.934225 + 0.356684i \(0.883907\pi\)
\(558\) 735.484i 1.31807i
\(559\) 0 0
\(560\) −257.807 −0.460369
\(561\) −26.6371 + 99.4110i −0.0474815 + 0.177203i
\(562\) −374.672 648.951i −0.666676 1.15472i
\(563\) −412.904 238.390i −0.733399 0.423428i 0.0862652 0.996272i \(-0.472507\pi\)
−0.819664 + 0.572844i \(0.805840\pi\)
\(564\) 0.211617 + 0.211617i 0.000375208 + 0.000375208i
\(565\) 1310.12 351.047i 2.31880 0.621322i
\(566\) 221.695 + 827.378i 0.391688 + 1.46180i
\(567\) 102.752 102.752i 0.181221 0.181221i
\(568\) −34.7228 + 60.1417i −0.0611317 + 0.105883i
\(569\) −737.875 + 426.012i −1.29679 + 0.748704i −0.979849 0.199741i \(-0.935990\pi\)
−0.316944 + 0.948444i \(0.602657\pi\)
\(570\) −223.600 59.9133i −0.392280 0.105111i
\(571\) 839.202i 1.46971i 0.678227 + 0.734853i \(0.262749\pi\)
−0.678227 + 0.734853i \(0.737251\pi\)
\(572\) 0 0
\(573\) −31.9796 −0.0558109
\(574\) −36.4734 + 136.121i −0.0635425 + 0.237144i
\(575\) 5.15497 + 8.92868i 0.00896517 + 0.0155281i
\(576\) −483.111 278.924i −0.838735 0.484244i
\(577\) 699.005 + 699.005i 1.21145 + 1.21145i 0.970551 + 0.240897i \(0.0774417\pi\)
0.240897 + 0.970551i \(0.422558\pi\)
\(578\) −287.735 + 77.0984i −0.497812 + 0.133388i
\(579\) 29.4875 + 110.049i 0.0509283 + 0.190067i
\(580\) −1.45790 + 1.45790i −0.00251362 + 0.00251362i
\(581\) −87.4676 + 151.498i −0.150547 + 0.260754i
\(582\) 34.9607 20.1846i 0.0600700 0.0346814i
\(583\) −1083.21 290.246i −1.85800 0.497849i
\(584\) 265.525i 0.454667i
\(585\) 0 0
\(586\) −213.292 −0.363979
\(587\) −60.0726 + 224.194i −0.102338 + 0.381932i −0.998030 0.0627446i \(-0.980015\pi\)
0.895691 + 0.444676i \(0.146681\pi\)
\(588\) 0.480647 + 0.832506i 0.000817428 + 0.00141583i
\(589\) 898.397 + 518.690i 1.52529 + 0.880628i
\(590\) −405.376 405.376i −0.687079 0.687079i
\(591\) −93.5695 + 25.0719i −0.158324 + 0.0424228i
\(592\) 56.0247 + 209.087i 0.0946364 + 0.353188i
\(593\) −500.788 + 500.788i −0.844499 + 0.844499i −0.989440 0.144941i \(-0.953701\pi\)
0.144941 + 0.989440i \(0.453701\pi\)
\(594\) −153.088 + 265.157i −0.257725 + 0.446392i
\(595\) −166.245 + 95.9819i −0.279404 + 0.161314i
\(596\) 1.49651 + 0.400988i 0.00251092 + 0.000672798i
\(597\) 186.660i 0.312664i
\(598\) 0 0
\(599\) 563.203 0.940239 0.470119 0.882603i \(-0.344211\pi\)
0.470119 + 0.882603i \(0.344211\pi\)
\(600\) −48.4648 + 180.873i −0.0807747 + 0.301455i
\(601\) −67.6406 117.157i −0.112547 0.194937i 0.804250 0.594292i \(-0.202567\pi\)
−0.916796 + 0.399355i \(0.869234\pi\)
\(602\) 141.967 + 81.9645i 0.235825 + 0.136154i
\(603\) −382.423 382.423i −0.634200 0.634200i
\(604\) 3.99796 1.07125i 0.00661913 0.00177359i
\(605\) −187.023 697.978i −0.309128 1.15368i
\(606\) −14.1196 + 14.1196i −0.0232997 + 0.0232997i
\(607\) −20.0524 + 34.7318i −0.0330352 + 0.0572187i −0.882070 0.471118i \(-0.843851\pi\)
0.849035 + 0.528336i \(0.177184\pi\)
\(608\) 12.0173 6.93817i 0.0197652 0.0114115i
\(609\) 8.50403 + 2.27865i 0.0139639 + 0.00374162i
\(610\) 492.185i 0.806861i
\(611\) 0 0
\(612\) −3.64615 −0.00595776
\(613\) 191.423 714.402i 0.312273 1.16542i −0.614228 0.789128i \(-0.710533\pi\)
