L(s) = 1 | + 2-s − 3i·3-s + 4-s − i·5-s − 3i·6-s + 4i·7-s + 8-s − 6·9-s − i·10-s − 2i·11-s − 3i·12-s + 13-s + 4i·14-s − 3·15-s + 16-s + (−4 + i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73i·3-s + 0.5·4-s − 0.447i·5-s − 1.22i·6-s + 1.51i·7-s + 0.353·8-s − 2·9-s − 0.316i·10-s − 0.603i·11-s − 0.866i·12-s + 0.277·13-s + 1.06i·14-s − 0.774·15-s + 0.250·16-s + (−0.970 + 0.242i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29796 - 1.01342i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29796 - 1.01342i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 + (4 - i)T \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 19 | \( 1 - 7T + 19T^{2} \) |
| 23 | \( 1 - 6iT - 23T^{2} \) |
| 29 | \( 1 + 3iT - 29T^{2} \) |
| 31 | \( 1 - 7iT - 31T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + 8iT - 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 - 9T + 47T^{2} \) |
| 53 | \( 1 + 11T + 53T^{2} \) |
| 59 | \( 1 + 5T + 59T^{2} \) |
| 61 | \( 1 - iT - 61T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + iT - 71T^{2} \) |
| 73 | \( 1 - 9iT - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51617759768662949677062718120, −11.96265363250534614982759832729, −11.25111737501018010894859849339, −9.149973819366366417744698990508, −8.290761348738417328071218177964, −7.18802883405412538593069410516, −6.01869006498360600313377989302, −5.37230424282602979695769710811, −3.04581874417342468555685221023, −1.70330108837015106579750316817,
3.14050325071886133800571108651, 4.19873050916616556771392415588, 4.89538188592078517366076686232, 6.46767238726875828182751799868, 7.68616206475835792833706874124, 9.333687644170166982705742887466, 10.23045900052884807800347481520, 10.84344936356113208565349317874, 11.67626958654991442426548564908, 13.30155021929119161366332252046