L(s) = 1 | + 2-s − 3i·3-s + 4-s − i·5-s − 3i·6-s + 4i·7-s + 8-s − 6·9-s − i·10-s − 2i·11-s − 3i·12-s + 13-s + 4i·14-s − 3·15-s + 16-s + (−4 + i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73i·3-s + 0.5·4-s − 0.447i·5-s − 1.22i·6-s + 1.51i·7-s + 0.353·8-s − 2·9-s − 0.316i·10-s − 0.603i·11-s − 0.866i·12-s + 0.277·13-s + 1.06i·14-s − 0.774·15-s + 0.250·16-s + (−0.970 + 0.242i)17-s + ⋯ |
Λ(s)=(=(170s/2ΓC(s)L(s)(0.242+0.970i)Λ(2−s)
Λ(s)=(=(170s/2ΓC(s+1/2)L(s)(0.242+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
170
= 2⋅5⋅17
|
Sign: |
0.242+0.970i
|
Analytic conductor: |
1.35745 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ170(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 170, ( :1/2), 0.242+0.970i)
|
Particular Values
L(1) |
≈ |
1.29796−1.01342i |
L(21) |
≈ |
1.29796−1.01342i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+iT |
| 17 | 1+(4−i)T |
good | 3 | 1+3iT−3T2 |
| 7 | 1−4iT−7T2 |
| 11 | 1+2iT−11T2 |
| 13 | 1−T+13T2 |
| 19 | 1−7T+19T2 |
| 23 | 1−6iT−23T2 |
| 29 | 1+3iT−29T2 |
| 31 | 1−7iT−31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+8iT−41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1−9T+47T2 |
| 53 | 1+11T+53T2 |
| 59 | 1+5T+59T2 |
| 61 | 1−iT−61T2 |
| 67 | 1+10T+67T2 |
| 71 | 1+iT−71T2 |
| 73 | 1−9iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+T+89T2 |
| 97 | 1+iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.51617759768662949677062718120, −11.96265363250534614982759832729, −11.25111737501018010894859849339, −9.149973819366366417744698990508, −8.290761348738417328071218177964, −7.18802883405412538593069410516, −6.01869006498360600313377989302, −5.37230424282602979695769710811, −3.04581874417342468555685221023, −1.70330108837015106579750316817,
3.14050325071886133800571108651, 4.19873050916616556771392415588, 4.89538188592078517366076686232, 6.46767238726875828182751799868, 7.68616206475835792833706874124, 9.333687644170166982705742887466, 10.23045900052884807800347481520, 10.84344936356113208565349317874, 11.67626958654991442426548564908, 13.30155021929119161366332252046