0.926501 0.376291i \(-0.122801\pi\)
\(614\) −393.640 681.805i −0.641108 1.11043i
\(615\) 144.354 + 83.3430i 0.234722 + 0.135517i
\(616\) −168.081 168.081i −0.272858 0.272858i
\(617\) 632.571 169.497i 1.02524 0.274712i 0.293254 0.956034i \(-0.405262\pi\)
0.731983 + 0.681323i \(0.238595\pi\)
\(618\) 26.9500 + 100.579i 0.0436084 + 0.162749i
\(619\) 739.075 739.075i 1.19398 1.19398i 0.218042 0.975939i \(-0.430033\pi\)
0.975939 0.218042i \(-0.0699671\pi\)
\(620\) 6.10590 10.5757i 0.00984822 0.0170576i
\(621\) 2.42936 1.40259i 0.00391202 0.00225860i
\(622\) 368.018 + 98.6100i 0.591668 + 0.158537i
\(623\) 180.447i 0.289642i
\(624\) 0 0
\(625\) 85.8635 0.137382
\(626\) 240.841 898.829i 0.384729 1.43583i
\(627\) −105.764 183.188i −0.168682 0.292166i
\(628\) −3.24605 1.87411i −0.00516887 0.00298425i
\(629\) 113.971 + 113.971i 0.181194 + 0.181194i
\(630\) −270.193 + 72.3981i −0.428878 + 0.114918i
\(631\) −220.322 822.253i −0.349163 1.30309i −0.887673 0.460475i \(-0.847679\pi\)
0.538509 0.842620i \(-0.318988\pi\)
\(632\) −282.958 + 282.958i −0.447719 + 0.447719i
\(633\) 96.0001 166.277i 0.151659 0.262681i
\(634\) −11.7396 + 6.77785i −0.0185167 + 0.0106906i
\(635\) 1319.72 + 353.619i 2.07831 + 0.556881i
\(636\) 1.65268i 0.00259856i
\(637\) 0 0
\(638\) 208.960 0.327524
\(639\) −19.3277 + 72.1318i −0.0302467 + 0.112882i
\(640\) 504.518 + 873.851i 0.788309 + 1.36539i
\(641\) −537.784 310.490i −0.838976 0.484383i 0.0179397 0.999839i \(-0.494289\pi\)
−0.856916 + 0.515456i \(0.827623\pi\)
\(642\) −101.139 101.139i −0.157537 0.157537i
\(643\) −124.450 + 33.3464i −0.193547 + 0.0518607i −0.354290 0.935136i \(-0.615277\pi\)
0.160744 + 0.986996i \(0.448611\pi\)
\(644\) 0.00499200 + 0.0186304i 7.75156e−6 + 2.89292e-5i
\(645\) 137.107 137.107i 0.212569 0.212569i
\(646\) −285.200 + 493.982i −0.441487 + 0.764678i
\(647\) 492.538 284.367i 0.761264 0.439516i −0.0684852 0.997652i \(-0.521817\pi\)
0.829750 + 0.558136i \(0.188483\pi\)
\(648\) −554.364 148.541i −0.855500 0.229231i
\(649\) 523.857i 0.807176i
\(650\) 0 0
\(651\) −52.1456 −0.0801008
\(652\) 2.96046 11.0486i 0.00454058 0.0169457i
\(653\) 498.955 + 864.215i 0.764096 + 1.32345i 0.940723 + 0.339175i \(0.110148\pi\)
−0.176627 + 0.984278i \(0.556519\pi\)
\(654\) −128.389 74.1253i −0.196313 0.113341i
\(655\) −616.720 616.720i −0.941557 0.941557i
\(656\) 532.809 142.766i 0.812208 0.217631i
\(657\) 73.8992 + 275.796i 0.112480 + 0.419780i
\(658\) 40.0038 40.0038i 0.0607960 0.0607960i
\(659\) 218.812 378.994i 0.332037 0.575105i −0.650874 0.759186i \(-0.725598\pi\)
0.982911 + 0.184081i \(0.0589308\pi\)
\(660\) −2.15645 + 1.24503i −0.00326735 + 0.00188640i
\(661\) 91.6872 + 24.5675i 0.138710 + 0.0371672i 0.327506 0.944849i \(-0.393792\pi\)
−0.188796 + 0.982016i \(0.560459\pi\)
\(662\) 79.1678i 0.119589i
\(663\) 0 0
\(664\) 690.912 1.04053
\(665\) 102.115 381.100i 0.153557 0.573083i
\(666\) 117.433 + 203.400i 0.176326 + 0.305405i
\(667\) −1.65800 0.957245i −0.00248575 0.00143515i
\(668\) 4.99928 + 4.99928i 0.00748395 + 0.00748395i
