L(s) = 1 | − 0.679i·2-s + 62.4·3-s + 127.·4-s − 439. i·5-s − 42.4i·6-s − 1.30e3i·7-s − 173. i·8-s + 1.71e3·9-s − 298.·10-s − 574. i·11-s + 7.96e3·12-s − 884.·14-s − 2.74e4i·15-s + 1.62e4·16-s + 1.12e4·17-s − 1.16e3i·18-s + ⋯ |
L(s) = 1 | − 0.0600i·2-s + 1.33·3-s + 0.996·4-s − 1.57i·5-s − 0.0801i·6-s − 1.43i·7-s − 0.119i·8-s + 0.783·9-s − 0.0943·10-s − 0.130i·11-s + 1.33·12-s − 0.0861·14-s − 2.09i·15-s + 0.989·16-s + 0.556·17-s − 0.0470i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.277+0.960i)Λ(8−s)
Λ(s)=(=(169s/2ΓC(s+7/2)L(s)(−0.277+0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.277+0.960i
|
Analytic conductor: |
52.7930 |
Root analytic conductor: |
7.26588 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :7/2), −0.277+0.960i)
|
Particular Values
L(4) |
≈ |
4.364931168 |
L(21) |
≈ |
4.364931168 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+0.679iT−128T2 |
| 3 | 1−62.4T+2.18e3T2 |
| 5 | 1+439.iT−7.81e4T2 |
| 7 | 1+1.30e3iT−8.23e5T2 |
| 11 | 1+574.iT−1.94e7T2 |
| 17 | 1−1.12e4T+4.10e8T2 |
| 19 | 1−4.10e4iT−8.93e8T2 |
| 23 | 1−4.42e4T+3.40e9T2 |
| 29 | 1+1.45e5T+1.72e10T2 |
| 31 | 1+1.22e5iT−2.75e10T2 |
| 37 | 1+4.20e4iT−9.49e10T2 |
| 41 | 1−8.76e4iT−1.94e11T2 |
| 43 | 1−7.49e5T+2.71e11T2 |
| 47 | 1−9.40e5iT−5.06e11T2 |
| 53 | 1+9.24e5T+1.17e12T2 |
| 59 | 1−6.32e5iT−2.48e12T2 |
| 61 | 1+6.44e4T+3.14e12T2 |
| 67 | 1−1.94e6iT−6.06e12T2 |
| 71 | 1+4.72e6iT−9.09e12T2 |
| 73 | 1+1.92e6iT−1.10e13T2 |
| 79 | 1+1.50e6T+1.92e13T2 |
| 83 | 1−1.87e6iT−2.71e13T2 |
| 89 | 1+4.37e6iT−4.42e13T2 |
| 97 | 1+1.77e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13537051044486418551071057085, −9.993984046130347293686461612051, −9.095060904004543685195907615462, −7.894460781282075737452949829100, −7.53354971571117789724717197621, −5.83358179415957682640647214564, −4.25673496345806576617069962156, −3.32725826919622788498347917240, −1.77569013931811317115581596312, −0.906863534468228296462009163150,
2.04823502054747035473090639917, 2.71764911251562136727618335815, 3.33056681055872930494605730692, 5.61185193615562784602982553979, 6.79434945879940001105142766874, 7.52677736023996231087455014014, 8.683821605932493888748796583076, 9.646384107169439617651997374753, 10.86769415478333527641450731479, 11.58281570568572309631898587626