\(669\) −191.816 + 51.3969i −0.286720 + 0.0768265i
\(670\) 257.776 + 962.034i 0.384740 + 1.43587i
\(671\) −318.019 + 318.019i −0.473948 + 0.473948i
\(672\) −0.348759 + 0.604068i −0.000518986 + 0.000898911i
\(673\) 263.517 152.141i 0.391555 0.226064i −0.291279 0.956638i \(-0.594081\pi\)
0.682834 + 0.730574i \(0.260747\pi\)
\(674\) 162.851 + 43.6358i 0.241619 + 0.0647416i
\(675\) 411.091i 0.609024i
\(676\) 0 0
\(677\) −535.082 −0.790372 −0.395186 0.918601i \(-0.629320\pi\)
−0.395186 + 0.918601i \(0.629320\pi\)
\(678\) −52.4332 + 195.683i −0.0773351 + 0.288618i
\(679\) 34.4023 + 59.5866i 0.0506662 + 0.0877564i
\(680\) 656.592 + 379.084i 0.965577 + 0.557476i
\(681\) 68.5006 + 68.5006i 0.100588 + 0.100588i
\(682\) −1195.49 + 320.329i −1.75291 + 0.469691i
\(683\) 130.888 + 488.481i 0.191637 + 0.715199i 0.993112 + 0.117171i \(0.0373824\pi\)
−0.801475 + 0.598029i \(0.795951\pi\)
\(684\) 5.29902 5.29902i 0.00774710 0.00774710i
\(685\) 571.692 990.200i 0.834587 1.44555i
\(686\) 329.272 190.105i 0.479988 0.277121i
\(687\) −101.939 27.3145i −0.148383 0.0397591i
\(688\) 641.657i 0.932642i
\(689\) 0 0
\(690\) −2.53034 −0.00366716
\(691\) −154.042 + 574.894i −0.222927 + 0.831974i 0.760298 + 0.649575i \(0.225053\pi\)
−0.983225 + 0.182399i \(0.941614\pi\)
\(692\) 4.97518 + 8.61726i 0.00718956 + 0.0124527i
\(693\) −221.361 127.803i −0.319424 0.184420i
\(694\) 478.389 + 478.389i 0.689322 + 0.689322i
\(695\) −1294.42 + 346.839i −1.86248 + 0.499049i
\(696\) −8.99960 33.5869i −0.0129305 0.0482571i
\(697\) 290.427 290.427i 0.416682 0.416682i
\(698\) 410.634 711.239i 0.588301 1.01897i
\(699\) 48.1588 27.8045i 0.0688967 0.0397775i
\(700\) −2.73023 0.731563i −0.00390033 0.00104509i
\(701\) 1080.69i 1.54164i −0.637052 0.770821i \(-0.719846\pi\)
0.637052 0.770821i \(-0.280154\pi\)
\(702\) 0 0
\(703\) −331.272 −0.471226
\(704\) −242.963 + 906.751i −0.345118 + 1.28800i
\(705\) −33.4584 57.9516i −0.0474587 0.0822009i
\(706\) 514.922 + 297.290i 0.729351 + 0.421091i
\(707\) −24.0653 24.0653i −0.0340386 0.0340386i
\(708\) −0.745722 + 0.199816i −0.00105328 + 0.000282225i
\(709\) −141.398 527.703i −0.199432 0.744292i −0.991075 0.133307i \(-0.957440\pi\)
0.791642 0.610985i \(-0.209226\pi\)
\(710\) 97.2424 97.2424i 0.136961 0.136961i
\(711\) −215.152 + 372.654i −0.302605 + 0.524127i
\(712\) −617.201 + 356.341i −0.866855 + 0.500479i
\(713\) 10.9530 + 2.93485i 0.0153619 + 0.00411620i
\(714\) 28.6722i 0.0401571i
\(715\) 0 0
\(716\) 8.84232 0.0123496
\(717\) 5.72821 21.3780i 0.00798914 0.0298159i
\(718\) 386.623 + 669.651i 0.538472 + 0.932661i
\(719\) 1155.86 + 667.337i 1.60760 + 0.928146i 0.989906 + 0.141723i \(0.0452644\pi\)
0.617689 + 0.786422i \(0.288069\pi\)
\(720\) 774.218 + 774.218i 1.07530 + 1.07530i
\(721\) −171.425 + 45.9332i −0.237760 + 0.0637077i
\(722\) −117.395 438.125i −0.162597 0.606821i
\(723\) −19.9108 + 19.9108i −0.0275391 + 0.0275391i
\(724\) −3.77820 + 6.54403i −0.00521851 + 0.00903872i
\(725\) 242.974 140.281i 0.335137 0.193491i
\(726\) 104.252 + 27.9341i 0.143597 + 0.0384768i
\(727\) 1107.01i 1.52271i −0.648335 0.761356i \(-0.724534\pi\)
0.648335 0.761356i \(-0.275466\pi\)
\(728\) 0 0
\(729\) −560.082 −0.768289
\(730\) 136.090 507.897i 0.186425 0.695749i
\(731\) −238.890 413.770i −0.326799 0.566032i
\(732\) 0.574010 + 0.331405i 0.000784166 + 0.000452738i
\(733\) −402.981 402.981i −0.549769 0.549769i 0.376605 0.926374i \(-0.377091\pi\)
−0.926374 + 0.376605i \(0.877091\pi\)
\(734\) 534.529 143.227i 0.728241 0.195132i
\(735\) −55.6316 207.620i −0.0756893 0.282476i
\(736\) 0.107254 0.107254i 0.000145725 0.000145725i
\(737\) −455.047 + 788.164i −0.617431 + 1.06942i
\(738\) 518.316 299.250i 0.702325 0.405487i
\(739\) 568.542 + 152.340i 0.769340 + 0.206144i 0.622080 0.782954i \(-0.286288\pi\)
0.147260 + 0.989098i \(0.452955\pi\)
\(740\) 3.89965i 0.00526980i
\(741\) 0 0
\(742\) 312.421 0.421052
\(743\) −159.716 + 596.069i −0.214961 + 0.802246i 0.771219 + 0.636570i \(0.219647\pi\)
−0.986180 + 0.165676i \(0.947019\pi\)
\(744\) 102.975 + 178.359i 0.138408 + 0.239729i
\(745\) −300.009 173.210i −0.402697 0.232497i
\(746\) 803.888 + 803.888i 1.07760 + 1.07760i
\(747\) 717.636 192.290i 0.960691 0.257416i
\(748\) 1.58803 + 5.92660i 0.00212303 + 0.00792326i
\(749\) 172.379 172.379i 0.230146 0.230146i
\(750\) 66.1594 114.591i 0.0882125 0.152789i
\(751\) 863.544 498.567i 1.14986 0.663871i 0.201006 0.979590i \(-0.435579\pi\)
0.948853 + 0.315719i \(0.102246\pi\)
\(752\) −213.898 57.3139i −0.284439 0.0762152i
\(753\) 108.400i 0.143957i
\(754\) 0 0
\(755\) −925.472 −1.22579
\(756\) −0.199048 + 0.742856i −0.000263290 + 0.000982614i
\(757\) 48.7879 + 84.5031i 0.0644490 + 0.111629i 0.896449 0.443146i \(-0.146138\pi\)
−0.832000 + 0.554775i \(0.812804\pi\)
\(758\) −440.719 254.449i −0.581424 0.335685i
\(759\) −1.63495 1.63495i −0.00215408 0.00215408i
\(760\) −1505.17 + 403.308i −1.98048 + 0.530669i
\(761\) 76.8236 + 286.709i 0.100951 + 0.376754i 0.997854 0.0654727i \(-0.0208555\pi\)
−0.896904 + 0.442226i \(0.854189\pi\)
\(762\) −144.300 + 144.300i −0.189370 + 0.189370i
\(763\) 126.338 218.824i 0.165581 0.286795i
\(764\) −1.65111 + 0.953267i −0.00216113 + 0.00124773i
\(765\) 787.493 + 211.008i 1.02940 + 0.275828i
\(766\) 242.149i 0.316121i
\(767\) 0 0
\(768\) 4.11392 0.00535667
\(769\) 36.7932 137.314i 0.0478455 0.178562i −0.937868 0.346992i \(-0.887203\pi\)
0.985714 + 0.168430i \(0.0538698\pi\)
\(770\) 235.358 + 407.651i 0.305659 + 0.529417i
\(771\) 92.0486 + 53.1443i 0.119389 + 0.0689290i
\(772\) 4.80284 + 4.80284i 0.00622129 + 0.00622129i
\(773\) 652.494 174.835i 0.844107 0.226178i 0.189248 0.981929i \(-0.439395\pi\)
0.654858 + 0.755752i \(0.272728\pi\)
\(774\) −180.192 672.486i −0.232806 0.868845i
\(775\) −1175.04 + 1175.04i −1.51618 + 1.51618i
\(776\) 135.873 235.339i 0.175094 0.303272i
\(777\) 14.4210 8.32596i 0.0185598 0.0107155i
\(778\) 735.907 + 197.186i 0.945895 + 0.253452i
\(779\) 844.167i 1.08365i
\(780\) 0 0
\(781\) 125.664 0.160901
\(782\) −1.61372 + 6.02249i −0.00206358 + 0.00770140i
\(783\) −38.1685 66.1098i −0.0487465 0.0844314i
\(784\) −616.005 355.651i −0.785721 0.453636i
\(785\) 592.623 + 592.623i 0.754934 + 0.754934i
\(786\) 125.831 33.7163i 0.160090 0.0428961i
\(787\) 175.182 + 653.790i 0.222595 + 0.830737i 0.983354 + 0.181702i \(0.0581605\pi\)
−0.760758 + 0.649035i \(0.775173\pi\)
\(788\) −4.08363 + 4.08363i −0.00518227 + 0.00518227i
\(789\) −144.052 + 249.505i −0.182575 + 0.316229i
\(790\) 686.268 396.217i 0.868694 0.501541i
\(791\) −333.520 89.3664i −0.421644 0.112979i
\(792\) 1009.52i 1.27465i
\(793\) 0 0
\(794\) 1381.60 1.74004
\(795\) 95.6433 356.946i 0.120306 0.448988i
\(796\) −5.56407 9.63726i −0.00699004 0.0121071i
\(797\) −827.418 477.710i −1.03817 0.599385i −0.118852 0.992912i \(-0.537922\pi\)
−0.919313 + 0.393527i \(0.871255\pi\)
\(798\) 41.6698 + 41.6698i 0.0522178 + 0.0522178i
\(799\) −159.269 + 42.6761i −0.199336 + 0.0534118i
\(800\) 5.75308 + 21.4708i 0.00719134 + 0.0268385i
\(801\) −541.899 + 541.899i −0.676529 + 0.676529i
\(802\) −150.073 + 259.933i −0.187123 + 0.324107i
\(803\) 416.104 240.238i 0.518187 0.299175i
\(804\) 1.29554 + 0.347138i 0.00161136 + 0.000431764i
\(805\) 4.31268i 0.00535737i
\(806\) 0 0
\(807\) −64.0215 −0.0793327
\(808\) −34.7895 + 129.836i −0.0430563 + 0.160688i
\(809\) 120.894 + 209.395i 0.149436 + 0.258831i 0.931019 0.364970i \(-0.118921\pi\)
−0.781583 + 0.623801i \(0.785587\pi\)
\(810\) 984.255 + 568.260i 1.21513 + 0.701556i
\(811\) −444.795 444.795i −0.548452 0.548452i 0.377541 0.925993i \(-0.376770\pi\)
−0.925993 + 0.377541i \(0.876770\pi\)
\(812\) 0.506986 0.135846i 0.000624367 0.000167299i
\(813\) 47.3312 + 176.643i 0.0582180 + 0.217273i
\(814\) 279.468 279.468i 0.343327 0.343327i
\(815\) −1278.80 + 2214.94i −1.56908 + 2.71772i
\(816\) −97.1938 + 56.1149i −0.119110 + 0.0687682i
\(817\) 948.523 + 254.156i 1.16098 + 0.311084i
\(818\) 621.728i 0.760059i
\(819\) 0 0
\(820\) 9.93734 0.0121187
\(821\) −94.5667 + 352.928i −0.115185 + 0.429876i −0.999301 0.0373921i \(-0.988095\pi\)
0.884116 + 0.467268i \(0.154762\pi\)
\(822\) 85.3893 + 147.899i 0.103880 + 0.179925i
\(823\) 595.727 + 343.943i 0.723848 + 0.417914i 0.816167 0.577815i \(-0.196095\pi\)
−0.0923192 + 0.995729i \(0.529428\pi\)
\(824\) 495.635 + 495.635i 0.601498 + 0.601498i
\(825\) 327.295 87.6984i 0.396721 0.106301i
\(826\) 37.7728 + 140.970i 0.0457298 + 0.170666i
\(827\) 486.409 486.409i 0.588161 0.588161i −0.348972 0.937133i \(-0.613469\pi\)
0.937133 + 0.348972i \(0.113469\pi\)
\(828\) 0.0409574 0.0709403i 4.94655e−5 8.56767e-5i
\(829\) −617.844 + 356.712i −0.745288 + 0.430292i −0.823989 0.566606i \(-0.808256\pi\)
0.0787009 + 0.996898i \(0.474923\pi\)
\(830\) −1321.58 354.115i −1.59226 0.426645i
\(831\) 35.7555i 0.0430270i
\(832\) 0 0
\(833\) −529.637 −0.635819
\(834\) 51.8047 193.338i 0.0621160 0.231820i
\(835\) −790.425 1369.06i −0.946617 1.63959i
\(836\) −10.9211 6.30533i −0.0130636 0.00754226i
\(837\) 319.710 + 319.710i 0.381972 + 0.381972i
\(838\) 530.955 142.269i 0.633598 0.169772i
\(839\) −106.486 397.410i −0.126920 0.473671i 0.872981 0.487754i \(-0.162184\pi\)
−0.999901 + 0.0140828i \(0.995517\pi\)
\(840\) 55.3868 55.3868i 0.0659367 0.0659367i
\(841\) 394.451 683.209i 0.469026 0.812377i
\(842\) 460.149 265.667i 0.546495 0.315519i
\(843\) 217.948 + 58.3990i 0.258539 + 0.0692752i
\(844\) 11.4465i 0.0135622i
\(845\) 0 0
\(846\) −240.270 −0.284007
\(847\) −47.6106 + 177.685i −0.0562109 + 0.209782i
\(848\) −611.444 1059.05i −0.721043 1.24888i
\(849\) −223.367 128.961i −0.263094 0.151898i
\(850\) −646.092 646.092i −0.760108 0.760108i
\(851\) −3.49768 + 0.937201i −0.00411008 + 0.00110129i
\(852\) −0.0479321 0.178885i −5.62584e−5 0.000209959i
\(853\) −100.188 + 100.188i −0.117454 + 0.117454i −0.763391 0.645937i \(-0.776467\pi\)
0.645937 + 0.763391i \(0.276467\pi\)
\(854\) 62.6482 108.510i 0.0733585 0.127061i
\(855\) −1451.14 + 837.817i −1.69724 + 0.979902i
\(856\) −930.015 249.197i −1.08647 0.291118i
\(857\) 1105.86i 1.29039i −0.764019 0.645194i \(-0.776776\pi\)
0.764019 0.645194i \(-0.223224\pi\)
\(858\) 0 0
\(859\) −98.7915 −0.115008 −0.0575038 0.998345i \(-0.518314\pi\)
−0.0575038 + 0.998345i \(0.518314\pi\)
\(860\) 2.99187 11.1658i 0.00347891 0.0129835i
\(861\) −21.2167 36.7485i −0.0246420 0.0426811i
\(862\) −592.920 342.322i −0.687842 0.397126i
\(863\) −14.6470 14.6470i −0.0169722 0.0169722i 0.698570 0.715542i \(-0.253820\pi\)
−0.715542 + 0.698570i \(0.753820\pi\)
\(864\) 5.84188 1.56533i 0.00676144 0.00181172i
\(865\) −575.842 2149.07i −0.665713 2.48448i
\(866\) −272.482 + 272.482i −0.314644 + 0.314644i
\(867\) 44.8485 77.6799i 0.0517284 0.0895961i
\(868\) −2.69228 + 1.55439i −0.00310170 + 0.00179077i
\(869\) 699.434 + 187.413i 0.804872 + 0.215665i
\(870\) 68.8577i 0.0791468i
\(871\) 0 0
\(872\) −997.954 −1.14444
\(873\) 75.6307 282.257i 0.0866331 0.323319i
\(874\) −6.40735 11.0979i −0.00733106 0.0126978i
\(875\) 195.308 + 112.761i 0.223209 + 0.128870i
\(876\) −0.500698 0.500698i −0.000571573 0.000571573i
\(877\) −731.877 + 196.106i −0.834524 + 0.223610i −0.650686 0.759347i \(-0.725519\pi\)
−0.183837 + 0.982957i \(0.558852\pi\)
\(878\) 181.234 + 676.373i 0.206417 + 0.770357i
\(879\) 45.4138 45.4138i 0.0516652 0.0516652i
\(880\) 921.246 1595.65i 1.04687 1.81323i
\(881\) −1427.91 + 824.403i −1.62078 + 0.935758i −0.634069 + 0.773277i \(0.718616\pi\)
−0.986712 + 0.162481i \(0.948050\pi\)
\(882\) −745.476 199.750i −0.845211 0.226474i
\(883\) 360.322i 0.408065i 0.978964 + 0.204033i \(0.0654049\pi\)
−0.978964 + 0.204033i \(0.934595\pi\)
\(884\) 0 0
\(885\) 172.624 0.195056
\(886\) −173.388 + 647.095i −0.195698 + 0.730355i
\(887\) 524.092 + 907.755i 0.590860 + 1.02340i 0.994117 + 0.108312i \(0.0345446\pi\)
−0.403257 + 0.915087i \(0.632122\pi\)
\(888\) −56.9562 32.8837i −0.0641399 0.0370312i
\(889\) −245.943 245.943i −0.276651 0.276651i
\(890\) 1363.22 365.273i 1.53171 0.410419i
\(891\) 268.790 + 1003.14i 0.301672 + 1.12586i
\(892\) −8.37138 + 8.37138i −0.00938495 + 0.00938495i
\(893\) 169.447 293.491i 0.189750 0.328657i
\(894\) 44.8100 25.8711i 0.0501231 0.0289386i
\(895\) −1909.76 511.719i −2.13381 0.571753i
\(896\) 256.872i 0.286687i
\(897\) 0 0
\(898\) −273.604 −0.304682
\(899\) 79.8655 298.062i 0.0888382 0.331549i
\(900\) 6.00218 + 10.3961i 0.00666909 + 0.0115512i
\(901\) −788.574 455.283i −0.875221 0.505309i
\(902\) −712.158 712.158i −0.789532 0.789532i
\(903\) −47.6791 + 12.7756i −0.0528008 + 0.0141479i
\(904\) 352.956 + 1317.25i 0.390438 + 1.45713i
\(905\) 1194.73 1194.73i 1.32014 1.32014i
\(906\) 69.1153 119.711i 0.0762862 0.132132i
\(907\) 141.664 81.7900i 0.156190 0.0901764i −0.419868 0.907585i \(-0.637924\pi\)
0.576058 + 0.817409i \(0.304590\pi\)
\(908\) 5.57859 + 1.49478i 0.00614382 + 0.00164623i
\(909\) 144.540i 0.159010i
\(910\) 0 0
\(911\) 826.177 0.906890 0.453445 0.891284i \(-0.350195\pi\)
0.453445 + 0.891284i \(0.350195\pi\)
\(912\) 59.7008 222.806i 0.0654614 0.244305i
\(913\) −625.112 1082.73i −0.684680 1.18590i
\(914\) −342.395 197.682i −0.374611 0.216282i
\(915\) −104.795 104.795i −0.114530 0.114530i
\(916\) −6.07732 + 1.62841i −0.00663463 + 0.00177774i
\(917\) 57.4657 + 214.465i 0.0626670 + 0.233877i
\(918\) −175.792 + 175.792i −0.191495 + 0.191495i
\(919\) −178.535 + 309.231i −0.194271 + 0.336487i −0.946661 0.322231i \(-0.895567\pi\)
0.752391 + 0.658717i \(0.228901\pi\)
\(920\) −14.7511 + 8.51654i −0.0160338 + 0.00925711i
\(921\) 228.982 + 61.3556i 0.248624 + 0.0666185i
\(922\) 1806.47i 1.95929i
\(923\) 0 0
\(924\) 0.633896 0.000686034
\(925\) 137.344 512.574i 0.148480 0.554135i
\(926\) 834.435 + 1445.28i 0.901118 + 1.56078i
\(927\) 652.748 + 376.864i 0.704150 + 0.406541i
\(928\) −2.91867 2.91867i −0.00314512 0.00314512i
\(929\) 228.846 61.3191i 0.246336 0.0660055i −0.133538 0.991044i \(-0.542634\pi\)
0.379874 + 0.925038i \(0.375967\pi\)
\(930\) −105.557 393.943i −0.113502 0.423594i
\(931\) 769.732 769.732i 0.826780 0.826780i
\(932\) 1.65762 2.87109i 0.00177857 0.00308057i
\(933\) −99.3537 + 57.3619i −0.106488 + 0.0614811i
\(934\) 292.179 + 78.2892i 0.312826 + 0.0838215i
\(935\) 1371.93i 1.46730i
\(936\) 0 0
\(937\) 1610.13 1.71838 0.859192 0.511654i \(-0.170967\pi\)
0.859192 + 0.511654i \(0.170967\pi\)
\(938\) 65.6224 244.906i 0.0699599 0.261094i
\(939\) 140.098 + 242.657i 0.149199 + 0.258420i
\(940\) −3.45491 1.99469i −0.00367543 0.00212201i
\(941\) −930.926 930.926i −0.989295 0.989295i 0.0106488 0.999943i \(-0.496610\pi\)
−0.999943 + 0.0106488i \(0.996610\pi\)
\(942\) −120.915 + 32.3990i −0.128359 + 0.0343938i
\(943\) 2.38823 + 8.91301i 0.00253259 + 0.00945176i
\(944\) 403.939 403.939i 0.427901 0.427901i
\(945\) 85.9804 148.922i 0.0909846 0.157590i
\(946\) −1014.61 + 585.783i −1.07252 + 0.619221i
\(947\) 191.065 + 51.1956i 0.201758 + 0.0540608i 0.358283 0.933613i \(-0.383362\pi\)
−0.156525 + 0.987674i \(0.550029\pi\)
\(948\) 1.06714i 0.00112568i
\(949\) 0 0
\(950\) 1877.96 1.97679
\(951\) 1.05644 3.94270i 0.00111088 0.00414585i
\(952\) −96.5038 167.150i −0.101370 0.175577i
\(953\) −363.857 210.073i −0.381802 0.220433i 0.296800 0.954940i \(-0.404080\pi\)
−0.678602 + 0.734506i \(0.737414\pi\)
\(954\) −938.228 938.228i −0.983467 0.983467i
\(955\) 411.772 110.334i 0.431175 0.115533i
\(956\) −0.341499 1.27449i −0.000357217 0.00133315i
\(957\) −44.4915 + 44.4915i −0.0464906 + 0.0464906i
\(958\) −501.791 + 869.127i −0.523790 + 0.907231i
\(959\) −252.077 + 145.536i −0.262854 + 0.151759i
\(960\) −298.797 80.0625i −0.311247 0.0833984i
\(961\) 866.679i 0.901851i
\(962\) 0 0
\(963\) −1035.34 −1.07512
\(964\) −0.434480 + 1.62150i −0.000450706 + 0.00168206i
\(965\) −759.367 1315.26i −0.786908 1.36297i
\(966\) 0.557852 + 0.322076i 0.000577487 + 0.000333412i
\(967\) −957.774 957.774i −0.990459 0.990459i 0.00949545 0.999955i \(-0.496977\pi\)
−0.999955 + 0.00949545i \(0.996977\pi\)
\(968\) 701.774 188.040i 0.724973 0.194256i
\(969\) −44.4534 165.902i −0.0458755 0.171210i
\(970\) −380.517 + 380.517i −0.392286 + 0.392286i
\(971\) 351.176 608.255i 0.361664 0.626421i −0.626571 0.779365i \(-0.715542\pi\)
0.988235 + 0.152944i \(0.0488753\pi\)
\(972\) 4.27175 2.46630i 0.00439481 0.00253734i
\(973\) 329.523 + 88.2953i 0.338667 + 0.0907454i
\(974\) 1099.98i 1.12935i
\(975\) 0 0
\(976\) −490.440 −0.502500
\(977\) 172.858 645.113i 0.176927 0.660300i −0.819289 0.573381i \(-0.805631\pi\)
0.996215 0.0869186i \(-0.0277020\pi\)
\(978\) −191.004 330.829i −0.195301 0.338271i
\(979\) 1116.84 + 644.809i 1.14080 + 0.658641i
\(980\) −9.06111 9.06111i −0.00924603 0.00924603i
\(981\) −1036.55 + 277.744i −1.05663 + 0.283123i
\(982\) −425.156 1586.70i −0.432949 1.61579i
\(983\) 507.852 507.852i 0.516635 0.516635i −0.399916 0.916552i \(-0.630961\pi\)
0.916552 + 0.399916i \(0.130961\pi\)
\(984\) −83.7962 + 145.139i −0.0851587 + 0.147499i
\(985\) 1118.31 645.655i 1.13534 0.655487i
\(986\) 163.889 + 43.9139i 0.166216 + 0.0445374i
\(987\) 17.0351i 0.0172595i
\(988\) 0 0
\(989\) 10.7339 0.0108533
\(990\) 517.414 1931.02i 0.522640 1.95052i
\(991\) 418.667 + 725.153i 0.422469 + 0.731738i 0.996180 0.0873195i \(-0.0278301\pi\)
−0.573711 + 0.819058i \(0.694497\pi\)
\(992\) 21.1723 + 12.2238i 0.0213430 + 0.0123224i
\(993\) −16.8563 16.8563i −0.0169751 0.0169751i
\(994\) −33.8161 + 9.06101i −0.0340203 + 0.00911570i
\(995\) 644.003 + 2403.45i 0.647239 + 2.41553i
\(996\) −1.30285 + 1.30285i −0.00130808 + 0.00130808i
\(997\) −305.867 + 529.777i −0.306787 + 0.531371i −0.977658 0.210204i \(-0.932587\pi\)
0.670870 + 0.741575i \(0.265921\pi\)
\(998\) 549.651 317.341i 0.550753 0.317977i
\(999\) −139.464 37.3693i −0.139604 0.0374067i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.89.9 48
13.2 odd 12 169.3.d.e.70.9 yes 24
13.3 even 3 169.3.d.e.99.9 yes 24
13.4 even 6 inner 169.3.f.g.150.9 48
13.5 odd 4 inner 169.3.f.g.80.4 48
13.6 odd 12 inner 169.3.f.g.19.9 48
13.7 odd 12 inner 169.3.f.g.19.4 48
13.8 odd 4 inner 169.3.f.g.80.9 48
13.9 even 3 inner 169.3.f.g.150.4 48
13.10 even 6 169.3.d.e.99.4 yes 24
13.11 odd 12 169.3.d.e.70.4 24
13.12 even 2 inner 169.3.f.g.89.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.4 24 13.11 odd 12
169.3.d.e.70.9 yes 24 13.2 odd 12
169.3.d.e.99.4 yes 24 13.10 even 6
169.3.d.e.99.9 yes 24 13.3 even 3
169.3.f.g.19.4 48 13.7 odd 12 inner
169.3.f.g.19.9 48 13.6 odd 12 inner
169.3.f.g.80.4 48 13.5 odd 4 inner
169.3.f.g.80.9 48 13.8 odd 4 inner
169.3.f.g.89.4 48 13.12 even 2 inner
169.3.f.g.89.9 48 1.1 even 1 trivial
169.3.f.g.150.4 48 13.9 even 3 inner
169.3.f.g.150.9 48 13.4 even 6 inner